Package ‘keyATM’

February 14, 2021

Version 0.4.0
Title Keyword Assisted Topic Model
Description Fits keyword assisted topic models (keyATM) using collapsed Gibbs samplers. The keyATM combines the latent dirichlet allocation (LDA) models with a small number of keywords selected by researchers in order to improve the interpretability and topic classification of the LDA. The keyATM can also incorporate covariates and directly model time trends. The keyATM is proposed in Eshima, Imai, and Sasaki (2020) <arXiv:2004.05964>.
License GPL-3
Depends R (>= 3.6)
Imports Rcpp, dplyr (>= 1.0.0), fastmap, future.apply, ggplot2, ggrepel, magrittr, Matrix, matrixNormal, MASS, pgdraw, purrr, quanteda (>= 2.0.0), rlang, stats, stringr, tibble, tidyr (>= 1.0.0)
LinkingTo Rcpp, RcppEigen, RcppProgress
Suggests readtext, testthat (>= 2.1.0)
URL https://keyatm.github.io/keyATM/
Encoding UTF-8
BugReports https://github.com/keyATM/keyATM/issues
LazyData TRUE
RoxygenNote 7.1.1
SystemRequirements C++11
NeedsCompilation yes
Author Shusei Eshima [aut, cre] (<https://orcid.org/0000-0003-3613-4046>), Tomoya Sasaki [aut], William Lowe [ctb], Kosuke Imai [aut], Chung-hong Chan [ctb] (<https://orcid.org/0000-0002-6232-7530>), Romain François [ctb] (<https://orcid.org/0000-0002-2444-4226>)
Maintainer Shusei Eshima <shuseieshima@g.harvard.edu>
Repository CRAN
Date/Publication 2021-02-14 17:40:02 UTC
R topics documented:

keyATM-package .. 2
by_strata_DocTopic .. 3
by_strata_TopicWord ... 3
covariates_get .. 4
covariates_info .. 4
keyATM .. 5
keyATMvb .. 7
keyATM_data_bills .. 9
keyATM_read .. 9
multiPGreg .. 10
plot.strata_doctopic ... 11
plot_alpha ... 12
plot_modelfit ... 13
plot_pi ... 13
plot_timetrend ... 14
predict.keyATM_output ... 15
read_keywords .. 17
save.keyATM_output ... 18
save_fig ... 18
top_docs ... 19
top_topics ... 19
top_words .. 20
values_fig .. 20
visualize_keywords ... 21
weightedLDA .. 22

Index 24

keyATM-package Keyword Assisted Topic Models

Description

The implementation of keyATM models.

Author(s)

Maintainer: Shusei Eshima <shuseieshima@g.harvard.edu> (ORCID)

Authors:

- Tomoya Sasaki <tomoyas@mit.edu>
- Kosuke Imai <imai@harvard.edu>

Other contributors:

- William Lowe <wlowe@princeton.edu> [contributor]
- Chung-hong Chan <chainsawtiney@gmail.com> (ORCID) [contributor]
- Romain François (ORCID) [contributor]
by_strata_DocTopic

See Also
Useful links:

• https://keyatm.github.io/keyATM/
• Report bugs at https://github.com/keyATM/keyATM/issues

by_strata_DocTopic

Estimate document-topic distribution by strata (for covariate models)

Description
Estimate document-topic distribution by strata (for covariate models)

Usage
by_strata_DocTopic(x, by_var, labels, by_values = NULL, ...)

Arguments
x
the output from the covariate keyATM model (see keyATM()).
by_var
character. The name of the variable to use.
labels
character. The labels for the values specified in by_var (ascending order).
by_values
numeric. Specific values for by_var, ordered from small to large. If it is not specified, all values in by_var will be used.
...
other arguments passed on to the predict() function.

Value
strata_topicword object (a list).

by_strata_TopicWord

Estimate subsetted topic-word distribution

Description
Estimate subsetted topic-word distribution

Usage
by_strata_TopicWord(x, keyATM_docs, by)
Arguments

- **x**: the output from a keyATM model (see `keyATM()`).
- **keyATM_docs**: an object generated by `keyATM_read()`.
- **by**: a vector whose length is the number of documents.

