Package ‘lcc’

May 23, 2020

Type Package
Title Longitudinal Concordance Correlation
Version 1.1.0
Author Thiago de Paula Oliveira [aut, cre],
Rafael de Andrade Moral [aut],
Silvio Sandoval Zocchi [ctb],
Clarice Garcia Borges Demetrio [ctb],
John Hinde [aut]
Maintainer Thiago de Paula Oliveira <thiago.paula.oliveira@usp.br>
Description Estimates the longitudinal concordance correlation to access the longitudinal agreement profile. The estimation approach implemented is variance components approach based on polynomial mixed effects regression model, as proposed by Oliveira, Hinde and Zocchi (2018) <doi:10.1007/s13253-018-0321-1>. In addition, non-parametric confidence intervals were implemented using percentile method or normal-approximation based on Fisher Z-transformation.
Date 2020-05-18
Depends R (>= 3.2.3), nlme (>= 3.1-124), ggplot2 (>= 2.2.1)
Imports grid, gridExtra, hnp, gdata, parallel, doSNOW, doRNG, foreach
Suggests roxygen2 (>= 3.0.0), covr, testthat, MASS
License GPL (>= 2)
Encoding UTF-8
Repository CRAN
NeedsCompilation yes
LazyData true
RoxygenNote 7.0.2
Date/Publication 2020-05-22 22:40:07 UTC

R topics documented:

AIC.lcc .. 2
AIC.lcc

Akaike and Bayesian Information Criteria for an lcc Object.

Description

Calculate the Akaike’s ‘An Information Criterion’ or the BIC or SBC (Schwarz’s Bayesian criterion) for an object of class lcc.

Usage

S3 method for class 'lcc'
AIC(object, ..., k = 2)

S3 method for class 'lcc'
BIC(object, ...)

Arguments

- `object` an object inheriting from class lcc, representing a fitted longitudinal concordance correlation function.
- `...` optional arguments passed to the AIC function.
- `k` numeric value, use as penalty coefficient for the number of parameters in the fitted model; the default \(k = 2 \) is the classical AIC.
Details

A numeric value with the corresponding AIC or BIC value. See methods for \texttt{AIC} objects to get more details.

Author(s)

Thiago de Paula Oliveira, <thiago.paula.oliveira@usp.br>

See Also

\texttt{lcc}, \texttt{summary.lcc}, \texttt{coef.lcc}, \texttt{vcov.lcc}

Examples

```r
## Not run:
attach(simulated_hue)
fm6 <- lcc(data = simulated_hue, subject = "Fruit",
           resp = "Hue", method = "Method", time = "Time",
           qf = 2, qr = 1, components = TRUE,
           time_lcc = list(n=50, from=min(Time), to=max(Time)))
AIC(fm6)
BIC(fm6)
```

```r
## End(Not run)
```
Arguments

object an object inheriting from class lcc or lme, representing a fitted longitudinal concordance correlation function.

... other optional fitted model objects inheriting from classes "lcc", or "lme".

test an optional logical value controlling whether likelihood ratio tests should be used to compare the fitted models represented by object and the objects in Defaults to TRUE.

type an optional character string specifying the type of sum of squares to be used in F-tests for the terms in the model. If sequential, the sequential sum of squares obtained by including the terms in the order they appear in the model is used; else, if marginal, the marginal sum of squares obtained by deleting a term from the model at a time is used. This argument is only used when a single fitted object is passed to the function. Partial matching of arguments is used, so only the first character needs to be provided. Defaults to sequential.

adjustSigma an optional logical value. If TRUE and the estimation method used to obtain object was maximum likelihood, the residual standard error is multiplied by sqrt(nobs/(nobs - npar)), converting it to a REML-like estimate. This argument is only used when a single fitted object is passed to the function. Default is TRUE.

verbose an optional logical value. If TRUE, the calling sequences for each fitted model object are printed with the rest of the output, being omitted if verbose = FALSE. Defaults to FALSE.

Details

This function is an adaptation from the anova.lme. For more details see methods for nlme.

Author(s)

Thiago de Paula Oliveira, <thiago.paula.oliveira@usp.br>

See Also

lcc, summary.lcc

Examples

Not run:
Testing random effects
fm1.aov <- lcc(data = hue, subject = "Fruit", resp = "H_mean",
method = "Method", time = "Time", qf = 2, qr = 1)
fm2.aov <- update(fm1.aov, qr = 2)
anova(fm1.aov, fm2.aov)

End(Not run)

Not run:
Testing fixed effects
fm3.aov <- update(fm2.aov, REML = FALSE)
coef.lcc <- update(fm2.aov, REML = FALSE, qf = 3)
anova(fm3.aov, fm4.aov)

End(Not run)

Not run:
Comparing the 3 lcc models
fm5.aov <- update(fm2.aov, var.class = varExp, weights.form = "time")
anova(fm1.aov, fm2.aov, fm5.aov)

End(Not run)

coef.lcc

Extract Model Coefficients

Description

The fixed effects estimated and corresponding random effects estimates are obtained at subject levels less or equal to i. The resulting estimates are returned as a data frame, with rows corresponding to subject levels and columns to coefficients.

