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The R package ldhmm is developed for the study of financial time series using Hidden Markov Model
(HMM) with the lambda distribution framework. In particular, S&P 500 index is studied in depth due to
its importance in finance and its long history. Major features in the index, such as regime identification,
volatility clustering, and anti-correlation between return and volatility, can be extracted from HMM.
Univariate symmetric lambda distribution is essentially a location-scale family of power-exponential
distribution. Such distribution is suitable for describing highly leptokurtic time series in the financial
market. It provides a theoretically solid foundation to explore such data where the normal distribution
may not be adequate. The index is analyzed from two states to six states, then ten states. The five-state
HMM and above can capture large amount of auto-correlation, matching what’s observed in the data.
This is a major validation for the HMM. Although the stock market can be broadly classified into the
normal regime and the crash regime, The progression of HMM states allows to go beyond the two-regime
paradigm. The index history can be decomposed to a spectrum of volatility states. And the trend of the
mean and volatility in HMM states confirms the recognized fact that the stock market tends to rise when
the volatility is low, while tends to fall when the volatility is high. The pivotal volatility is calculated.
Specifically, we compare the expected volatility from the ten-state HMM to both the VIX index with an
adjustment factor and the realized volatility from Oxford-Man Realized Library. They match quite well.
This indicates high-state HMM can serve as a tool for volatility forecasting.
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1. The Hidden Markov Model

1.1. Notation

The Hidden Markov Model (HMM) implemented in the ldhmm package is the homogeneous
first-order HMM, where the state at time t is only dependent on the states of previous time
t − 1. The mixing distribution is univariate. The parameter space of the HMM is comprised of
π = {θ,Γ , δ}, where θ is a matrix containing parameters of the mixing distributions, Γ is the
transition probability matrix, and δ is the initial state probability vector. In the case of a stationary
solution, δ is also the stationary state distribution vector.
The notations are defined as following:

• The latent states are indexed by an integer, i = 1, 2, . . . ,m, where m is number of states.
• The time series is the log-returns of a financial instrument, indexed by an integer, t =

1, 2, . . . , T . The time period can be daily, weekly, monthly, etc.

†Corresponding author. Email: stevelihn@gmail.com; LinkedIn: https://www.linkedin.com/pub/stephen-horng-twu-
lihn/0/71a/65.
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• The observation at time t in the time series is the log-return between time t− 1 and t, which
is denoted as xt. And xt is unbounded. The vector of all observations can be written as x(T ).

• The latent state at time t is denoted as Ct, which can have an integer value from i = 1, 2, . . . ,m.
• The transition probability matrix is {γij}, or simply Γ in matrix form. γij is the probability

to transition from state i to state j. It is independent of t.
• The initial state probability vector is {δi}, or simply δ in vector form. δ also represents the

stationary state distribution in which δΓ = δ. Notice that δΓ is also defined as α0.
• The mixing probability of observations is represented as Pi (x), which is the probability density

function (PDF) for x when it is in state i. Or simply P (x) in matrix form, where P ii (x) =
Pi (x). That is, P (x) is a diagonal matrix. It is independent of t.

In the financial time series study, we are mostly interested in the stationary solution. The HMM
notations outlined in this paper follow closely the book of Zucchini, MacDonald, and Langrock
(2016). Note that δ and Γ are subject to unity constraints:

∑

i δi = 1 and
∑

j γij = 1.

1.2. Forward, Backward, and Likelihood

The forward probability vector αt is defined as

αt =

{

δP (x1) , when t = 1

αt−1ΓP (xt) , when t = 2, 3, . . . , T.
(1.1)

The backward probability vector βt is defined as

βt =

{

1, when t = T

ΓP (xt+1)β
′
t+1, when t = 1, 2, . . . , T − 1.

