Package ‘lans2r’

May 24, 2017

Title Work with Look at NanoSIMS Data in R

Description R interface for working with nanometer scale secondary ion mass spectrometry (NanoSIMS) data exported from Look at NanoSIMS.

Version 1.0.5

URL https://github.com/KopfLab/lans2r

BugReports https://github.com/KopfLab/lans2r/issues

Depends R (>= 3.1)

Imports dplyr, tidyr, reshape2, ggplot2, lazyeval, R.matlab

Suggests testthat, rmarkdown, knitr, covr

License GPL-3 | file LICENSE

Encoding UTF-8

LazyData true

VignetteBuilder knitr

RoxygenNote 6.0.1

NeedsCompilation no

Author Sebastian Kopf [aut, cre]

Maintainer Sebastian Kopf <sebastian.kopf@colorado.edu>

Repository CRAN

Date/Publication 2017-05-24 04:25:53 UTC

R topics documented:

calculate .. 2
calculate_abundances 3
calculate_ratios ... 4
calculate_sums .. 4
load_HMR .. 5
load_LANS_maps .. 6
load_LANS_summary 6
Description

This function allows easy calculation of any quantities derived from other variables. The new quantities can be assigned to a specific `data_type` and values, errors as well as the resulting variable names are calculated/constructed based on custom functions that can be provided via the function parameters. `calculate_sums`, `calculate_ratios` and `calculate_abundances` are all based on this and provide an easy way for common standard calculations.

Usage

```r
calculate(data, data_type, ..., value_fun, error_fun = function(...)
  return(NA), name_fun = default_name, filter_new = NULL, quiet = F)
```

Arguments

- **data**: a data frame with lans2r data, can be grouped to do calculations within individual groups
- **data_type**: what to call the new data type
- **...**: the parameters to send to the value, error and naming function for each derived value. These are always expressions that can include references to variable columns, arithmetic and constants, e.g. `c('12C', '13C')` or `c("test", 100*(12C+13C))`. The number of parameters needs to match those expected by the value, error and name functions. Error values of different columns (say for classical error propagation) can be addressed using the suffix "sigma", e.g. `c('12C', '12C sigma')` would pass both the value and error of this variable to the functions.
- **value_fun**: a custom function used to calculate the derived value - needs to match the sets of parameters provided through ...
- **error_fun**: a custom function used to calculate the error (sigma) for the derived value - needs to match the sets of parameters provided through ...
- **name_fun**: a custom function used to construct the variable name for the derived quantity - needs to match the sets of parameters provided through ...
- **filter_new**: an expression to apply as a filter on the new data rows (e.g. `plane == "all"`)
- **quiet**: whether the function should output information messages or be quiet (default is to output)
calculate_abundances

Description

This function calculates the isotope abundances (in statistics error from the raw ion counts. It can be applied to data from both LANS_summary and LANS_maps loading but can be slow if LANS_maps is combined from many analyses.

Usage

```
calculate_abundances(data, ..., name_fun = default_name, quiet = F)
```

Arguments

- `data`: a data frame with raw ion counts retrieved from `load_LANS_summary`
- `...`: the fractional abundances to calculate, each entry is for one fractional abundance with major isotope first, then minor isotope, e.g. c(‘13C’, ‘12C’), c(‘15N12C’, ‘14C12C’), ...
- `name_fun`: the naming function, receives ... from the top level, default concatenates ‘F’ + minor ion name
- `quiet`: whether the function should output information messages or be quiet (default is to output)

Value

the original data frame with the newly calculated information appended (data_type == "ion_sum")

See Also

Other calculations: calculate_abundances, calculate_ratios, calculate_sums
calculate_ratios Calculate isotope ratios

Description

This function calculates the ratios and resulting counting statistics error from the raw ion counts. It can be applied to data from both LANS_summary and LANS_maps loading but can be slow if LANS_maps is combined from many analyses. It can also be applied to ion_sums generate by calculate_sums to calculate elemental ratios (careful, ionization efficiencies skew their scaling!)

Usage

calculate_ratios(data, ..., name_fun = default_name, quiet = F)

Arguments

data a data frame with raw ion counts retrieved from load_LANS_summary

... the ratios to calculate, each entry is one ratio with major isotope first, then minor isotope, e.g. c(‘13C’, ‘12C’), c(‘15N12C’, ‘14C12C’), ...

name_fun the naming function, receives ... from the top level, default concatenates column names with ‘/’

quiet whether the function should output information messages or be quiet (default is to output)

Value

the original data frame with the ratio information appended (all ratios have data_type == "ratio")

See Also

Other calculations: calculate_abundances, calculate_sums, calculate

calculate_sums Calculate ion sums

Description

This function calculates the ion sums and resulting counting statistics error from multiple raw ion counts. It can be applied to data from both LANS_summary and LANS_maps loading but can be slow if LANS_maps is combined from many analyses. Careful about its error propagation, it assumes it is calculating sums of ions and uses the ion counts themselves for error calculation. This is not suitable for calculating other types of sums where other types of error propagation may be more appropriate.
Usage

calculate_sums(data, ..., name_fun = default_name, quiet = F)

Arguments

data a data frame with raw ion counts retrieved from \texttt{load_LANS_summary}

... the ion sums to calculate, each entry is for one sum of as many ions as desired, e.g. c(‘13C’, ‘12C’), c(‘15N12C’, ‘14C12C’), ...

name_fun the naming function, receives ... from the top level, default concatenates column names with ‘+’

quiet whether the function should output information messages or be quiet (default is to output)

Value

the original data frame with the sums information appended (data_type == "ion_sum")

See Also

Other calculations: \texttt{calculate_abundances}, \texttt{calculate_ratios}, \texttt{calculate}

load_HMR

\textit{Read data from HMR txt files}

Description

See HMR vignette for examples.