Usage

```r
## S3 method for class 'lcc'
coef(object, ...)
```

Arguments

- `object`: an object inheriting from class `lcc`, representing a fitted longitudinal concordance correlation function.
- `...`: optional arguments passed to the `coef.lme` function.

Details

See methods for `nlme` objects to get more details.

Author(s)

Thiago de Paula Oliveira, <thiago.paula.oliveira@usp.br>

See Also

- `lcc`, `summary.lcc`, `lccPlot`, `vcov.lcc`
Examples

```r
## Not run:
fm1<-lcc(data = hue, subject = "Fruit", resp = "H_mean",
         method = "Method", time = "Time", qf = 2, qr = 2)
coef(fm1)
## End(Not run)
```

fitted.lcc

Extract lcc Fitted Values

Description

Fitted values from object of class lcc returned by modeling functions.

Usage

```r
## S3 method for class 'lcc'
fitted(object, type, digits, ...)
```

Arguments

- **object**: an object inheriting from class lcc, representing a fitted longitudinal concordance correlation function.
- **type**: an optional character string specifying the type of output to be returned. If type="lcc", prints the fitted longitudinal concordance correlation. If type="lpc", prints the fitted longitudinal Pearson correlation. If type="la", prints the fitted longitudinal accuracy. Defaults to type="lcc".
- **digits**: a non-null value for digits specifies the minimum number of significant digits to be printed in values. The default, NULL.
- **...**: not used.

Value

A data frame with columns given by methods, time, and fitted values.

Author(s)

Thiago de Paula Oliveira, <thiago.paula.oliveira@usp.br>

See Also

- lcc, summary.lcc, lccPlot
Examples

```r
data(hue)
## Second degree polynomial model with random intercept, slope and
## quadratic term
## Not run:
fml <- lcc(data = hue, subject = "Fruit", resp = "H_mean",
    method = "Method", time = "Time", qf = 2, qr = 2,
    components = TRUE)
fitted(fml)
fitted(fml, type="lpc")
fitted(fml, type="la")
## End(Not run)
```

getVarCov.lcc

Extract Variance Components from a Fitted Model

Description

Returns the variance-covariance matrix of a fitted lcc model object.

Usage

```r
## S3 method for class 'lcc'
getVarCov(obj, type, ...)
```

Arguments

- `obj` an object inheriting from class lcc, representing a fitted longitudinal concordance correlation function.
- `type` specifies the type of variance covariance matrix. If `type = "random.effects"`, the default, extract the random-effects variance-covariance; if `type = "conditional"` extract the conditional variance-covariance of the responses; and if `type = "marginal"` extracts the the marginal variance-covariance of the responses.
- `...` optional arguments passed to the getVarCov function.

Details

See methods for nlme objects to get more details.

Author(s)

Thiago de Paula Oliveira, <thiago.paula.oliveira@usp.br>

See Also

lcc, summary.lcc, coef.lcc, vcov.lcc
Examples

```r
## Not run:
fm1<-lcc(data = hue, subject = "Fruit", resp = "H_mean",
         method = "Method", time = "Time", qf = 2, qr = 2)
getVarCov(fm1)
## End(Not run)
```

Hue

Hue color data

Description

An observational study conducted at the Vegetable Production Department at "Luiz de Queiroz" College of Agriculture/University of São Paulo in 2010/2011 to evaluate the peel color of 20 papaya fruits cv. Sunrise Solo over time. The color hue was measured on the equatorial region of each fruit using four points observed by the colorimeter and 1,000 points observed by the scanner. Thus, the circular mean hue was calculated for each fruit by each device at time t. The aim of the agreement study was to assess how well the colorimeter agreed with the scanner over time.

Usage

data(hue)

Format

A data frame with 554 observations on the mean hue variable. The format is:

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>H_mean</td>
<td>numeric; mean hue of papaya’s peel</td>
</tr>
<tr>
<td>Method</td>
<td>a factor with levels Colorimeter, Scanner</td>
</tr>
<tr>
<td>Time</td>
<td>integer; time in days</td>
</tr>
<tr>
<td>Fruit</td>
<td>a factor with 20 levels; from 1 to 20 where each level is represented by one fruit</td>
</tr>
</tbody>
</table>

Source

References

Oliveira, T.P.; Hinde, J.; Zocchi S.S. Longitudinal Concordance Correlation Function Based on Variance Components: An Application in Fruit Color Analysis. Journal of Agricultural, Biological,

See Also

lcc.

