Package ‘lingtypology’

December 10, 2021

Type Package
Title Linguistic Typology and Mapping
Version 1.1.8
Depends R (>= 3.5.0)
Imports leaflet, leaflet.minicharts, stats, utils, stringdist, grDevices, jsonlite

Description Provides R with the Glottolog database <https://glottolog.org/> and some more abilities for purposes of linguistic mapping. The Glottolog database contains the catalogue of languages of the world. This package helps researchers to make a linguistic maps, using philosophy of the Cross-Linguistic Linked Data project <https://cld.org/>, which allows for while at the same time facilitating uniform access to the data across publications. A tutorial for this package is available on GitHub pages <https://docs.ropensci.org/lingtypology/> and package vignette. Maps created by this package can be used both for the investigation and linguistic teaching. In addition, package provides an ability to download data from typological databases such as WALS, AUTOTYP and some others and to create your own database website.

License GPL (>= 2)

BugReports https://github.com/ropensci/lingtypology/issues
LazyData TRUE
RoxygenNote 7.1.2
Encoding UTF-8
Suggests knitr, rmarkdown, testthat, covr, MASS, sp, rgeos, rgdal, ggplot2, ape

VignetteBuilder knitr
NeedsCompilation no
Author George Moroz [aut, cre] (<https://orcid.org/0000-0003-1990-6083>),
Kirill Koncha [ctb] (<https://orcid.org/0000-0003-0676-2658>),
Mikhail Leonov [ctb],
Anna Smirnova [ctb]

Maintainer George Moroz <agricolamz@gmail.com>

Repository CRAN

Date/Publication 2021-12-10 18:30:02 UTC

R topics documented:

- abvd
- abvd.feature
- afbo.feature
- aff.lang
- amap
- area.lang
- atlas.database
- autotyp
- autotyp.feature
- bantu
- bantu.feature
- bivalentyp.feature
- circassian
- country.lang
- eurasianphonology
- eurasianphonology.feature
- ggmap.feature
- glottolog
- gltc.iso
- gltc.lang
- imports
- is.glottolog
- iso.gltc
- iso.lang
- lang.aff
- lang.country
- lang.gltc
- lang.iso
- lat.lang
- long.lang
- map.feature
- oto_mangueanIC
- oto_mangueanIC.feature
- phoible
- phoible.feature
- phonological_profiles
- polygon.points_fd
abvd

Description

Language identifiers from ABVD (https://abvd.shh.mpg.de/austronesian/). This dataset is created for `abvd.feature` function.

Usage

abvd

Format

A data frame with 1468 rows and 2 variables:

- id language identifier
- glottocode Glottocode

abvd.feature Download ABVD data

Description

This function downloads data from ABVD (https://abvd.shh.mpg.de/austronesian/) and changes language names to the names from lingtypology database. You need the internet connection.

Usage

abvd.feature(feature)
Arguments

feature A character vector that define a language id from ABVD (e. g. "1", "292").

Author(s)

George Moroz <agricolamz@gmail.com>

See Also

Examples

afbo.feature()
afbo.feature(c("adjectivizer", "adverbializer"))

Description

This function downloads data from AfBo (https://afbo.info/) and changes language names to the names from lingtypology database. You need the internet connection.

Usage

afbo.feature(features = "all", na.rm = TRUE)

Arguments

features A character vector that define with an affix functions from AfBo (e. g. "all", "adjectivizer", "focus").

na.rm Logical. If TRUE function removes all languages not available in lingtypology database. By default is TRUE.

See Also

Examples

afbo.feature()
aff.lang Get affiliation by language

Description

Takes any vector of languages and returns affiliation.

Usage

aff.lang(x)

Arguments

x A character vector of the languages (can be written in lower case)

Author(s)

George Moroz <agricolamz@gmail.com>

See Also

area.lang, country.lang, gltc.lang, iso.lang, lat.lang, long.lang, subc.lang, url.lang

Examples

aff.lang('Korean')
aff.lang(c('Korean', 'Polish'))

amap Atlantic center template for ggmap.feature() function

Description

.

Usage

amap

Format

A list with 9 variables.
area.lang

Get macro area by language

Description

Takes any vector of languages and returns macro area.

Usage

`area.lang(x)`

Arguments

- `x`
 character vector of the languages (can be written in lower case)

Author(s)

George Moroz <agricolamz@gmail.com>

See Also

- `aff.lang`, `country.lang`, `gltc.lang`, `iso.lang`, `lat.lang`, `long.lang`, `subc.lang`, `url.lang`

Examples

```r
area.lang('Adyghe')
area.lang(c('Adyghe', 'Aduge'))
```

atlas.database

Create an atlas

Description

This function creates an rmarkdown based atlas from data provided by users. This function creates the template, after it should be rendered by rmarkdown package. The DT package is required during the rendering.

