Package ‘lfmm’

June 30, 2021

Type Package
Title Latent Factor Mixed Models
Version 1.1
Date 2021-06-29
Description Fast and accurate inference of gene-environment associations (GEA) in genome-wide studies (Caye et al., 2019, <doi:10.1093/molbev/msz008>). We developed a least-squares estimation approach for confounder and effect sizes estimation that provides a unique framework for several categories of genomic data, not restricted to genotypes. The speed of the new algorithm is several times faster than the existing GEA approaches, then our previous version of the 'LFMM' program present in the 'LEA' package (Frichot and Francois, 2015, <doi:10.1111/2041-210X.12382>).

License GPL-3
LazyData TRUE
Encoding UTF-8
Depends R (>= 3.2.3)
Suggests testthat
Imports foreach, rmarkdown, knitr, MASS, RSpectra, stats, ggplot2, readr, methods, purrr, Rcpp
LinkingTo RcppEigen, Rcpp
VignetteBuilder knitr
RoxygenNote 7.1.1
URL

BugReports https://github.com/bcm-uga/lfmm/issues
NeedsCompilation yes
Author Basile Jumentier [aut, cre], Kevin Caye [ctb], Olivier François [ctb]
Maintainer Basile Jumentier <basile.jumentier@gmail.com>
Description

This function returns 'direct' effect sizes for the regression of X (of dimension 1) on the matrix Y, as usually computed in genome-wide association studies.

Usage

effect_size(Y, X, lfmm.object)

Arguments

Y a response variable matrix with n rows and p columns. Each column is a response variable (numeric).
X an explanatory variable with n rows and d = 1 column (numeric).
lfmm.object an object of class lfmm returned by the lfmm_lasso or lfmm_ridge function.

Details

The response variable matrix Y and the explanatory variable are centered.

Value

a vector of length p containing all effect sizes for the regression of X on the matrix Y

Author(s)

Kevin Caye, Basile Jumentier, Olivier Francois
Examples

```r
library(lfmm)

## Simulation of 1000 genotypes for 100 individuals (y)
u <- matrix(rnorm(300, sd = 1), nrow = 100, ncol = 3)
v <- matrix(rnorm(3000, sd = 3), nrow = 3, ncol = 1000)
w <- u %*% v
y <- matrix(rbinom(100000, size = 2, 
    prob = 1/(1 + exp(-0.3*(w 
        + rnorm(100000, sd = 2))))),
    nrow = 100,
    ncol = 1000)

#PCA of genotypes, 3 main axes of variation (K = 2)
plot(prcomp(y))

## Simulation of 1000 phenotypes (x)
## Only the last 10 genotypes have significant effect sizes (b)
b <- matrix(c(rep(0, 990), rep(6000, 10)))
x <- y%*%b + rnorm(100, sd = 100)

## Compute effect sizes using lfmm_ridge
## Note that centering is important (scale = F).
mod.lfmm <- lfmm_ridge(Y = y, 
    X = x, 
    K = 2)

## Compute direct effect sizes using lfmm_ridge estimates
b.estimates <- effect_size(y, x, mod.lfmm)

## plot the last 30 effect sizes (true values are 0 and 6000)
plot(b.estimates[971:1000])
abline(0, 0)
abline(6000, 0, col = 2)

## Prediction of phenotypes
candidates <- 991:1000 #set of causal loci
x.pred <- scale(y[,candidates], scale = FALSE) %*% matrix(b.estimates[candidates])

## Check predictions
plot(x - mean(x), x.pred, 
pch = 19, col = "grey",
    xlab = "Observed phenotypes (centered)",
    ylab = "Predicted from PRS")
abline(0,1)
abline(lm(x.pred ~ scale(x, scale = FALSE)), col = 2)
```

example.data Genetic and phenotypic data for Arabidopsis thaliana
Description

A dataset containing SNP frequency and simulated phenotypic data for 170 plant accessions. The variables are as follows:

Usage

```r
data(example.data)
```

Format

A list with 4 arguments: genotype, phenotype, causal.set, chrpos

Details

- genotype: binary (0 or 1) SNP frequency for 170 individuals (26943 SNPs).
- phenotype: simulated phenotypic data for 170 individuals.
- causal.set: set of indices for causal SNPs.
- chrpos: genetic map including chromosome position of each SNP.

glm_test

GLM tests with latent factor mixed models

Description

This function returns significance values for the association between each column of the response matrix, Y, and the explanatory variables, X, including correction for unobserved confounders (latent factors). The test is based on an LFMM fitted with a ridge or lasso penalty and a generalized linear model.

Usage

```r
glm_test(Y, X, lfmm.obj, calibrate = "gif", family = binomial(link = "logit"))
```

Arguments

- **Y**: a response variable matrix with n rows and p columns. Each column is a response variable (numeric).
- **X**: an explanatory variable matrix with n rows and d columns. Each column corresponds to an explanatory variable (numeric).
- **lfmm.obj**: an object of class `lfmm` returned by the `lfmm_lasso` or `lfmm_ridge` function
- **calibrate**: a character string, "gif". If the "gif" option is set (default), significance values are calibrated by using the genomic control method. Genomic control uses a robust estimate of the variance of z-scores called "genomic inflation factor".
family a description of the error distribution and link function to be used in the model. For glm this can be a character string naming a family function, a family function or the result of a call to a family function.

Details

The response variable matrix Y and the explanatory variable are centered.

Value

a list with the following attributes:

- B the effect size matrix with dimensions p x d.
- score a p x d matrix which contains z-scores for each explanatory variable (columns of X),
- pvalue a p x d matrix which contains p-values for each explanatory variable,
- calibrated.pvalue a p x d matrix which contains calibrated p-values for each explanatory variable,
- gif a numeric value for the genomic inflation factor.

Author(s)

Kevin Caye, Basile Jumentier, Olivier Francois

See Also

lfmm_test

Examples

library(lfmm)

An EWAS example with Y = methylation data
and X = "exposure"
Simulate the data

dat <- lfmm_sampler(n = 100,
p = 500,
K = 3,
outlier.prop = 0.01,
cs = 0.1,
sigma = 0.2,
B.sd = 5,
B.mean = 0,
U.sd = 1.0,
V.sd = 1.0)

Y <- pnorm(dat$Y)
X <- dat$X
Fit an LFMM with 2 latent factors
mod.lfmm <- lfmm_ridge(Y = Y,
 X = X,
 K = 3)

Perform association testing using the fitted model:
pv <- glm_test(Y = pnorm(Y),
 X = X,
 lfmm.obj = mod.lfmm,
 family = binomial(link = "probit"),
 calibrate = "gif")

Manhattan plot with true associations shown
causal <- dat$outlier
pvalues <- pv$calibrated.pvalue
plot(-log10(pvalues),
 pch = 19,
 cex = .3,
 xlab = "Probe",
 col = "grey")
points(causal,
 -log10(pvalues)[causal],
 col = "blue")

R package : Fast and Accurate statistical methods for adjusting confounding factors in association studies.

Description

Implements statistical methods for adjusting confounding factors in association studies.

References

B. Jumentier, Caye, K., J. Lepeule, and O. François, 2019 Sparse latent factor regression models for genome-wide and epigenome-wide association studies (in prep)
Description

This function computes regularized least squares estimates for latent factor mixed models using a lasso penalty.

