Package ‘kinematics’

July 19, 2021

Type Package
Title Studying Sampled Trajectories
Version 1.0.0
Maintainer Pablo Rodriguez-Sanchez <pablo.rodriguez.sanchez@gmail.com>
Description Allows analyzing time series representing two-dimensional movements.
 It accepts a data frame with a time (t), horizontal (x) and vertical (y) coordinate as columns,
 and returns several dynamical properties such as speed, acceleration or curvature.
License MIT + file LICENSE
Encoding UTF-8
LazyData true
RoxygenNote 7.1.1
VignetteBuilder knitr
Suggests testthat, knitr, utils, markdown, rmarkdown, ggplot2
Imports numDeriv, stats
Depends R (>= 3.5.0)
NeedsCompilation no
Repository CRAN
Date/Publication 2021-07-19 07:30:02 UTC

R topics documented:

accel ... 2
append_displacement ... 2
append_dynamics .. 3
approx_derivative .. 4
curvature .. 4
curvature_radius .. 5
accel

Return accelerations

Description

Return accelerations

Usage

\[\text{accel}(t, x, y)\]

Arguments

- \(t\): The times vector
- \(x\): The x positions
- \(y\): The y positions

Value

The accelerations

See Also

speed, approx_derivative

append_displacement

Return a dataframe with information about the time-to-time displacements

Description

The displacement is a bit more complicated than other dynamical variables, as it depends on the sampling frequency. If you are subsampling, always re-run append_displacement after subsampling.

Usage

\[\text{append_displacement(data)}\]
append_dynamics

Arguments

- **data**
 A dataframe containing t, x and y

Value

A data frame including all the dynamical information, including displacements

See Also

append_dynamics, speed

Description

Return a data frame with extra columns with dynamical information

Usage

```r
append_dynamics(data, append.displacement = TRUE)
```

Arguments

- **data**
 A dataframe containing t, x and y
- **append.displacement**
 (Optional) Set it to FALSE to not calculate displacements. Useful if the data is going to be resampled

Value

A data frame including instantaneous dynamical variables, such as speed and acceleration

See Also

speed, accel, append_displacement
approx_derivative

Description

Approximate derivative

Usage

approx_derivative(t, x)

Arguments

t Vector of times
x Vector of values

Value

A vector (of the same size of t) representing the numerical derivative

See Also

speed, accel

curvature

Description

Return curvatures

Usage

curvature(t, x, y)

Arguments

t The times vector
x The x positions
y The y positions

Value

The local curvature

See Also

speed, accel, curvature_radius
curvature_radius

Return curvature radius

Description

Return curvature radius

Usage

`curvature_radius(t, x, y)`

Arguments

<table>
<thead>
<tr>
<th>t</th>
<th>The times vector</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>The x positions</td>
</tr>
<tr>
<td>y</td>
<td>The y positions</td>
</tr>
</tbody>
</table>

Value

The local curvature radius

See Also

`speed, accel, curvature`

displacement

Return displacements

Description

Return displacements

Usage

`displacement(x, y)`

Arguments

<table>
<thead>
<tr>
<th>x</th>
<th>The x positions</th>
</tr>
</thead>
<tbody>
<tr>
<td>y</td>
<td>The y positions</td>
</tr>
</tbody>
</table>

Value

The displacements between a position and its previous
example_mov
Example data set

Description

Experimental sample of 3000 positions of a macroinvertebrate

Format

A data frame with 3000 observations of:

- x horizontal position
- y vertical position
- t time ...

get_polar_coordinates
Get polar coordinates

Description

Get polar coordinates

Usage

```
get_polar_coordinates(x, y, origin = c(0, 0))
```

Arguments

- **x**: Vector of x coordinates
- **y**: Vector if y coordinates
- **origin**: (Default = c(0, 0)) Position of the origin of coordinates

Value

Data frame with radius (r) and angle vectors (th)
speed

Return speeds

Description

Return speeds

Usage

```plaintext
speed(t, x, y)
```

Arguments

- **t**
 The times vector
- **x**
 The x positions
- **y**
 The y positions

Value

The speeds

See Also

`accel`, `approx_derivative`
Index

accel, 2, 3–5, 7
append_displacement, 2, 3
append_dynamics, 3, 3
approx_derivative, 2, 4, 7

curvature, 4, 5
curvature_radius, 4, 5
displacement, 5
displacement, 5
example_mov, 6
get_polar_coordinates, 6
speed, 2–5, 7