Usage

```r
atlas.database(
  languages,
  latitude,
  longitude,
  features,
  atlas.name = "",
  author = ""
)
```
autotyp

Arguments

- **languages**: character vector of languages (can be written in lower case)
- **latitude**: numeric vector of latitudes (optional)
- **longitude**: numeric vector of longitudes (optional)
- **features**: dataframe where each column is a feature set
- **atlas.name**: string with an atlas name
- **author**: string with the authors list

Description

Language identifiers from AUTOTYP v. 0.1.4 (https://github.com/autotyp/autotyp-data/). This dataset is created for **autotyp.feature** function.

Usage

```r
autotyp
```

Format

An object of class `data.frame` with 2853 rows and 2 columns.

Details

```r
#' @format A data frame with 2853 rows and 2 variables:
LID  language identifier
Glottocode  Glottocode
```

Description

This function downloads data from AUTOTYP (https://github.com/autotyp/autotyp-data#the-autotyp-database) and changes language names to the names from lingtypology database. You need the internet connection.

Usage

```r
autotyp.feature(features, na.rm = TRUE)
```
Arguments

features A character vector that define with a feature names from AUTOTYP.
na.rm Logical. If TRUE function removes all languages not available in lingtypology database. By default is TRUE.

See Also

abvd.feature, afbo.feature, oto_mangueanIC.feature, phoible.feature, sails.feature, uralex.feature, valpal.feature, wals.feature

Examples

autotyp.feature(c('Gender', 'Numeral classifiers'))

bantu

BANTU's Language identifiers

Description

Language identifiers from BANTU (https://abvd.shh.mpg.de/bantu/index.php). This dataset is created for bantu.feature function.

Usage

bantu

Format

A data frame with 430 rows and 2 variables:

id BANTU word id
word word
bantu.feature
Download BANTU data

Description
This function downloads data from Bantu Basic Vocabulary Database (https://abvd.shh.mpg.de/bantu/index.php) and changes language names to the names from lingtypology database. You need the internet connection.

Usage
`bantu.feature(features)`

Arguments
- `features` A character vector that define with a feature ids from BANTU (‘house’, ‘cat’).

Author(s)
Anna Smirnova <annedadaa@gmail.com>

See Also

Examples
```r
# bantu.feature(c('house', 'cat'))
```

bivaltyp.feature
Download BivalTyp data

Description
This function downloads data from BivalTyp (https://www.bivaltyp.info/) and changes language names to the names from lingtypology database. You need the internet connection.

Usage
`bivaltyp.feature()`

Author(s)
George Moroz <agricolamz@gmail.com>
circassian
* Circassian villages in Russia

Description

A dataset contains the list of the Circassian villages in Russia with genealogical affiliation, coordinates and district names. Most data collected during the fieldworks (2011–2018).

Usage

circassian

Format

A data frame with 158 rows and 6 variables:

- **longitude** longitude
- **latitude** latitude
- **village** name of the village
- **dialect** names of the Circassian dialects
- **language** according standard Circassian division there are Adyghe and Kabardian languages

country.lang
* Get country by language

Description

Takes any vector of languages and returns countries where those languages are used as ISO 3166-1 alpha-2 codes.

Usage

country.lang(x)
Arguments

- x A character vector of the languages (can be written in lower case)

Author(s)

George Moroz <agricolamz@gmail.com>

See Also

aff.lang, area.lang, gltc.lang, iso.lang, lat.lang, long.lang, subc.lang, url.lang

Examples

country.lang('Korean')
country.lang(c('Korean', 'Polish'))

date

Eurasianphonology data

Description

Data from The database of Eurasian phonological inventories (https://eurphon.info). This dataset is created for eurasianphonology.feature function.

Usage

eurasianphonology

Format

A data frame with 19825 rows and 19 variables:

- id Language id
- iso ISO code
- name Another language name
- type Language or dialect
- language Language name
- latitude latitude
- longitude longitude
- gen1 Language Family
- gen2 Language Family
- tones Inventory of tones
- syllab Syllab structure
- cluster Cluster
Description

This function opens downloaded data from the database of Eurasian phonological inventories (https://eurphon.info).

Usage

eurasianphonology.feature()

Author(s)

Kirill Koncha <majortomblog@gmail.com>

See Also

Examples

eurasianphonology.feature()
ggmap.feature

Create a map with ggplot2

Description

Map a set of languages and color them by feature.

Usage

```r
ggmap.feature(
  languages,
  features = "",
  latitude = NA,
  longitude = NA,
  color = NULL,
  title = NULL,
  legend = TRUE,
  width = 2,
  opacity = 1,
  map.orientation = "Atlantic"
)
```

Arguments

- `languages` character vector of languages (can be written in lower case).
- `features` character vector of features.
- `latitude` numeric vector of latitudes.
- `longitude` numeric vector of longitudes.
- `color` vector of colors or palette. The color argument can be (1) a character vector of RGM or named colors; (2) the name of an RColorBrewer palette; (3) the full name of a viridis palette; (4) a function that receives a single value between 0 and 1 and returns a color. For more examples see `colorNumeric`.
- `title` title of a legend.
- `legend` logical. If TRUE, function show legend. By default is TRUE.
- `width` a numeric vector of radius for circles or width for barcharts in minicharts.
- `opacity` a numeric vector of marker opacity.
- `map.orientation` a character vector with values "Pacific" and "Atlantic". It distinguishes Pacific-centered and Atlantic-centered maps. By default is "Atlantic".