(1.2)

The likelihood expectation at time T is LT = αT 1′, which is the quantity to be maximized in
order to find the solution for HMM. And 1 is the identity vector, in which every element is 1.
The state probability Qi

(

t;x(T )
)

is the conditional probability of Ct = i given the observations

x(T ). It is calculated as

Qi

(

t;x(T )
)

=
αt (i)βt (i)

LT

. (1.3)

1.3. Matrix Convention

Assume V is a vector and M is a matrix. The multiplication between vector and matrix is defined
as V M =

∑

i ViMij and MV ′ =
∑

j MijVj . Summing a vector is represented as V 1′ =
∑

i Vi.
Notice that the PDF matrix P only has non-zero values in diagonal cells. Thus it carries some

special properties:

(i) V P (x) results in a vector with element [V P (x)]i = ViPij (x) = ViPi (x), that re-weighs
each state of V by its mixing PDF.

(ii) MP (x) results in a matrix with element [MP (x)]ij = MijPjk (x) = MijPj (x) , which

transitions each state i by re-weighing all the states j’s by their mixing PDF’s, Pj (x).
(iii) The forward algorithm involves V ΓP (x) = ViΓijPj (x) which is a vector indexed by j.
(iv) The backward algorithm involves ΓP (x)V ′ = ΓijPj (x)Vj , which is a vector indexed by i.

In order to prevent over-float and/or under-float in floating point calculation, αt and βt are im-
plemented recursively by their logarithms in the R package. For the same reason, the maximum
likelihood expectation (MLE) optimization minimizes the minus log-likelihood (MLLK),− log (LT ).
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2. Symmetric Lambda Distribution

The ldhmm package focuses on one special case of HMM where the mixing distribution of the
observations is a symmetric λ distribution, which is essentially an exponential-power distribution.
It is briefly introduced as following: The λ distribution is modeled after the state probability
function in statistical physics, where the PDF has an exponential form P (x) ∝ ey(|z|), e.g. y can
be thought of as minus energy levels normalized by temperature. Next, y (z) is assumed to be the

solution of a polynomial of the λ-th order, (±y)λ + . . . + c = z2, where c is a constant, with the
constraint y → −∞ as |z| → ∞. The skewness can be added by a depressed polynomial term, βzy,
say for the y3 case (Lihn (2015)). Finally, in order to conform to a location-scale family, we let
z = (x− µ) /σ. This completes the contruction process.
This broad framework can be refined to focus just on the tail behavior. We set both . . . and c

to zero, and we reach the simplest form of a symmetric λ distribution, (±y)λ = z2. Thus the PDF
used in this package is a two-sided stretched exponential function, defined by the parameter tuple
θ = (µ, σ, λ), (See Section 2.2 of Lihn (2015b))

P (x;µ, σ, λ) =
1

σλΓ
(

λ
2

) e−| x−µ

σ
| 2

λ

. (2.1)

The shape parameter λ is called the “order” of the distribution (Lihn (2017)). When λ = 1,
it converges to a normal distribution. This form of distribution has a rich history with several
different ways of parametrization and construction1. Here the PDF is standardized as Eq. (2.1)
for our purpose of analyzing financial log-return time series. One major difference is to use 2/λ
instead of β as the power of |x− µ| since we prefer λ being in the order of a positive low single-digit
integer, instead of β being a fraction when λ > 2.
For each state i = 1, 2, . . . ,m, we have Pi (x) = P (x;µi, σi, λi). There are three parameters for

each state, θi = (µi, σi, λi). It is written in matrix form as θ = {θi, i = 1, 2, . . . ,m}. Note that µ
is an unconstrained real number, while σ and λ must be positive. And λ is expected to be in the
range of 1 and 4.
The standard deviation Σ (σ, λ) and kurtosis K (λ) of P (x;µ, σ, λ) are

Σ (σ, λ) = σ

[

Γ
(

3λ
2

)

Γ
(

λ
2

)

]
1

2

, (2.2)

K (λ) =
Γ
(

λ
2

)

Γ
(

5λ
2

)

Γ
(

3λ
2

)2 . (2.3)

The kurtosis increases with λ, so does Σ (σ, λ) /σ. Notice that the scale parameter σ is not the
standard deviation, even in the case of λ = 1. (Σ (σ, λ = 1) = σ/

√
2.)