Usage

```r
lfmm_lasso(
  Y,
  X,
  K,
  nozero.prop = 0.01,
  mu.num = 100,
  mu.min.ratio = 0.01,
  mu = NULL,
  it.max = 100,
  relative.err.epsilon = 1e-06
)
```

Arguments

- `Y`: a response variable matrix with n rows and p columns. Each column is a response variable (e.g., SNP genotype, gene expression level, beta-normalized methylation profile, etc). Response variables must be encoded as numeric.
- `X`: an explanatory variable matrix with n rows and d columns. Each column corresponds to a distinct explanatory variable (e.g. phenotype, exposure, outcome). Explanatory variables must be encoded as numeric.
- `K`: an integer for the number of latent factors in the regression model.
- `nozero.prop`: a numeric value for the expected proportion of non-zero effect sizes.
- `mu.num`: a numeric value for the number of `mu` values (advance parameter).
- `mu.min.ratio`: (advance parameter) A fraction of `mu.max`, the data derived entry value (i.e. the smallest value for which all coefficients are zero).
- `mu`: (advance parameter) Smallest value of `mu`. Null value by default.
- `it.max`: an integer value for the number of iterations of the algorithm.
- `relative.err.epsilon`: a numeric value for a relative convergence error. Determine whether the algorithm converges or not.

Details

The algorithm minimizes the following penalized least-squares criterion:

The response variable matrix `Y` and the explanatory variable are centered.
Value

an object of class \texttt{lfmm} with the following attributes:

• U the latent variable score matrix with dimensions \(n \times K \),
• V the latent variable axes matrix with dimensions \(p \times K \),
• B the effect size matrix with dimensions \(p \times d \).

Author(s)

Kevin Caye, Basile Jumentier, Olivier Francois

References

B. Jumentier, Caye, K., J. Lepeule, and O. François, 2019 Sparse latent factor regression models for genome-wide and epigenome-wide association studies (in prep)

Examples

library(lfmm)

An EWAS example with \(Y \) = methylation data
and \(X \) = exposure

Simulate the data

dat <- lfmm_sampler(n = 100,
 p = 1000,
 K = 3,
 outlier.prop = 0.02,
 cs = 0.1,
 sigma = 0.2,
 B.sd = 5,
 B.mean = 0,
 U.sd = 1.0,
 V.sd = 1.0)

Y <- scale(dat$Y)
X <- scale(dat$X)

Fit an LFMM with 2 latent factors
mod.lfmm <- lfmm_lasso(Y = Y,
 X = X,
 K = 3,
 nozero.prop = 0.02)

Manhattan plot of sparse effect sizes
effect <- mod.lfmm$B
causal <- dat$outlier

plot(effect,
The function `lfmm_ridge` computes regularized least squares estimates for latent factor mixed models using a ridge penalty.

Usage

```r
lfmm_ridge(Y, X, K, lambda = 1e-05, algorithm = "analytical", it.max = 100, relative.err.min = 1e-06)
```

Arguments

- **Y**: a response variable matrix with n rows and p columns. Each column corresponds to a distinct response variable (e.g., SNP genotype, gene expression level, beta-normalized methylation profile, etc). Response variables must be encoded as numeric.
- **X**: an explanatory variable matrix with n rows and d columns. Each column corresponds to a distinct explanatory variable (e.g., phenotype, exposure, outcome). Explanatory variables must be encoded as numeric variables.
- **K**: an integer for the number of latent factors in the regression model.
- **lambda**: a numeric value for the regularization parameter.
- **algorithm**: exact (analytical) algorithm or numerical algorithm. The exact algorithm is based on the global minimum of the loss function and computation is very fast. The numerical algorithm converges toward a local minimum of the loss function. The exact method should be preferred. The numerical method is for very large n.
- **it.max**: an integer value for the number of iterations for the numerical algorithm.
relative.err.min

A numeric value for a relative convergence error. Test whether the numerical algorithm converges or not (numerical algorithm only).

Details

The algorithm minimizes the following penalized least-squares criterion

\[L(U, V, B) = \frac{1}{2} ||Y - UV^T - X B^T||_F^2 + \lambda \frac{1}{2} ||B||_2^2, \]

where \(Y \) is a response data matrix, \(X \) contains all explanatory variables, \(U \) denotes the score matrix, \(V \) is the loading matrix, \(B \) is the (direct) effect size matrix, and \(\lambda \) is a regularization parameter. The response variable matrix \(Y \) and the explanatory variable are centered.