Author(s)

George Moroz <agricolamz@gmail.com>
Examples

```r
ggmap.feature(c("Adyghe", "Russian"))
```

glottolog

Catalogue of languages of the world

Description

A dataset contains the original catalogue of languages of the world involving genealogical affiliation, macro-area, country, iso code, and coordinates.

Usage

```r
glottolog
```

Format

A data frame with 25900 rows and 10 variables:

- `glottocode`
 languoid code from Glottolog 4.5
- `language`
 name of the language
- `iso`
- `level`
 languoid type: dialect or language (possible values are dialect, language, family, bookkeeping, pseudo family, sign language, unclassifiable, pidgin, unattested, artificial language, speech register, mixed language)
- `area`
 have six values Africa, Australia, Eurasia, North America, Papunesia, South America
- `latitude`
 latitude
- `longitude`
 longitude
- `countries`
 list of countries, where the language is spoken
- `affiliation`
 genealogical affiliation
- `subclassification`
 subclassification in a Newick format

Details

Source

https://glottolog.org/
Description

Usage
gltc.iso(x)

Arguments
x A character vector of the Glottocodes.

Author(s)
George Moroz <agricolamz@gmail.com>

See Also
aff.lang, area.lang, lat.lang, long.lang

Examples
```r
gltc.iso('ady')
gltc.iso(c('ady', 'rus'))
```

Description
Takes any vector of languages and returns Glottocode.

Usage
gltc.lang(x)

Arguments
x A character vector of the languages (can be written in lower case)

Author(s)
George Moroz <agricolamz@gmail.com>
is.glottolog

See Also
aff.lang, area.lang, country.lang, iso.lang, lat.lang, long.lang, subc.lang, url.lang

Examples
gltc.lang('Adyghe')
gltc.lang(c('Adyghe', 'Udi'))

Description
These objects are imported from other packages. Follow the links to their documentation.

magrittr %>%

is.glottolog

Description
Takes any vector of languages or ISO codes and returns a logical vector.

Usage
is.glottolog(x, response = FALSE)

Arguments
x A character vector of languages (can be written in lower case) or ISO codes
response logical. If TRUE, when language is absent, return warnings with a possible candidates.

Author(s)
George Moroz <agricolamz@gmail.com>
Examples

```r
is.glottolog(c('Adyge', 'Russian'))
is.glottolog('Buyaka')

# Add warning message with suggestions
is.glottolog(c('Adygey', 'Russian'), response = TRUE)
# > FALSE TRUE
# Warning message:
# In is.glottolog(c('Adyge', 'Russian'), response = TRUE) :
# Language Adyge is absent in our version of the Glottolog database. Did you mean Aduge, Adyge?
```

iso.gltc

Get ISO 639-3 code by Glottocode

Description

Takes any vector of Glotocodes and returns ISO code.

Usage

```r
iso.gltc(x)
```

Arguments

- `x` A character vector of Glotocodes.

Author(s)

George Moroz <agricolamz@gmail.com>

See Also

`aff.lang, area.lang, lat.lang, long.lang`

Examples

```r
iso.gltc('adyg1241')
iso.gltc(c('adyg1241', 'udii1243'))
```
iso.lang

Get ISO 639–3 code by language

Description

Takes any vector of languages and returns ISO code.

Usage

```r
iso.lang(x)
```

Arguments

- `x` A character vector of the languages (can be written in lower case)

Author(s)

George Moroz <agricolamz@gmail.com>

See Also

- `aff.lang`, `area.lang`, `country.lang`, `gltc.lang`, `lat.lang`, `long.lang`, `subc.lang`, `url.lang`

Examples

```r
iso.lang('Adyghe')
iso.lang(c('Adyghe', 'Udi'))
```

lang.aff

Get languages by affiliation

Description

Takes any vector of affiliations and returns languages.

Usage

```r
lang.aff(x, include.dialects = FALSE, list = FALSE)
```

Arguments

- `x` A character vector of the affiliations (can be written in lower case)
- `include.dialects` logical. If TRUE, it returns all languages and dialects, if FALSE it returns only languages.
- `list` logical. If TRUE, it returns a list of languages, if FALSE it returns a named vector.
lang.country

Author(s)
George Moroz <agricolamz@gmail.com>

See Also
lang.iso

Examples
lang.aff('Slavic')
lang.aff(c('Slavic', 'Celtic'))
lang.aff(c('Slavic', 'Celtic'), list = TRUE)

Description
Takes any vector of countries and returns languages.