Examples

data(hue)
summary(hue)
str(hue)
Second degree polynomial model with random intercept, slope and
quadratic term including an exponential variance function using
time as covariate.
model<-lcc(data = hue, subject = "Fruit", resp = "H_mean",
 method = "Method", time = "Time", qf = 2, qr = 2,
 components = TRUE, time_lcc = list(from = min(hue$Time),
 to = max(hue$Time), n=40), var.class=varExp,
 weights.form="time")
summary(model, type="model")
summary(model, type="lcc")
for discussion on the analysis of complete data set,
see Oliveira et al. (2018)

lcc

Longitudinal Concordance Correlation (LCC) Estimated by Fixed Effects and Variance Components using a Polynomial Mixed-Effects Regression Model

Description

The lcc function gives fitted values and non-parametric bootstrap confidence intervals for LCC, longitudinal Pearson correlation (LPC), and longitudinal accuracy (LA) statistics. These statistics can be estimated using different structures for the variance-covariance matrix for random effects and variance functions to model heteroscedasticity among the within-group errors using or not the time as a covariate.

Usage

lcc(data, resp, subject, method, time, interaction, qf,
 qr, covar, gs, pdmat, var.class, weights.form, time_lcc, ci,
 percentileMet, alpha, nboot, show.warnings, components,
 REML, lme.control, numCore)

Arguments

data an object of class data.frame.
resp character string. Name of the response variable in the data set.
subject character string. Name of the subject variable in the data set.

method character string. Name of the method variable in the data set. The first level of method is used as the gold-standard method.

time character string. Name of the time variable in the data set.

interaction an option to estimate the interaction effect between method and time. If TRUE, the default, interaction effect is estimated. If FALSE only the main effects of time and method are estimated.

qf an integer specifying the degree time polynomial trends, normally 1, 2 or 3. (Degree 0 is not allowed). Default is qf=1

qr an integer specifying random effects terms to account for subject-to-subject variation. Note that qr=0 specifies a random intercept (form ~ 1|subject); qr=1 specifies random intercept and slope (form ~ time|subject). If qr=qf=q, with q ≥ 1, random effects at subject level are added to all terms of the time polynomial regression (form ~ poly(time, q, raw = TRUE)|subject). Default is qr=0.

covar character vector. Name of the covariates to be included in the model as fixed effects. Default to NULL, never include.

gs character string. Name of method level which represents the gold-standard. Default is the first level of method.

pdmat standard classes of positive-definite matrix structures defined in the pdClasses function. The different positive-definite matrices structures available in the lcc function are pdSymm, the default, pdLogChol, pdDiag, pdIdent, pdCompSymm, and pdNatural.

var.class standard classes of variance functions to model the variance structure of within-group errors using covariates, see varClasses. Default to NULL, correspond to homoscedastic within-group errors. Available standard classes:

- **varIdent**: allows different variances according to the levels of the stratification variable.
- **varExp**: exponential function of the variance covariate; see varExp.

weights.form character string. An one-sided formula specifying a variance covariate and, optionally, a grouping factor for the variance parameters in the var.class. If var.class=varIdent, the option “method”, form ~1|method or “time.ident”, form ~time, must be used in the weights.form argument. If var.class=varExp, the option “time”, form ~time, or “both”, form ~time|method, must be used in the weights.form argument.

time_lcc regular sequence for time variable merged with specific or experimental time values used for LCC, LPC, and LA predictions. Default is NULL. The list may contain the following components:

- **time**: a vector of specific or experimental time values of given length. The experimental time values are used as default.
- **from**: the starting (minimum) value of time variable.
- **to**: the end (maximum) value of time variable.
- **n**: an integer specifying the desired length of the sequence. Generally, n between 30 and 50 is adequate.
ci: an optional non-parametric bootstrap confidence interval calculated for the LCC, LPC and LA statistics. If TRUE confidence intervals are calculated and printed in the output. Default is FALSE.

percentileMet: an optional method for calculating the non-parametric bootstrap intervals. If FALSE, the default, is the normal approximation method. If TRUE, the percentile method is used instead.

alpha: significance level. Default is 0.05.

nboot: an integer specifying the number of bootstrap samples. Default is 5,000.

show.warnings: an optional argument that shows the number of convergence errors in the bootstrap samples. If TRUE shows in which bootstrap sample the error occurred. If FALSE, the default, shows the total number of convergence errors.

components: an option to print LPC and LA statistics. If TRUE the estimates and confidence intervals for LPC and LA are printed in the output. If FALSE, the default, provides estimates and confidence interval only for the LCC statistic.

REML: if TRUE, the default, the model is fit by maximizing the restricted log-likelihood. If FALSE the log-likelihood is maximized.

lme.control: a list of control values for the estimation algorithm to replace the default values of the function lmeControl available in the nlme package. Defaults to an empty list. The returned list is used as the control argument for the lme function.

numCore: number of cores used in parallel during bootstrapping computation. Default is 1.

Value

an object of class lcc. The output is a list with the following components:

model: summary of the polynomial mixed-effects regression model.