Value

An object of class \(\text{lfmm} \) with the following attributes:

- \(U \) the latent variable score matrix with dimensions \(n \times K \),
- \(V \) the latent variable axis matrix with dimensions \(p \times K \),
- \(B \) the effect size matrix with dimensions \(p \times d \).

Author(s)

Kevin Caye, Basile Jumentier, Olivier Francois

References

Examples

library(lfmm)

a GWAS example with \(Y = \) SNPs and \(X = \) phenotype
data(example.data)
Y <- example.data$genotype[, 1:10000]
X <- example.data$phenotype

Fit an LFMM with \(K = 6 \) factors
mod.lfmm <- lfmm_ridge(Y = Y,
 X = X,
 K = 6)

Perform association testing using the fitted model:
pv <- lfmm_test(Y = Y,
 X = X,
 lfmm = mod.lfmm,
Description

Simulate data from the latent factor model.

Usage

```r
lfmm_sampler()
```
n,
p,
K,
outlier.prop,

cs,
sigma = 0.2,
B.sd = 1,
B.mean = 0,
U.sd = 1,
V.sd = 1
)

Arguments

n number of observations.

p number of response variables.

K number of latent variables (factors).

outlier.prop proportion of outlier.

cs correlation between X and U.

sigma standard deviation of residual errors.

B.sd standard deviation for the effect size (B).

B.mean mean of B.

U.sd standard deviations for K factors.

V.sd standard deviations for loadings.

Details

lfmm_sampler() sample a response matrix Y and a primary variable X such that

\[Y = U^T V + X^T B + \text{Epsilon}. \]

U, V, B and Epsilon are simulated according to normal multivariate distributions. Moreover U and X are such that \(\text{cor}(U[,i], X) = cs[i] \).

Value

A list with simulated data.

Author(s)

kevin caye, olivier francois
Examples

```r
dat <- lfmm_sampler(n = 100,  
p = 1000,  
K = 3,  
outlier.prop = 0.1,  
cs = c(0.8),  
sigma = 0.2,  
B.sd = 1.0,  
B.mean = 0.0,  
U.sd = 1.0,  
V.sd = 1.0)
```

Description

This function returns significance values for the association between each column of the response matrix, Y, and the explanatory variables, X, including correction for unobserved confounders (latent factors). The test is based on an LFMM fitted with a ridge or lasso penalty (linear model).

Usage

```r
lfmm_test(Y, X, lfmm, calibrate = "gif")
```

Arguments

- **Y**: a response variable matrix with n rows and p columns. Each column is a response variable (numeric).
- **X**: an explanatory variable matrix with n rows and d columns. Each column corresponds to an explanatory variable (numeric).
- **lfmm**: an object of class `lfmm` returned by the `lfmm_lasso` or `lfmm_ridge` function
- **calibrate**: a character string, "gif" or "median+MAD". If the "gif" option is set (default), significance values are calibrated by using the genomic control method. Genomic control uses a robust estimate of the variance of z-scores called "genomic inflation factor". If the "median+MAD" option is set, the p-values are calibrated by computing the median and MAD of the z-scores. If `NULL`, the p-values are not calibrated.

Details

The response variable matrix Y and the explanatory variable are centered.
Value

a list with the following attributes:

- `B` the effect size matrix with dimensions p x d.
- `score` a p x d matrix which contains z-scores for each explanatory variable (columns of X),
- `pvalue` a p x d matrix which contains p-values for each explanatory variable,
- `calibrated.pvalue` a p x d matrix which contains calibrated p-values for each explanatory variable,
- `gif` a numeric value for the genomic inflation factor.