Usage
lang.country(x, list = FALSE)

Arguments
x character vector of the countries (in alpha-2 ISO codes)
list logical. If TRUE, it returns a list of languages, if FALSE it returns a named vector.

Author(s)
George Moroz <agricolamz@gmail.com>

See Also
aff.lang, country.lang, gltc.lang, iso.lang, lat.lang, long.lang, subc.lang, url.lang

Examples
lang.country('AD')
lang.country(c('AD', 'AE'))
lang.gltc
Get language by Glottocode

Description
Takes any vector of Glottocodes and returns languages.

Usage
`lang.gltc(x)`

Arguments
- `x` A character vector of the Glottocodes.

Author(s)
George Moroz <agricolamz@gmail.com>

See Also
`lang.aff`

Examples
```r
lang.gltc('adyg1241')
lang.gltc(c('adyg1241', 'udii1243'))
```

lang.iso
Get language by ISO 639–3 code

Description
Takes any vector of ISO codes and returns languages.

Usage
`lang.iso(x)`

Arguments
- `x` A character vector of the ISO codes.

Author(s)
George Moroz <agricolamz@gmail.com>
lat.lang

See Also

lang.aff

Examples

`lang.iso('ady')`
`lang.iso(c('ady', 'rus'))`

<table>
<thead>
<tr>
<th>lat.lang</th>
<th>Get latitude by language</th>
</tr>
</thead>
</table>

Description

Takes any vector of languages and returns latitude.

Usage

`lat.lang(x)`

Arguments

`x` A character vector of the languages (can be written in lower case)

Author(s)

George Moroz <agricolamz@gmail.com>

See Also

aff.lang, area.lang, country.lang, gltc.lang, iso.lang, long.lang, subc.lang, url.lang

Examples

`lat.lang('Adyghe')`
`long.lang('Adyghe')`
`lat.lang(c('Adyghe', 'Russian'))`
`long.lang(c('Adyghe', 'Russian'))`
long.lang

Get longitude by language

Description

Takes any vector of languages and returns longitude.

Usage

```r
long.lang(x, map.orientation = "Pacific")
```

Arguments

- `x`: A character vector of the languages (can be written in lower case)
- `map.orientation`: A character vector with values "Pacific" and "Atlantic". It distinguishes Pacific-centered and Atlantic-centered maps. By default is "Pacific".

Author(s)

George Moroz <agricolamz@gmail.com>

See Also

`aff.lang`, `area.lang`, `country.lang`, `gltc.lang`, `iso.lang`, `lat.lang`, `subc.lang`, `url.lang`

Examples

```r
lat.lang("Adyghe")
long.lang("Adyghe")
lat.lang(c("Adyghe", "Russian"))
long.lang(c("Adyghe", "Russian"))
long.lang(c("Adyghe", "Aleut"), map.orientation = "Pacific")
```

map.feature

Create a map

Description

Map a set of languages and color them by feature or two sets of features.
map.feature

Usage

map.feature(
 languages,
 features = "",
 label = "",
 popup = "",
 latitude = NA,
 longitude = NA,
 label.hide = TRUE,
 label.fsize = 15,
 label.font = "sans-serif",
 label.position = "right",
 label.emphasize = list(NULL, "black"),
 shape = NULL,
 shape.size = 20,
 pipe.data = NULL,
 shape.color = "black",
 stroke.features = NULL,
 point.cluster = FALSE,
 density.estimation = NULL,
 density.method = "fixed distance",
 density.estimation.color = NULL,
 density.estimation.opacity = 0.6,
 density.points = TRUE,
 density.width = NULL,
 density.legend = TRUE,
 density.legend.opacity = 1,
 density.legend.position = "bottomleft",
 density.title = "",
 density.control = FALSE,
 isogloss = NULL,
 isogloss.color = "black",
 isogloss.opacity = 0.2,
 isogloss.line.width = 3,
 isogloss.width = NULL,
 color = NULL,
 stroke.color = NULL,
 image.url = NULL,
 image.width = 100,
 image.height = 100,
 image.X.shift = 0,
 image.Y.shift = 0,
 title = NULL,
 stroke.title = NULL,
 control = "",
 legend = TRUE,
 legend.opacity = 1,
 legend.position = "topright",}
stroke.legend = TRUE,
stroke.legend.opacity = 1,
stroke.legend.position = "bottomleft",
width = 5,
stroke.radius = 9.5,
opacity = 1,
stroke.opacity = 1,
scale.bar = TRUE,
scale.bar.position = "bottomleft",
minimap = FALSE,
minimap.position = "bottomright",
minimap.width = 150,
minimap.height = 150,
facet = NULL,
tile = "OpenStreetMap.Mapnik",
tile.name = NULL,
tile.opacity = 1,
zoom.control = FALSE,
zoom.level = NULL,
rectangle.lng = NULL,
rectangle.lat = NULL,
rectangle.color = "black",
line.lng = NULL,
line.lat = NULL,
line.type = "standard",
line.color = "black",
line.opacity = 0.8,
line.label = NULL,
line.width = 3,
graticule = NULL,
minichart = "bar",
minichart.data = NULL,
minichart.time = NULL,
minichart.labels = FALSE,
map.orientation = "Pacific",
radius = NULL
)