Summary.lcc: fitted values for the LCC or LCC, LPC and LA (if components=TRUE); concordance correlation coefficient (CCC) between methods for each level of time as sampled values, and the CCC between mixed-effects model predicted values and observed values from data as goodness of fit (gof)

data: the input dataset.

Author(s)

Thiago de Paula Oliveira, <thiago.paula.oliveira@usp.br>, Rafael de Andrade Moral, John Hinde

References

See Also

summary.lcc, fitted.lcc, print.lcc, lccPlot, plot.lcc, coef.lcc, ranef.lcc, vcov.lcc, getVarCov.lcc, residuals.lcc, AIC.lcc

Examples

data(hue)
Second degree polynomial model with random intercept, slope and
quadratic term
fm1 <- lcc(data = hue, subject = "Fruit", resp = "H_mean",
 method = "Method", time = "Time", qf = 2, qr = 2)
print(fm1)
summary(fm1)
summary(fm1, type="model")
lccPlot(fm1)

Estimating longitudinal Pearson correlation and longitudinal
#accuracy
fm2 <- update(fm1, components = TRUE)
summary(fm2)
lccPlot(fm2)

Not run:
A grid of points as the Time variable for prediction
fm3 <- update(fm2, time_lcc = list(from = min(hue$Time),
 to = max(hue$Time), n=40))
summary(fm3)
lccPlot(fm3)

End(Not run)

Including an exponential variance function using time as a
#covariate
fm4 <- update(fm2, time_lcc = list(from = min(hue$Time),
 to = max(hue$Time), n=30), var.class=varExp,
 weights.form="time")
summary(fm4, type="model")
fitted(fm4)
fitted(fm4, type = "lpc")
fitted(fm4, type = "la")
lccPlot(fm4)
lccPlot(fm4, type = "lpc")
lccPlot(fm4, type = "la")

Not run:
Non-parametric confidence interval with 500 bootstrap samples
fm5 <- update(fm1, ci = TRUE, nboot = 500)
summary(fm5)
lccPlot(fm5)

End(Not run)
Considering three methods of color evaluation

```r
library(lcc)

# Not run:
data(simulated_hue)
attach(simulated_hue)
fm6 <- lcc(data = simulated_hue, subject = "Fruit",
resp = "Hue", method = "Method", time = "Time",
qf = 2, qr = 1, components = TRUE,
time_lcc = list(n=50, from=min(Time), to=max(Time)))
summary(fm6)
lccPlot(fm6)
detach(simulated_hue)

# End(Not run)
```

Including an additional covariate in the linear predictor
(randomized block design)

```r
# Not run:
data(simulated_hue_block)
attach(simulated_hue_block)
fm7 <- lcc(data = simulated_hue_block, subject = "Fruit",
resp = "Hue", method = "Method", time = "Time",
qf = 2, qr = 1, components = TRUE, covar = c("Block"),
time_lcc = list(n=50, from=min(Time), to=max(Time)))
summary(fm7)
lccPlot(fm7)
detach(simulated_hue_block)

# End(Not run)
```

Testing interaction effect between time and method

```r
fm8 <- update(fm1, interaction = FALSE)
ano(fm1, fm8)
```

Using parallel computing with 3 cores, and a set.seed(123) to verify model reproducibility.

```r
set.seed(123)
fm9 <- lcc(data = hue, subject = "Fruit", resp = "H_mean",
method = "Method", time = "Time", qf = 2, qr = 2,
ci=TRUE, nboot = 30, numCore = 3)

# Repeating same model with same set seed.
set.seed(123)
fm10 <- lcc(data = hue, subject = "Fruit", resp = "H_mean",
method = "Method", time = "Time", qf = 2, qr = 2,
ci=TRUE, nboot = 30, numCore = 3)

## Verifying if both fitted values and confidence intervals are identical
identical(fm9$Summary.lcc$fitted,fm10$Summary.lcc$fitted)

# End(Not run)
```
lccPlot

Plot Fitted Curves from an lcc Object.

Description

A plot of predictions versus the time covariate is generated. Predicted values are joined by lines while sampled observations are represented by circles. If the argument components=TRUE is considered in the lcc object, single plots of each statistics are returned on different pages.

Usage

lccPlot(obj, type, control, ...)

Arguments

- **obj**: an object inheriting from class "lcc", representing a fitted lcc model.
- **type**: character string. If type = "lcc", the output is the LCC plot; if type = "lpc", the output is the LPC plot; and if type = "la" the output is the LA plot. Types "lpc" and "la" are available only if components = TRUE.
- **control**: a list of control values or character strings returned by the function plotControl. Defaults to an empty list. The list may contain the following components:
 - **shape**: draw points considering a shape parameter. Possible shape values are the numbers 0 to 25, and 32 to 127; see aes_linetype_size_shape. Default is 1.
 - **colour**: specification for lines color. Default is "black".
 - **size**: specification for lines size. Should be specified with a numerical value (in millimetres); see aes_linetype_size_shape. Default is 0.5.
 - **xlab**: title for the x axis. Default is "Time".
 - **ylab**: title for the y axis. Default is "LCC", "LPC", or "LA".
 - **scale_y_continuous**: numeric vector of length two providing limits of the scale. Default is c(0,1).
 - **all.plot**: viewport functions for the lcc class. If TRUE, the default, returns an object created by the viewport function with multiple plots on a single page. If FALSE returns a single ggplot object by different pages using the marrangeGrob function.
 - **...**: not used.