Author(s)

Kevin Caye, Basile Jumentier, Olivier Francois

See Also

`glm_test`

Examples

```r
library(lfmm)

## a GWAS example with Y = SNPs and X = phenotype
data(example.data)
Y <- example.data$genotype[, 1:10000]
X <- example.data$phenotype
mod.lfmm <- lfmm_ridge(Y = Y,
 X = X,
K = 6)

## Perform association testing using the fitted model:
pv <- lfmm_test(Y = Y,
X = X,
lfmm = mod.lfmm,
calibrate = "gif")

## Manhattan plot with causal loci shown
pvalues <- pv$calibrated.pvalue
plot(-log10(pvalues), pch = 19,
cex = .2, col = "grey", xlab = "SNP")
points(example.data$causal.set[1:5],
-10*log10(pvalues)[example.data$causal.set[1:5]],
type = "h", col = "blue")

## An EWAS example with Y = methylation data and X = exposure
```

predict_lfmm

The function computes polygenic risk scores from the estimates of latent factor models. It uses the indirect effect sizes for the regression of X (a single phenotype) on the matrix Y, for predicting phenotypic values for new genotype data.

Usage

predict_lfmm(Y, X, lfmm.object, fdr.level = 0.1, newdata = NULL)

Arguments

- **Y**: a response variable matrix with n rows and p columns, typically containing genotypes. Each column is a response variable (numeric).
- **X**: an explanatory variable with n rows and $d = 1$ column (numeric) representing a phenotype with zero mean across the sample.
- **lfmm.object**: an object of class `lfmm` returned by the `lfmm_lasso` or `lfmm_ridge` function, computed for X and Y.

predict_lfmm

fdr.level a numeric value for the FDR level in the lfmm test used to define candidate variables for predicting new phenotypes.

newdata a matrix with n rows and p' columns, and similar to Y, on which predictions of X will be based. If NULL, Y is used as new data.

Details

The response variable matrix Y and the explanatory variable are centered.

Value

a list with the following attributes:

- prediction: a vector of length n containing the predicted values for X. If newdata = NULL, the fitted values are returned.
- candidates: a vector of candidate columns of Y on which the predictions are built.

Author(s)

Kevin Caye, Basile Jumentier, Olivier Francois

Examples

library(lfmm)

Simulation of 1000 genotypes for 100 individuals (y)
u <- matrix(rnorm(300, sd = 1), nrow = 100, ncol = 3)
v <- matrix(rnorm(3000, sd = 3), nrow = 3, ncol = 1000)
w <- u %*% v
y <- matrix(rbinom(100000, size = 2,
 prob = 1/(1 + exp(-0.3 * (w + rnorm(100000, sd = 2))))),
 nrow = 100,
 ncol = 1000)

#PCA of genotypes, 2 main axes of variation (K = 2)
plot(prcomp(y))

Simulation of 1000 phenotypes (x)
Only the last 10 genotypes have significant effect sizes (b)
b <- matrix(c(rep(0, 990), rep(6000, 10)))
x <- y%*%b + rnorm(100, sd = 100)

Compute effect sizes using lfmm_ridge
mod <- lfmm_ridge(Y = y,
 X = x,
 K = 2)

x.pred <- predict_lfmm(Y = y,
 X = x,
 fdr.level = 0.25,
 mod)
skin.exposure

A data set containing normalized beta values, and sun exposure and simulated phenotypic data for 78 tissue samples.

Usage

```r
data("skin.exposure")
```

Format

A list with 6 arguments: `beta.value`, `phenotype`, `causal.set`, `chrpos`

Details

The variables are:

- `beta.value`: 1496 filtered normalized beta values (methylation probabilities) for 78 tissue samples.
- `exposure`: Sun exposure levels for 78 tissue samples.
- `phenotype`: Simulated binary phenotypic data for 78 tissue samples.
- `age`: age of patients.
- `gender`: sex of patients.
- `tissue`: category for tissue samples.

Index

* datasets
 example.data, 3
 skin.exposure, 17

 effect_size, 2
 example.data, 3

 glm_test, 4, 14

 lfm_m, 6
 lfm_lasso, 2, 4, 7, 13, 15
 lfm_ridge, 2, 4, 9, 13, 15
 lfm_sampler, 11
 lfm_test, 5, 13

 predict_lfm, 15

 skin.exposure, 17