Arguments

languages character vector of languages (can be written in lower case)
features character vector of features
label character vector of strings that will appear near points
popup character vector of strings that will appear in pop-up window
latitude numeric vector of latitudes
longitude numeric vector of longitudes
label.hide logical. If FALSE, labels are displayed allways. If TRUE, labels are displayed on mouse over. By default is TRUE.
map.feature

label.fsize numeric value of the label font size. By default is 14.

label.font string with values of generic family: "serif", "sans-serif", "monospace", or font name e.g. "Times New Roman"

label.position the position of labels: "left", "right", "top", "bottom"

label.emphasize is the list. First argument is a vector of points in dataframe that should be emphasized. Second argument is a string with a color for emphasis.

shape 1. if TRUE, creates icons (up to five categories) for values in the features variable;
2. it also could be a vector of any strings that represents the levels of the features variable;
3. it also could be a string vector that represents the number of observations in dataset.

shape.size size of the shape icons

pipe.data this variable is important, when you use map.feature with dplyr pipes. Expected usage: pipe.data = .

shape.color color of the shape icons

stroke.features additional independent stroke features

point.cluster logical. If TRUE, points will be united into clusters.

density.estimation additional independent features, used for density estimation

density.method string with one of the two methods: "kernal density estimation" or "fixed distance" (default)

density.estimation.color vector of density polygons' colors

density.estimation.opacity a numeric vector of density polygons opacity.

density.points logical. If FALSE, it doesn’t show points in polygones.

density.width for density.method = "fixed distance" it is a numeric measure (1 is 1km). For density.method = "kernal density estimation" it is a vector with two measures (first is latitude, secong is longitude). Defaults are normal reference bandwidth (see bandwidth.nrd).

density.legend logical. If TRUE, function show legend for density features. By default is FALSE.

density.legend.opacity a numeric vector of density-legend opacity.

density.legend.position the position of the legend: "topright", "bottomright", "bottomleft", "topleft"

density.title title of a density-feature legend

density.control logical. If TRUE, function show layer control buttons for density plot. By default is FALSE
isogloss dataframe with corresponding features
isogloss.color vector of isoglosses' colors
isogloss.opacity a numeric vector of density polygons opacity.
isogloss.line.width a numeric value for line width
isogloss.width for density.method = "fixed distance" it is a numeric measure (1 is 1km). For density.method = "kernal density estimation" it is a vector with two measures (first is latitude, second is longitude). Defaults are normal reference bandwidth (see bandwidth.nrd).
color vector of colors or palette. The color argument can be (1) a character vector of RGM or named colors; (2) the name of an RColorBrewer palette; (3) the full name of a viridis palette; (4) a function that receives a single value between 0 and 1 and returns a color. For more examples see colorNumeric
stroke.color vector of stroke colors
image.url character vector of URLs with an images
image.width numeric vector of image widths
image.height numeric vector of image heights
image.X.shift numeric vector of image's X axis shift relative to the latitude-longitude point
image.Y.shift numeric vector of image's Y axis shift relative to the latitude-longitude point
title title of a legend.
stroke.title title of a stroke-feature legend.
control vector of grouping values that make it possible to create control panel that can turn off/on some points on the map.
legend logical. If TRUE, function show legend. By default is TRUE.
legend.opacity a numeric vector of legend opacity.
legend.position the position of the legend: "topright", "bottomright", "bottomleft","topleft"
stroke.legend logical. If TRUE, function show stroke.legend. By default is FALSE.
stroke.legend.opacity a numeric vector of stroke.legend opacity.
stroke.legend.position the position of the stroke.legend: "topright", "bottomright", "bottomleft","topleft"
width a numeric vector of radius for circles or width for barcharts in minicharts.
stroke.radius a numeric vector of stroke radii for the circles.
opacity a numeric vector of marker opacity.
stroke.opacity a numeric vector of stroke opacity.
scale.bar logical. If TRUE, function shows scale-bar. By default is TRUE.
scale.bar.position the position of the scale-bar: "topright", "bottomright", "bottomleft","topleft"
minimap logical. If TRUE, function shows mini map. By default is FALSE.
map.feature

minimap.position
the position of the minimap: "topright", "bottomright", "bottomleft", "topleft"

minimap.width
The width of the minimap in pixels.
minimap.height
The height of the minimap in pixels.