Usage

load_HMR(folder, prefix, suffix = ".hmr_txt")

Arguments

folder - the folder where the HMR files are

prefix - the prefix for the set of hmr files

suffix - the suffix for the set of hmr files
load_LANS_maps
Load LANS ion map data

Description

Load the full ion map data (incl. ROI locations) exported from LANS analyses and attach additional information to each analysis. Uses read_map_data to read individual matlab export files.

Usage

load_LANS_maps(analysis, ..., base_dir = ".", ion_data_only = TRUE, quiet = F)

Arguments

- analysis - vector of LANS analysis folder names
- ... - vectors of additional information to attach to each analysis, each argument has to have the same length as the 'analysis' parameter (or length 1)
- base_dir - the directory where all the analysis folders are located (defaults to current directory)
- ion_data_only - whether to import only ion data [TRUE by default], rather than any derived files (e.g. ratios calculated within LANS). Recommend using calculate_ratios and calculate_abundances to process the raw ion counts in easy format and good error propagation.
- quiet - whether to report information on the loaded data or not

load_LANS_summary
Load LANS summary data

Description

Load the ROI summary information exported from LANS analyses and attach additional information to each analysis. Uses read_roi_data to read individual files.

Usage

load_LANS_summary(analysis, ..., base_dir = ".", ion_data_only = TRUE, load_zstacks = TRUE, quiet = F)
plot_maps

Arguments

- **analysis**: vector of LANS analysis folder names
- **...**: vectors of additional information to attach to each analysis, each argument has to have the same length as the 'analysis' parameter (or length 1)
- **base_dir**: the directory where all the analysis folders are located (defaults to current directory)
- **ion_data_only**: whether to import only ion data [TRUE by default], rather than any derived files (e.g. ratios calculated within LANS). Recommend using `calculate_ratios` and `calculate_abundances` to process the raw ion counts in easy format and good error propagation.
- **load_zstacks**: whether to load the planes data (ion-z.dat files need to be exported from LANS for this to be possible - they are created when the "Display depth profiles in ROI" is checked during "Display masses")
- **quiet**: whether to report information on the loaded data or not

Description

Helps to plot the ion maps exported and loaded from LANS. Can overlay the ROI boundaries for clarity as well. Note that this does not currently support any smoothing yet so plotting ratios or abundances will most likely not work well because individual pixels have extreme values.

Usage

```r
plot_maps(data, draw_ROIs = T, normalize = T, color_scale = c("black", "white"))
```

Arguments

- **data**: the ion maps data frame
- **draw_ROIs**: whether to draw in the ROIs or not (default TRUE)
- **normalize**: whether to normalize the intensity scale for each panel (default TRUE)
- **color_scale**: what color scale to use for high and low intensity, default is black & white
read_map_data

Read LANS full ion map data (.mat) files

Description

Reads the full matlab data files (.mat) that contain the complete ion maps and ROI outlines for the given LANS analysis folder and returns the data in a concatenated data frame with identifier column 'variable' (=ion), data columns value (ion count) and sigma (error based on counting statistics). Additionally, the column 'ROI' indicates which ROI each pixel belongs to with a value of 0 indicating that it does not belong to any ROI. Note that this only reads ion data files by default and not any derived data files (any ratio or other formulas evaluated by LANS). It does also not currently support z-stacks yet.

Usage

```r
read_map_data(mat_folder, ion_data_only = TRUE, quiet = F)
```

Arguments

- `mat_folder` - the LANS mat directory with the ions’ .mat files
- `ion_data_only` - by default TRUE, i.e. ignores all non-ion data files
- `quiet` - whether to report information on the loaded data or not

Value

concatenated data frame with the full ion maps data

read_roi_data

Read LANS data summary (.dac/.dat) files

Description

Reads the ion data (.dac/.dat) files for the given LANS analysis folder and returns the ROIs data in a concatenated data frame with identifier columns 'ROI' and 'variable' (=ions). Note that this only reads ion data files by default and not any derived data files (any ratio or other formulas evaluated by LANS). If zstacks (i.e. individual planes) are exported from LANS, they can be loaded as well (and are by default). The resulting data frame has a 'plane' column that keeps track of the plane, the value 'all' identifies the combined data for the ROI from all planes.

Usage

```r
read_roi_data(dat_folder, ion_data_only = TRUE, load_zstacks = TRUE, quiet = F)
```
spread_data

Arguments
- **dat_folder** - the LANS dat directory with the ions’ .dac files
- **ion_data_only** - by default TRUE, i.e. ignores all non-ion data files
- **load_zstacks** - whether to load any z_stacks found, by default TRUE
- **quiet** - whether to report information on the loaded data or not

Value
concatenated data_frame with all the ROIs’ data, with identifier columns 'plane', 'ROI' and 'variable'

Description
This function allows easy spreading into wide format.

Usage

```
spread_data(data, values = TRUE, errors = TRUE)
```

Arguments
- **data** - a data frame with lans2r data
- **values** - whether to include the values in wide format
- **errors** - whether to include the errors in wide format

Value
the original data frame but in wide format
Index

calculate, 2, 3–5
calculate_abundances, 2, 3, 3, 4–7
calculate_ratios, 2, 3, 4, 5–7
calculate_sums, 2–4, 4

load_HMR, 5
load_LANS_maps, 6
load_LANS_summary, 3–5, 6

plot_maps, 7

read_map_data, 6, 8
read_roi_data, 6, 8

spread_data, 9