Value

strata_topicword object (a list).

covariates_get

Return covariates used in the iteration

Description

Return covariates used in the iteration

Usage

```r
covariates_get(x)
```

Arguments

- **x**: the output from the covariate keyATM model (see `keyATM()`)

covariates_info

Show covariates information

Description

Show covariates information

Usage

```r
covariates_info(x)
```

Arguments

- **x**: the output from the covariate keyATM model (see `keyATM()`).
keyATM

keyATM main function

Description

Fit keyATM models.

Usage

```r
keyATM(
  docs,
  model,
  no_keyword_topics,
  keywords = list(),
  model_settings = list(),
  priors = list(),
  options = list(),
  keep = c()
)
```

Arguments

- `docs`: texts read via `keyATM_read()`.
- `model`: keyATM model: base, covariates, dynamic, and label.
- `no_keyword_topics`: the number of regular topics.
- `keywords`: a list of keywords.
- `model_settings`: a list of model specific settings (details are in the online documentation).
- `priors`: a list of priors of parameters.
- `options`: a list of options
 - `seed`: A numeric value for random seed. If it is not provided, the package randomly selects a seed.
 - `iterations`: An integer. Number of iterations. Default is 1500.
 - `verbose`: If TRUE, it prints loglikelihood and perplexity. Default is FALSE.
 - `llk_per`: An integer. If the value is j keyATM stores loglikelihood and perplexity every j iteration. Default value is 10 per iterations
 - `use_weights`: If TRUE use weight. Default is TRUE.
 - `weights_type`: There are four types of weights. Weights based on the information theory (information-theory) and inverse frequency (inv-freq) and normalized versions of them (information-theory-normalized and inv-freq-normalized). Default is information-theory.
 - `prune`: If TRUE rume keywords that do not appear in the corpus. Default is TRUE.
• **store_theta**: If TRUE or 1, it stores θ (document-topic distribution) for the iteration specified by thinning. Default is FALSE (same as θ).

• **store_pi**: If TRUE or 1, it stores π (the probability of using keyword topic word distribution) for the iteration specified by thinning. Default is FALSE (same as θ).

• **thinning**: An integer. If the value is j keyATM stores following parameters every j iteration. The default is 5.
 – **theta**: For all models. If store_theta is TRUE document-level topic assignment is stored (sufficient statistics to calculate document-topic distributions theta).
 – **alpha**: For the base and dynamic models. In the base model alpha is shared across all documents whereas each state has different alpha in the dynamic model.
 – **lambda**: coefficients in the covariate model.
 – **R**: For the dynamic model. The state each document belongs to.
 – **P**: For the dynamic model. The state transition probability.

• **parallel_init**: Parallelize processes to speed up initialization. Default is FALSE. Please plan() before use this feature.

keep a vector of the names of elements you want to keep in output.

Value

A keyATM_output object containing:

- **keyword_k** number of keyword topics
- **no_keyword_topics** number of no-keyword topics
- **V** number of terms (number of unique words)
- **N** number of documents
- **model** the name of the model
- **theta** topic proportions for each document (document-topic distribution)
- **phi** topic specific word generation probabilities (topic-word distribution)
- **topic_counts** number of tokens assigned to each topic
- **word_counts** number of times each word type appears
- **doc_lens** length of each document in tokens
- **vocab** words in the vocabulary (a vector of unique words)
- **priors** priors
- **options** options
- **keywords_raw** specified keywords
- **model_fit** perplexity and log-likelihood
- **pi** estimated π (the probability of using keyword topic word distribution) for the last iteration
- **values_iter** values stored during iterations
- **kept_values** outputs you specified to store in keep option
- **information** information about the fitting
keyATMvb

See Also

`save.keyATM_output()`, https://keyatm.github.io/keyATM/articles/pkgdown_files/Options.html