facet
character vector that provide a grouping variable. If it is no NULL, then as a result a list of leaflets for sync or latticeView functions from mapview package is returned.

tile
a character vector with a map tiles, popularized by Google Maps. See here for the complete set.

tile.name
a character vector with a user’s map tiles’ names.

tile.opacity
numeric value from 0 to 1 denoting opacity of the tile.

zoom.control
logical. If TRUE, function shows zoom controls. By default is FALSE.

zoom.level
a numeric value of the zoom level.

rectangle.lng
vector of two longitude values for rectangle.
rectangle.lat
vector of two latitude values for rectangle.
rectangle.color
vector of rectangle border color.

line.lng
vector of two (or more) longitude values for line.
line.lat
vector of two (or more) latitude values for line.

line.type
a character string indicating which type of line is to be computed. One of "standard" (default), or "logit". The first one should be combined with the arguments line.lat and line.lng and provide simple lines. Other variant "logit" is the decision boundary of the logistic regression made using longitude and latitude coordinates (works only if feature argument have two levels).

line.color
vector of line color.

line.opacity
a numeric vector of line opacity.

line.label
character vector that will appear near the line.

line.width
a numeric vector of line width.

graticule
a numeric vector for graticule spacing in map units between horizontal and vertical lines.

minichart
citation from leaflet.minicharts package: "Possible values are "bar" for bar charts, "pie" for pie charts, "polar-area" and "polar-radius"."

minichart.data
citation from leaflet.minicharts package: "A numeric matrix with number of rows equal to the number of elements in lng or lat and number of column equal to the number of variables to represent. If parameter time is set, the number of rows must be equal to the length of lng times the number of unique time steps in the data."

minichart.time
citation from leaflet.minicharts package: "A vector with length equal to the number of rows in chartdata and containing either numbers representing time indices or dates or datetimes. Each unique value must appear as many times as the others. This parameter can be used when one wants to represent the evolution of some variables on a map."
minichart.labels

citation from leaflet.minicharts package: "Should values be displayed above chart elements."

map.orientation

a character vector with values "Pacific" and "Atlantic". It distinguishes Pacific-centered and Atlantic-centered maps. By default is "Pacific".

radius
deprecated argument

Author(s)
George Moroz <agricolamz@gmail.com>

Examples

map.feature(c("Adyghe", "Russian"))

Description

Language identifiers from Oto-Manguean Inflectional Class Database (https://oto-manguean.surrey.ac.uk/). This dataset is created for oto_mangueanIC.feature function.

Usage

oto_mangueanIC

Format

An object of class tbl_df (inherits from tbl, data.frame) with 20 rows and 2 columns.

Details

#' @format A data frame with 20 rows and 2 variables:

Language.name Language names from Oto-Manguean Inflectional Class Database
language Language names from Glottolog database
oto_mangueanIC.feature

Download Oto-Manguean Inflectional Class Database data

Description
This function downloads data from Oto-Manguean Inflectional Class Database (https://oto-manguean.surrey.ac.uk/) and creates a language column with the names from lingtypology database. You need the internet connection.

Usage
oto_mangueanIC.feature()

Author(s)
George Moroz <agricolamz@gmail.com>

See Also
abvd.feature, afbo.feature, autotyp.feature, phoible.feature, sails.feature, uralex.feature, valpal.feature, wals.feature

phoible
Phoible glottolog - language correspondencies

Description
Language correspondencies for Phoible (https://phoible.org/). This dataset is created for phoible.feature function.

Usage
phoible

Format
A data frame with 2185 rows and 2 variables:

column name description
language language
Glottocode Glottocode
phonological_profiles

Description

This function downloads data from PHOIBLE (https://phoible.org/) and changes language names to the names from lingtypology database. You need the internet connection.

Usage

```r
phoible.feature(source = "all", na.rm = TRUE)
```

Arguments

- **source**: A character vector that define with a source names from PHOIBLE (possible values: "all", "aa", "gm", "ph", "ra", "saphon", "spa", "upsid").
- **na.rm**: Logical. If TRUE function removes all languages not available in lingtypology database. By default is TRUE.

See Also

Examples

```r
# phoible.feature()
# phoible.feature(c('consonants', 'vowels'), source = "UPSID")
```

phonological_profiles
Number of consonants and presence of ejectives

Description

Number of consonants and presence of ejectives

Usage

```r
phonological_profiles
```
polygon.points_fd

Format

A data frame with 19 rows and 4 variables:

- **language** language name
- **consonants** number of consonants. Based on UPSID database.
- **vowels** number of vowels. Based on UPSID database.
- **ejectives** presence of ejective sounds.
- **tone** presence of tone.
- **stress** presence of stress.
- **long_vowels** presence of long vowels.

polygon.points_fd
Get polygons from fixed distance circles around coordinates

Description

This function is based on this answer: https://www.r-bloggers.com/merging-spatial-buffers-in-r/

Usage

```
polygon.points_fd(latitude, longitude, width)
```

Arguments

- **latitude** numeric vector of latitudes
- **longitude** numeric vector of longitudes
- **width** radius for creating polygons around points

polygon.points_kde
Get kernel density estimation polygon from coordinates

Description

This function is based on this answer: https://gis.stackexchange.com/a/203623/

Usage

```
polygon.points_kde(latitude, longitude, latitude.width, longitude.width)
```
Arguments

latitude numeric vector of latitudes
longitude numeric vector of longitudes
latitude.width bandwidths for latitude values. Defaults to normal reference bandwidth (see bandwidth.nrd).
longitude.width bandwidths for longitude values. Defaults to normal reference bandwidth (see bandwidth.nrd).