What differentiates this package from other HMM packages is the additional degree of freedom
from λ that can accommodate any level of kurtosis in the HMM states. One doesn’t have to make
assumption that the mixture model has to be made out of Gaussian distributions. If some states

1The following are the well known documentations on the Internet:

(i) The normalp package in R: https://www.jstatsoft.org/article/view/v012i04/v12i04.pdf

(ii) NIST Dataplot: http://www.itl.nist.gov/div898/software/dataplot/refman2/auxillar/pexpdf.htm

(iii) Wolfram: https://reference.wolfram.com/language/ref/ExponentialPowerDistribution.html

(iv) GNU GSL: https://www.gnu.org/software/gsl/manual/html node/The-Exponential-Power-Distribution.html

(v) Wikipedia: https://en.wikipedia.org/wiki/Generalized normal distribution

https://www.jstatsoft.org/article/view/v012i04/v12i04.pdf
http://www.itl.nist.gov/div898/software/dataplot/refman2/auxillar/pexpdf.htm
https://reference.wolfram.com/language/ref/ExponentialPowerDistribution.html
https://www.gnu.org/software/gsl/manual/html_node/The-Exponential-Power-Distribution.html
https://en.wikipedia.org/wiki/Generalized_normal_distribution
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Figure 2.1. Excess kurtosis of the states in six HMM fits for SPX index. In each fit, states are sorted by their
standard deviations in ascending order. Large outliers tend to get pushed to the high-volatility state(s). For other
states with lower volatilities, excess kurtosis decreases as number of states increases.

turn out to be very close to Gaussian, one should be very delighted. However, we see it as the
conclusion drawn from the model, not an assumption going into the model.
In general, kurtosis in each state decreases as number of states increases. Large outliers tend

to get pushed to the high-volatility states. This is illustrated in Figure 2.1 with six HMM fits for
SPX index, which will be elaborated in following sections. However, excess kurtosis never really
“goes away”. Thus it is inappropriate to make full assumption of a Gaussian mixture model. It is
inconsistent with the data.
The symmetric λ distribution family has been shown to possess some beautiful mathematical

properties. For instance, it has a closed form solution for local volatility function and it is related
to an elegant mean-reverting stochastic process (Lihn (2017)). It solves the option pricing model
for both SPX at λ = 4 (Lihn (2016)) and VIX at λ ∈ [2, 4] (Lihn (2017b)). Its skew elliptic sub-
family (λ = 3) can fit log-return distributions very well without resorting to mixture models (Lihn
(2015)).

2.1. Expected Volatility of the Mixture

The log-return and volatility of state i are annualized as

Ri = 252× µi

Vi = 100×
√
252× Σ (σi, λi) ,

(2.4)
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Figure 6.1. The expected volatility V (t) of ten-state HMM (black) vs adjusted VIX index (red). The fit is based on
all SPX data from 1950 to 2015. VIX is adjusted by the long-term average of the daily ratios between V (t) and VIX
during the overlapping period. This ratio is 0.79. The dash blue lines are the volatility of the HMM states. The SPX
log-price level is drawn in blue line as a reference so that each spike can be identified with well-known bear markets
in history.

6.1. Historical Volatility from Ten-State HMM

We use the ten-state HHM to demonstrate its capability of volatility forecasting. The package
comes with the trained ldhmm object so you don’t have to redo the time-consuming fitting. We
load this object and calculate the historical volatility as below:

> hs <- ldhmm.read_sample_object ()
> spx <- ldhmm.ts_log_rtn(on="days")
> hss <- ldhmm.decoding(hs , spx$x)
> V <- ldhmm.decode_stats_history(hss , annualize=TRUE)[,"V"]
> plot(spx$d , V, type="l")

Figure 6.1 shows the expected volatility V (t) of the ten-state HMM result from 1950 to 2015
(black). The first attempt to understand what V (t) means is to compare it to the VIX index
(available since 1990). It is found that VIX is consistently higher than V (t). We calculate the
long-term average of daily ratios between V (t) and VIX during the overlapping period. This ratio
is 0.79, which is used to adjust VIX down as shown in the red line. The reader can observe that
V (t) and the adjusted VIX matches quite well. Thus V (t) is indeed a quantity that has real-world
meaning.
The second attempt is to compare V (t) to the realized volatility from the Oxford-Man Realized