Author(s)

Thiago de Paula Oliveira, <thiago.paula.oliveira@usp.br>
References

See Also

lcc.

Examples

data(hue)
Second degree polynomial model with random intercept, slope and
quadratic term
fm1<-lcc(data = hue, subject = "Fruit", resp = "H_mean",
 method = "Method", time = "Time", qf = 2, qr = 2,
 components=TRUE)
lccPlot(fm1, type="lcc")
lccPlot(fm1, type="lpc")
lccPlot(fm1, type="la")

Using the key (+) to constructing sophisticated graphics
lccPlot(fm1, type="lcc") +
scale_y_continuous(limits=c(-1,1)) +
labs(title="My title",
y = "Longitudinal Concordance Correlation",
x = "Time (Days)")

Running all.plots = FALSE and saving plots as pdf
Not run:
data(simulated_hue_block)
attach(simulated_hue_block)
fm2<-lcc(data = simulated_hue_block, subject = "Fruit",
 resp = "Hue", method = "Method", time = "Time",
 qf = 2, qr = 1, components = TRUE, covar = c("Block"),
 time_lcc = list(n=50, from=min(Time), to=max(Time)))

ggsave("myplots.pdf",
lccPlot(fm2, type="lcc", control=list(all.plot=FALSE)))

End(Not run)
Description

If REML=TRUE, the default, returns the restricted log-likelihood value of the linear mixed-effects model; else the log-likelihood value

Usage

```r
## S3 method for class 'lcc'
logLik(object, ..., REML)
```

Arguments

- `object`: an object inheriting from class `lcc`, representing a fitted longitudinal concordance correlation function.
- `...`: further arguments passed to `logLik`.
- `REML`: an optional logical value. If TRUE the restricted log-likelihood is returned, else, if FALSE, the log-likelihood is returned.

Details

See methods for `nlme` objects to get more details.

Author(s)

Thiago de Paula Oliveira, <thiago.paula.oliveira@usp.br>

See Also

- `lcc`, `summary.lcc`

Examples

```r
## Not run:
fm1<-lcc(data = hue, subject = "Fruit", resp = "H_mean", 
         method = "Method", time = "Time", qf = 2, qr = 2)
logLik(fm1)

## End(Not run)
```
Diagnostic Plots of an lcc Object.

Description

Diagnostic plots for conditional error and random effects from the linear mixed-effects fit are obtained. Six plots (selectable by 'which') are currently available: a plot of residuals against fitted values, a plot of residuals against time variable, a boxplot of residuals by subject, a plot of observed values against fitted values, a normal Q-Q plot with simulation envelopes based on conditional error, and a normal Q-Q plot with simulation envelopes based on the random effects. By default, all plots are provided.

Usage

```r
## S3 method for class 'lcc'
plot(x, which = c(1L:6L),
caption = list("Residuals vs Fitted",
"Residuals vs Time",
"Residuals by Subject",
"Observed values vs Fitted values",
"Normal Q-Q Plot (Conditional residuals)",
"Normal Q-Q Plot (Random effects)")
sub.caption = NULL, main = NULL,
panel = if(add.smooth) panel.smooth else points,
add.smooth = TRUE, ask = TRUE,
id.n = 3, labels.id = names(residuals(x)),
label.pos = c(4, 2), cex.id = 0.75, cex.caption = 1,
cex.oma.man = 1.25, ...)
```

Arguments

- `x` an object inheriting from class `lcc`, representing a fitted longitudinal concordance correlation function.
- `which` if a subset of the plots is required, specify a subset of the numbers from 1 to 6.
- `caption` captions to appear above the plots. Vector or list of valid graphics annotations is required. All captions can be suppressed using "" or `NA`.
- `sub.caption` common sub-title (at bottom). Default to `NULL`.
- `main` The main title (on top) above the caption.
- `panel` panel function. If `add.smooth = TRUE`, `panel.smooth` is used rather than `points`.
- `add.smooth` logical indicating if smoother should be added to most plots; see also `panel` above. Defaults to `TRUE`.
- `ask` logical; if `TRUE`, the default, the user is asked before each plot, see `par`.
- `id.n` number of points to be labelled is the first three plots, starting with the most extreme.
labels.id vector of labels, from which the labels for extreme points will be chosen. Default to NULL (uses observation numbers).
label.pos positioning of labels, for the left half and right half of the graph respectively, for plots 1-3.
cex.id magnification of point label.
cex.caption controls the size of caption.
cex oma.man controls the size of the sub.caption only if that is _above_ the figures when there is more than one.
... further graphical parameters from 'par'.