Description

List of all providers with their variations taken from leaflet package

Usage

providers

Format

A list of characters

Source

https://github.com/leaflet-extras/leaflet-providers/blob/master/leaflet-providers.js

sails.feature Download SAILS data

Description

This function downloads data from SAILS (https://sails.clld.org/) and changes language names to the names from lingtypology database. You need the internet connection.

Usage

sails.feature(features, na.rm = TRUE)
Arguments

- **features**: A character vector that define with a feature ids from SAILS (e.g. "and1", "argex4-1-3").
- **na.rm**: Logical. If TRUE function removes all languages not available in lingtypology database. By default is TRUE.

See Also

Examples

```r
# sails.feature(c("and1", "and11"))
```

<table>
<thead>
<tr>
<th>soundcomparisons</th>
<th>SOUNDCOMPARISONS’s Language identifiers</th>
</tr>
</thead>
</table>

Description

Language identifiers from SOUNDCOMPARISONS (https://soundcomparisons.com/). This dataset is created for soundcomparisons.feature function.

Usage

soundcomparisons

Format

An object of class data.frame with 556 rows and 3 columns.

Details

```r
@format A data frame with 556 rows and 2 variables:

LanguageName  SOUNDCOMPARISONS language identifier
LanguageId     Language Id
```
soundcomparisons.feature

Download SOUNDCOMPARISONS data

Description

This function downloads data from SOUNDCOMPARISONS (https://soundcomparisons.com/) and changes language names to the names from lingtypology database. You need the internet connection.

Usage

soundcomparisons.feature(word)

Arguments

word A character vector that define with a feature ids from SOUNDCOMPARISONS (e.g. "one", "sharp_fem", "near_neut", "on_the_left", "I_will_give", "write_ipv_sg", "your_pl_pl").

Author(s)

Anna Smirnova

See Also

Examples

soundcomparisons.feature(c("sun", "house"))
subc.lang

Get subclassification by language

Description

Takes any vector of languoids and returns subclassification in the Newick tree format.

Usage

subc.lang(x)

Arguments

x A character vector of the languoids (can be written in lower case)

Author(s)

George Moroz <agricolamz@gmail.com>

See Also

aff.lang, area.lang, country.lang, gltc.lang, iso.lang, lat.lang, long.lang

Examples

subc.lang('Korean')
subc.lang(c('Korean', 'Lechitic'))

uralex

UraLex’s Language identifiers

Description

Language identifiers from UraLex (https://github.com/lexibank/uralex/). This dataset is created for uralex.feature function.

Usage

uralex

Format

A data frame with 27 rows and 3 variables:

language language name from database
Glottocode Glottocodes
language2 language from lingtypology
uralex.feature
Download UraLex data

Description

This function downloads data from UraLex (https://github.com/lexibank/uralex/) and changes language names to the names from lingtypology database. You need the internet connection.

Usage

uralex.feature(na.rm = TRUE)

Arguments

na.rm Logical. If TRUE function removes all languages not available in lingtypology database. By default is TRUE.

Author(s)

George Moroz <agricolamz@gmail.com>

See Also

Examples

uralex.feature()

url.lang
Make a url-link to glottolog page for a language

Description

Takes any vector of languages and returns links to glottolog pages.

Usage

url.lang(x, popup = "")

Arguments

x A character vector of languages (can be written in lower case)

popup character vector of strings that will appear in pop-up window of the function map.feature
valpal.feature

Author(s)

George Moroz <agricolamz@gmail.com>

See Also

aff.lang, area.lang, country.lang, gltc.lang, iso.lang, lat.lang, long.lang, subc.lang

Examples

url.lang("Korean")
url.lang(c("Gangou", "Hachijo", "Adyghe", "Ganai"))

Description

This function downloads data from ValPal (www.valpal.info/) and changes language names to the names from lingtypology database. You need the internet connection.

Usage

valpal.feature(na.rm = FALSE)

Arguments

na.rm Logical. If TRUE function removes all languages not available in lingtypology database. By default is FALSE.

Author(s)

George Moroz <agricolamz@gmail.com>

See Also

Examples

valpal.feature()
vanuatu.feature

Download Vanuatu Voices data

Description

This function downloads data from Vanuatu Voices (https://vanuatuvoices.clld.org/). You need the internet connection.