Examples

```r
## Not run:
library(keyATM)
library(quanteda)
data(keyATM_data_bills)
bills_keywords <- keyATM_data_bills$keywords
bills_dfm <- keyATM_data_bills$doc_dfm # quanteda dfm object
keyATM_docs <- keyATM_read(bills_dfm)

# keyATM Base
out <- keyATM(docs = keyATM_docs, model = "base",
              no_keyword_topics = 5, keywords = bills_keywords)

# keyATM Covariates
bills_cov <- as.data.frame(keyATM_data_bills$cov)
out <- keyATM(docs = keyATM_docs, model = "covariates",
              no_keyword_topics = 5, keywords = bills_keywords,
              model_settings = list(covariates_data = bills_cov,
                                     covariates_formula = ~ RepParty))

# keyATM Dynamic
bills_time_index <- keyATM_data_bills$time_index
# Time index should start from 1 and increase by 1
bills_time_index <- as.integer(bills_time_index - 100)
out <- keyATM(docs = keyATM_docs, model = "dynamic",
              no_keyword_topics = 5, keywords = bills_keywords,
              model_settings = list(num_states = 5,
                                     time_index = bills_time_index))

# Visit our website for full examples: https://keyatm.github.io/keyATM/

## End(Not run)
```

keyATMvb

`keyATM with Collapsed Variational Bayes`

Description

Experimental feature: Fit keyATM base with Collapsed Variational Bayes
Usage

keyATMvb(
 docs,
 model,
 no_keyword_topics,
 keywords = list(),
 model_settings = list(),
 vb_options = list(),
 priors = list(),
 options = list(),
 keep = list()
)

Arguments

docs texts read via keyATM_read()
model keyATM model: base, covariates, and dynamic
no_keyword_topics the number of regular topics
keywords a list of keywords
model_settings a list of model specific settings (details are in the online documentation)
vb_options a list of settings for Variational Bayes
 • convtol: the default is 1e-4
 • init: mcmc (default) or random
priors a list of priors of parameters
options a list of options same as keyATM(). Options are used when initialization method is mcmc.
keep a vector of the names of elements you want to keep in output

Value

A keyATM_output object

See Also

https://keyatm.github.io/keyATM/articles/pkgdown_files/keyATMvb.html
keyATM_data_bills

Description

Bills data

Usage

keyATM_data_bills

Format

A list with following objects:

- **doc_dfm** A quanteda dfm object of 140 documents. The text data is a part of the Congressional Bills scraped from https://www.congress.gov.
- **cov** An integer vector which takes one if the Republican proposed the bill.
- **keywords** A list of length 4 which contains keywords for four selected topics.
- **time_index** An integer vector indicating the session number of each bill.
- **labels** An integer vector indicating 40 labels.
- **labels_all** An integer vector indicating all labels.

Source

https://www.congress.gov

keyATM_read

Description

Read texts and create a keyATM_docs object, which is a list of texts.

Usage

```r
keyATM_read(
  texts,
  encoding = "UTF-8",
  check = TRUE,
  keep_docnames = FALSE,
  progress_bar = FALSE,
  split = 0
)
```
multiPGreg

Run multinomial regression with Polya-Gamma augmentation

Description

Run multinomial regression with Polya-Gamma augmentation. There is no need to call this function directly. The keyATM Covariate internally uses this.
Usage

multiPGreg(Y, X, num_topics, PG_params, iter = 1, store_lambda = 0)

Arguments

Y Outcomes.
X Covariates.
num_topics Number of topics.
PG_params Parameters used in this function.
iter The default is 1.
store_lambda The default is 0.

plot.strata_doctopic Plot document-topic distribution by strata (for covariate models)

Description

Plot document-topic distribution by strata (for covariate models)

Usage

S3 method for class 'strata_doctopic'
plot(
 x,
 show_topic = NULL,
 var_name = NULL,
 by = c("topic", "covariate"),
 ci = 0.9,
 method = c("hdi", "eti"),
 point = c("mean", "median"),
 width = 0.1,
 show_point = TRUE,
 ...
)

Arguments

x a strata_doctopic object (see by_strata_DocTopic()).
show_topic a vector or an integer. Indicate topics to visualize.
var_name the name of the variable in the plot.
by topic or covariate. Default is by topic.
ci value of the credible interval (between 0 and 1) to be estimated. Default is 0.9 (90%).
method method for computing the credible interval. The Highest Density Interval (hdi, default) or Equal-tailed Interval (eti).

point method for computing the point estimate. mean (default) or median.

width numeric. Width of the error bars.

show_point logical. Show point estimates. The default is TRUE.