Library (available since 2000). To plot the volatility with Oxford-Man data,

> hs <- ldhmm.read_sample_object ()
> ldhmm.oxford_man_plot_obs(hs)

The most recent data file will be downloaded automatically from the website of Oxford-Man In-
stitute. Figure 6.2 shows the expected volatility V (t) from the ten-state HMM decoded by SPX2.r
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Figure 6.3. The 18-month range plot of the expected volatility V (t) from ten-state HMM (black) vs the volatility
from Oxford-Man realized variance data set (red dots) and the adjusted VIX index (magenta line). This plot illustrates
the usage of start.date and end.date to specify a shorter, more recent date range in order to study how the three
volatility gauges change on a daily basis. The VIX adjustment ratio is 0.79.

observations up to the most recent closes is x(T ), and next-day’s observation will be xt+1. We con-
struct a new observation set x′(T+1) =

{

x(T ), xt+1

}

. Then use π to decode x′(T+1) and calculate the
expected volatility V (t+ 1;xt+1) which is conditional on the future observation xt+1. By providing
different inputs of xt+1, e.g. log-returns from -2% to 2% by 0.5%, one can forecast the volatility for
a range of next-day moves. This method is implemented in ldhmm.forecast volatility function:

> spx2 <- ldhmm.oxford_man_ts ("SPX2.r", log=TRUE)
> xf <- seq(-0.02, 0.02, by =0.005) # to be forecasted
> ldhmm.forecast_volatility(hd , spx2$x , xf)

[,1] [,2] [,3] [,4] [,5] [,6]
[1,] -0.02000 -0.01500 -0.010000 -0.005000 0.000000 0.005000
[2,] 12.07079 10.72948 9.128792 7.500931 6.808746 6.916728

[,13] [,14] [,15]
[1,] 0.010000 0.015000 0.02000
[2,] 7.762019 9.496151 12.07038

The reader should be noted that this is different from the typical HMM forecast, where the
forecast involves predicting the most likely distributions of states and observations for next few
periods. That is forecasting the market’s direction. But here we are forecasting the most likely
volatility based on a hypothetical market movement scenario.

6.3. The Inverse Relation between Volatility and Return

It is commonly known that the return of S&P 500 is inversely correlated to the volatility. This
can be explained by the high anti-correlation of the daily changes between S&P 500 and the VIX
index (See Figure 2 of Papanicolaou and Sircar (2014)). Here we attempt to use our HMM results



September 16, 2017 Quantitative Finance ldhmm-spx

to formulate this empirical law from a different angle.
The reader may have observed from the inserts of 2, 3, 5, 10 states that the relations between Vi

and Ri are quite linear. The slopes are negative, that is, lower volatility is associated with positive
return, while higher volatility with negative expected return. We can formulate this linear relation
as

Ri = Y (V0 − Vi) , ∀ i, (6.1)

where Y is called the “yield” of volatility differential, and V0 is called the “pivotal realized volatil-
ity”. By plotting the results from 2-state, 3-state, 4-state, 5-state, and 10-state together, as shown
in Figure 6.4, we can calculate the linear regression and obtain

V0 ≈ 17.4,
V0(V IX) ≈ 17.4/0.79 = 22.0,

Y ≈ 2.2%.
(6.2)

V0(V IX) is the pivotal volatility adjusted to the VIX scale (ref Figure 6.1). The meaning of V0 is
that when the realized volatility is below V0 , it is very likely S&P 500 will go up and continue in
its bull market. However, if the realized volatility is above V0 persistently, the market will go down
and enter into a bear market. The level of VIX=22 as the turning point between bull markets and
bear markets coincides very well with the common understanding. In fact, this level is commonly
believed to be the long-term equilibrium in the VIX term structure1.
The meaning of Y is that, for every point of volatility increase, S&P 500 will lose about 2.2% of

annual return on average. For example, in the long run, if we expect S&P 500 to increase about
10% per year, its volatility must be below V0 − 10/2.2 ≈ 12.9. If we expect S&P 500 to increase
about 20% per year, its volatility must be below V0 − 20/2.2 ≈ 8.3, which is very low. Thus Y and
V0 are handy numbers to calculation market expectation.
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