Details
The Q-Q plot uses the normalized residuals. The standardized residuals is pre-multiplied by the inverse square-root factor of the estimated error correlation matrix while the random effects is pre-multiplied by the inverse square root of the estimated variances obtained from matrix G. The simulate envelopes are obtained from package hnp (Moral et al., 2018).

Code partially adapted from plot.lm.

Author(s)
Thiago de Paula Oliveira, <thiago.paula.oliveira@usp.br>

See Also
lccPlot, lcc, mtext, text, plotmath

Examples

```r
## Second degree polynomial model with random intercept, slope and quadratic term
fm1 <- lcc(data = hue, subject = "Fruit", resp = "H_mean", method = "Method", time = "Time", qf = 2, qr = 2)
plot(fm1)
```

print.anova.lcc

Print the Anova of an lcc Object

Description
Method print for the anova.lcc.

Usage

```r
## S3 method for class 'anova.lcc'
print(x, verbose, ...)
```
Arguments

x an object inheriting from class `anova.lcc`, representing a fitted longitudinal concordance correlation function.

verbose an optional logical value used to control the amount of printed output. If TRUE, the calling sequences for each fitted model object are printed with the rest of the output, being omitted if verbose = FALSE. Defaults to FALSE.

... further arguments passed to `print`.

Details

Modified from `anova.lme`. For more details see methods for `nlme`.

Author(s)

Thiago de Paula Oliveira, <thiago.paula.oliveira@usp.br>

See Also

`summary.lcc`, `lccPlot`, `lcc`

Examples

```r
## Not run:
## Second degree polynomial model with random intercept, slope and quadratic term
fm1<-lcc(data = hue, subject = "Fruit", resp = "H_mean",
         method = "Method", time = "Time", qf = 2, qr = 2)
print(anova(fm1))
## End(Not run)
```

Description

Prints information about the longitudinal concordance correlation represented by an object of class `lcc`. The returned object has a `print` method.

Usage

```r
## S3 method for class 'lcc'
print(x, digits, ...)
```
Arguments

x
an object inheriting from class `lcc`, representing a fitted longitudinal concordance correlation function.

digits
a non-null value for `digits` specifies the minimum number of significant digits to be printed in values. The default, `NULL`.

... further arguments passed to `{print}`.

Value
an object inheriting from class `print.lcc`.

Author(s)
Thiago de Paula Oliveira, <thiago.paula.oliveira@usp.br>

See Also
`lcc`, `summary.lcc`

Examples

```r
## Not run:  
## Second degree polynomial model with random intercept, slope and  
## quadratic term  
fm1<-lcc(data = hue, subject = "Fruit", resp = "H_mean",  
  method = "Method", time = "Time", qf = 2, qr = 2)  
print(fm1)  
## End(Not run)
```

Description
Information summarizing the fitted longitudinal concordance correlation is printed. This includes the AIC, BIC, and log-likelihood at convergence. If `type = "lcc"`, prints the fitted values while `type = "model"` prints the fixed effects estimates and their standard errors, standard deviations, correlations for the random effects, within-group correlation, and variance function parameters.

Usage

```
## S3 method for class 'summary.lcc'  
print(x, verbose, digits, ...)
```
Arguments

- **x**: an object inheriting from class `summary.lcc`, representing a fitted longitudinal concordance correlation function.
- **verbose**: an optional logical value used to control the amount of printed output when `type = "model"`. Defaults to `FALSE`.
- **digits**: a non-null value for `digits` specifies the minimum number of significant digits to be printed in values. The default, `NULL`.
- **...**: further arguments passed to `print`.

Author(s)

Thiago de Paula Oliveira, <thiago.paula.oliveira@usp.br>

See Also

`summary.lcc`, `lccPlot`, `lcc`

Examples

```r
## Not run:
## Second degree polynomial model with random intercept, slope and
## quadratic term
fm1<-lcc(data = hue, subject = "Fruit", resp = "H_mean",
          method = "Method", time = "Time", qf = 2, qr = 2)
print(summary(fm1, type="model"))
## End(Not run)
```

runf.lcc

Extract Model Random Effects

Description

Extract the estimated random effects at level i. A data frame with rows given by the different groups at that level and columns given by the random effects.

Usage

```r
## S3 method for class 'lcc'
ranef(object, ...)
```

Arguments

- **object**: an object inheriting from class `lcc`, representing a fitted longitudinal concordance correlation function.
- **...**: optional arguments passed to the `ranef.lme` function.
Details

See methods for \texttt{nlme} objects to get more details.

Author(s)

Thiago de Paula Oliveira, \texttt{thiago.paula.oliveira@usp.br}

See Also

\texttt{lcc, coef.lcc},

Examples

```r
## Not run:
fm1 <- lcc(data = hue, subject = "Fruit", resp = "H\_mean",
method = "Method", time = "Time", qf = 2, qr = 2)
ranef(fm1)
## End(Not run)
```

Description

Extract the residulas from the model used to estimate the longitudinal concordance correlation function.