Usage

vanuatu.feature(features, na.rm = TRUE)

Arguments

- **features**
 A vector with parameters from Concepts (https://vanuatuvoices.clld.org/parameters)

- **na.rm**
 Logical. If TRUE function removes all languages not available in lingtypology database. By default is TRUE.

Author(s)

Mikhail Leonov

See Also

wals

WALS’s Language identifiers

Description

Language identifiers from WALS (https://wals.info/). This dataset is created for wals.feature function.

Usage

wals

Format

A data frame with 2950 rows and 2 variables:

- **wals.code**
 WALS language identifier

- **glottocode**
 Glottocode
wals.feature

Download WALS data

Description

This function downloads data from WALS (https://wals.info/) and changes language names to the names from lingtypology database. You need the internet connection.

Usage

```r
wals.feature(features, na.rm = TRUE)
```

Arguments

- `features` A character vector that define with a feature ids from WALS (e.g. "1a", "21b").
- `na.rm` Logical. If TRUE function removes all languages not available in lingtypology database. By default is TRUE.

Author(s)

George Moroz <agricolamz@gmail.com>

See Also

- abvd.feature
- afbo.feature
- autotyp.feature
- bivaltyp.feature
- eurasianphonology.feature
- oto_mangueanIC.feature
- phoible.feature
- sails.feature
- soundcomparisons.feature
- uralex.feature
- valpal.feature
- vanuatu.feature

Examples

```r
# wals.feature(c("1a", "20a"))
```
Index

* datasets
 abvd, 3
 amap, 5
 autotyp, 7
 bantu, 8
 circassian, 10
 eurasiaphonology, 11
 glottolog, 14
 oto_mangueanIC, 28
 phoible, 29
 phonological_profiles, 30
 providers, 32
 soundcomparisons, 33
 uralex, 35
 wals, 38
 %>% (imports), 16
 %>%, 16

 abvd, 3
 abvd.feature, 3, 4, 8–10, 12, 29, 30, 33, 34, 36–39
 afbo.feature, 4, 4, 8–10, 12, 29, 30, 33, 34, 36–39
 aff.lang, 5, 6, 11, 15–19, 21, 22, 35, 37
 amap, 5
 area.lang, 5, 6, 11, 15–18, 21, 22, 35, 37
 atlas.database, 6
 autotyp, 7
 autotyp.feature, 4, 7, 7, 9, 10, 12, 29, 30, 33, 34, 36–39
 bandwidth.nrd, 25, 26, 32
 bantu, 8
 bantu.feature, 8, 9
 bivaltyp.feature, 4, 8, 9, 12, 29, 30, 33, 34, 36–39
 circassian, 10
 colorNumeric, 13, 26
 country.lang, 5, 6, 10, 16, 18, 19, 21, 22, 35, 37
 eurasiaphonology, 11
 eurasiaphonology.feature, 4, 8, 10, 11, 12, 29, 30, 33, 34, 36–39
 ggmap.feature, 13
 glottolog, 14
 gltc.iso, 15
 gltc.lang, 5, 6, 11, 15, 18, 19, 21, 22, 35, 37
 imports, 16
 is.glottolog, 16
 iso.gltc, 17
 iso.lang, 5, 6, 11, 16, 18, 19, 21, 22, 35, 37
 lang.aff, 18, 20, 21
 lang.country, 19
 lang.gltc, 20
 lang.iso, 19, 20
 lat.lang, 5, 6, 11, 15–19, 21, 22, 35, 37
 long.lang, 5, 6, 11, 15–19, 21, 22, 35, 37
 map.feature, 22
 oto_mangueanIC, 28
 oto_mangueanIC.feature, 4, 8–10, 12, 28, 29, 30, 33, 34, 36–39
 phoible, 29
 phoible.feature, 4, 8–10, 12, 29, 30, 33, 34, 36–39
 phonological_profiles, 30
 polygon.points_fd, 31
 polygon.points_kde, 31
 providers, 32
 sails.feature, 4, 8–10, 12, 29, 30, 32, 34, 36–39
 soundcomparisons, 33
INDEX

soundcomparisons.feature, 4, 8, 10, 12, 29, 30, 33, 34, 36–39
subc.lang, 5, 6, 11, 16, 18, 19, 21, 22, 35, 37

uralex, 35
uralex.feature, 4, 8–10, 12, 29, 30, 33–35, 36, 37–39
url.lang, 5, 6, 11, 16, 18, 19, 21, 22, 36

valpal.feature, 4, 8–10, 12, 29, 30, 33, 34, 36, 37, 38, 39
vanuatu.feature, 4, 8, 10, 12, 29, 30, 33, 34, 36, 37, 38, 39

wals, 38
wals.feature, 4, 8, 10, 12, 29, 30, 33, 34, 36–38, 39