Usage

```r
## S3 method for class 'lcc'
residuals(object, type, ...)
```

Arguments

- **object**: an object inheriting from class \texttt{lcc}, representing a fitted longitudinal concordance correlation function.
- **type**: an optional character string specifying the type of residulas to be used. If \texttt{type = "response"}, the default, the residuals at level \(i\) are obtained by subtracting the fitted values at that level from the response vector. If \texttt{type = "pearson"}, the "response" residuals is divided by the estimated within-group standard error. If \texttt{type = "normalized"}, the normalized residuals are used. Partial matching of arguments is used, so only the first character needs to be provided.
- **...**: optional arguments passed to the \texttt{residuals.lme} function.

Details

See methods for \texttt{nlme} objects to get more details.
simulated_hue

Author(s)
Thiago de Paula Oliveira, <thiago.paula.oliveira@usp.br>

See Also
lcc, summary.lcc, coef.lcc, vcov.lcc

Examples

Not run:
fm1<-lcc(data = hue, subject = "Fruit", resp = "H_mean",
method = "Method", time = "Time", qf = 2, qr = 2)
getVarCov(fm1)
End(Not run)

simulated_hue Hue color simulated data

Description
Simulated hue data set based on papaya’s maturation over time considering three methods of measurement.

Usage
data(simulated_hue)

Format
A simulated data frame with 6,000 observations on the mean hue variable. The format is:

<table>
<thead>
<tr>
<th></th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hue</td>
<td>numeric; mean hue of papaya’s peel</td>
</tr>
<tr>
<td>Method</td>
<td>a factor with levels labelled from Method 1 to Method 3</td>
</tr>
<tr>
<td>Time</td>
<td>integer; time in days from 0 to 19</td>
</tr>
<tr>
<td>Fruit</td>
<td>a factor with 100 levels labelled from 1 to 100</td>
</tr>
</tbody>
</table>

where each level is represented by one fruit.

Details
A total of 100 fruits were observed over 20 days by three methods to evaluate the mean hue of fruit’s peel. The aim of the agreement study was to assess how well the methods 2, and 3 agreed with method 1 over time.
See Also

lcc.

Examples

data(simulated_hue)
summary(simulated_hue)
str(simulated_hue)

`simulated_hue_block`
Hue color simulated data in a randomized block design

Description

Simulated hue data set based on papaya’s maturation over time considering four methods of measurement in a randomized block design.

Usage

data(simulated_hue_block)

Format

A simulated data frame with 24,000 observations on the mean hue variable. The format is:

- **Hue**: numeric; mean hue of papaya’s peel
- **Block**: factor with levels labelled from 1 to 3
- **Method**: a factor with levels labelled from Method 1, to Method 4
- **Time**: integer; time in days from 0 to 19
- **Fruit**: a factor with 300 levels labelled from 1 to 300, where each level is represented by one fruit.

Details

A total of 100 fruits by block were observed over 20 days by four methods to evaluate the mean hue of fruit’s peel. We considered three blocks in this simulation. The aim of the agreement study was to assess how well the methods 2, 3, and 4 agreed with method 1 over time.

See Also

lcc.

Examples

data(simulated_hue_block)
summary(simulated_hue_block)
str(simulated_hue_block)
Summary.lcc

Summarize an lcc Object

Description

Additional information about the fit of longitudinal concordance correlation, longitudinal Pearson correlation, and longitudinal accuracy represented by an object of class `lcc`. The returned object has a `print` method.

Usage

```r
## S3 method for class 'lcc'
summary(object, type, adjustSigma, verbose, ...)
```

Arguments

- `object` an object inheriting from class `lcc`, representing a fitted longitudinal concordance correlation function.
- `type` an optional character string specifying the type of output to be returned. If `type="model"`, prints the summary of the polynomial mixed-effects regression model. If `type="lcc"`, prints the summary of the fitted and sampled values for LCC, LPC, and LA as well as the concordance correlation coefficient between fitted values from the model and observed values as goodness of fit (gof) measurement. Defaults to `type="model"`.
- `adjustSigma` an optional logical value used when `type = model`. If TRUE and the estimation method used to obtain object was maximum likelihood, the residual standard error is multiplied by `sqrt(nobs/(nobs - npar))`. See `summary.lme` for more information. Default is TRUE.
- `verbose` an optional logical value used to control the amount of output in the `print.summary.lme` method when `type = model` is used. Defaults to FALSE.
- `...` not used.

Value

An object inheriting from class `summary.lcc` including:

- `fitted` the fitted values extracted from the `lcc` object.
- `gof` the goodness of fit (gof) measurement is calculated using the concordance correlation coefficient between fitted and observed values. Value of 1 denote perfect concordance.
- `AIC` the Akaike Information Criterion corresponding to object.
- `BIC` the Bayesian Information Criterion corresponding to object.
- `logLik` If `REML=FALSE`, returns the log-likelihood value of the linear mixed-effects model; otherwise, the restricted log-likelihood is returned.
Description

Returns the variance-covariance matrix of a fitted lcc model object.

Usage

```r
## S3 method for class 'lcc'
vcov(object, ...)
```

Arguments

- `object`: an object inheriting from class `lcc`, representing a fitted longitudinal concordance correlation function.
- `...`: optional arguments passed to the `vcov.lme` function.

Details

See methods for `nlme` objects to get more details.

Author(s)

Thiago de Paula Oliveira, <thiago.paula.oliveira@usp.br>

See Also

`summary.lcc, lccPlot, lcc, coef.lcc`
Examples

```r
## Not run:
fm1 <- lcc(data = hue, subject = "Fruit", resp = "H_mean",
           method = "Method", time = "Time", qf = 2, qr = 2)
vcov(fm1)

## End(Not run)
```
Index

<table>
<thead>
<tr>
<th>Topic</th>
<th>Package</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>*Topic datasets</td>
<td></td>
<td></td>
</tr>
<tr>
<td>hue, 8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>simulated_hue</td>
<td></td>
<td>23</td>
</tr>
<tr>
<td>simulated_hue_block</td>
<td></td>
<td>24</td>
</tr>
<tr>
<td>*Topic ggplot2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>lcc</td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>*Topic nlme</td>
<td></td>
<td></td>
</tr>
<tr>
<td>lcc</td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>aes_linetype_size_shape</td>
<td></td>
<td>14</td>
</tr>
<tr>
<td>AIC</td>
<td></td>
<td>3, 26</td>
</tr>
<tr>
<td>AIC.lcc</td>
<td></td>
<td>2, 12</td>
</tr>
<tr>
<td>anova.lcc</td>
<td></td>
<td>3, 19</td>
</tr>
<tr>
<td>anova.lme</td>
<td></td>
<td>4, 19</td>
</tr>
<tr>
<td>BIC</td>
<td></td>
<td>26</td>
</tr>
<tr>
<td>BIC.lcc (AIC.lcc)</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>coef.lcc</td>
<td></td>
<td>3, 5, 7, 12, 22, 23, 26</td>
</tr>
<tr>
<td>fitted.lcc</td>
<td></td>
<td>6, 12</td>
</tr>
<tr>
<td>ggplot</td>
<td></td>
<td>14</td>
</tr>
<tr>
<td>hue</td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>lcc</td>
<td></td>
<td>3–7, 9, 9, 15–26</td>
</tr>
<tr>
<td>lccPlot</td>
<td></td>
<td>5, 6, 12, 14, 18, 19, 21, 26</td>
</tr>
<tr>
<td>lmeControl</td>
<td></td>
<td>11</td>
</tr>
<tr>
<td>logLik</td>
<td></td>
<td>16</td>
</tr>
<tr>
<td>logLik.lcc</td>
<td></td>
<td>15</td>
</tr>
<tr>
<td>marrangeGrob</td>
<td></td>
<td>14</td>
</tr>
<tr>
<td>nlme</td>
<td></td>
<td>4, 5, 7, 11, 16, 19, 22, 26</td>
</tr>
<tr>
<td>par</td>
<td></td>
<td>17</td>
</tr>
<tr>
<td>pdClasses</td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>plot.lcc</td>
<td></td>
<td>12, 17</td>
</tr>
<tr>
<td>plot.lm</td>
<td></td>
<td>18</td>
</tr>
<tr>
<td>plotControl</td>
<td></td>
<td>14</td>
</tr>
<tr>
<td>print</td>
<td></td>
<td>19–21, 25</td>
</tr>
<tr>
<td>print.anova.lcc</td>
<td></td>
<td>18</td>
</tr>
<tr>
<td>print.lcc</td>
<td></td>
<td>12, 19</td>
</tr>
<tr>
<td>print.summary.lcc</td>
<td></td>
<td>20</td>
</tr>
<tr>
<td>ranef.lcc</td>
<td></td>
<td>12, 21</td>
</tr>
<tr>
<td>residuals.lcc</td>
<td></td>
<td>12, 22</td>
</tr>
<tr>
<td>simulated_hue</td>
<td></td>
<td>23</td>
</tr>
<tr>
<td>simulated_hue_block</td>
<td></td>
<td>24</td>
</tr>
<tr>
<td>summary.lcc</td>
<td></td>
<td>3–7, 12, 16, 19–21, 23, 25, 26</td>
</tr>
<tr>
<td>summary.lme</td>
<td></td>
<td>25</td>
</tr>
<tr>
<td>varClasses</td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>varExp</td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>vcov.lcc</td>
<td></td>
<td>3, 5, 7, 12, 23, 26</td>
</tr>
<tr>
<td>viewport</td>
<td></td>
<td>14</td>
</tr>
</tbody>
</table>

28