... additional arguments not used.

Value

keyATM_fig object.

See Also

save_fig(), by_strata_DocTopic()

plot_alpha

Show a diagnosis plot of alpha

Description

Show a diagnosis plot of alpha

Usage

plot_alpha(x, start = 0, show_topic = NULL, scales = "fixed")

Arguments

- `x` the output from a keyATM model (see keyATM()).
- `start` integer. The start of slice iteration. Default is 0.
- `show_topic` a vector to specify topic indexes to show. Default is NULL.
- `scales` character. Control the scale of y-axis (the parameter in ggplot2::facet_wrap()): free adjusts y-axis for parameters. Default is fixed.

Value

keyATM_fig object

See Also

save_fig()
plot_modelfit

Show a diagnosis plot of log-likelihood and perplexity

Description

Show a diagnosis plot of log-likelihood and perplexity

Usage

plot_modelfit(x, start = 1)

Arguments

x
the output from a keyATM model (see keyATM()).

start
integer. The starting value of iteration to use in plot. Default is 1.

Value

keyATM_fig object.

See Also

save_fig()

plot_pi

Show a diagnosis plot of pi

Description

Show a diagnosis plot of pi

Usage

plot_pi(
 x,
 show_topic = NULL,
 start = 0,
 ci = 0.9,
 method = c("hdi", "eti"),
 point = c("mean", "median")
)

plot_timetrend

Arguments

- **x**: the output from a keyATM model (see `keyATM()`).
- **show_topic**: an integer or a vector. Indicate topics to visualize. Default is NULL.
- **start**: integer. The starting value of iteration to use in the plot. Default is 0.
- **ci**: value of the credible interval (between 0 and 1) to be estimated. Default is 0.9 (90%). This is an option when calculating credible intervals (you need to set `store_pi = TRUE` in `keyATM()`).
- **method**: method for computing the credible interval. The Highest Density Interval (hdi, default) or Equal-tailed Interval (eti). This is an option when calculating credible intervals (you need to set `store_pi = TRUE` in `keyATM()`).
- **point**: method for computing the point estimate. mean (default) or median. This is an option when calculating credible intervals (you need to set `store_pi = TRUE` in `keyATM()`).

Value

keyATM_fig object.

See Also

- `save_fig()`

Description

Plot time trend

Usage

```r
plot_timetrend(
  x, 
  show_topic = NULL, 
  time_index_label = NULL, 
  ci = 0.9, 
  method = c("hdi", "eti"), 
  point = c("mean", "median"), 
  xlab = "Time", 
  scales = "fixed", 
  width = 0.5, 
  show_point = TRUE, 
  ... 
)
```
Arguments

- **x**: the output from the dynamic keyATM model (see `keyATM()`).
- **show_topic**: an integer or a vector. Indicate topics to visualize. Default is NULL.
- **time_index_label**: a vector. The label for time index. The length should be equal to the number of documents (time index provided to `keyATM()`).
- **ci**: value of the credible interval (between 0 and 1) to be estimated. Default is 0.9 (90%). This is an option when calculating credible intervals (you need to set `store_theta = TRUE` in `keyATM()`).
- **method**: method for computing the credible interval. The Highest Density Interval (hdi, default) or Equal-tailed Interval (eti). This is an option when calculating credible intervals (you need to set `store_theta = TRUE` in `keyATM()`).
- **point**: method for computing the point estimate. mean (default) or median. This is an option when calculating credible intervals (you need to set `store_theta = TRUE` in `keyATM()`).
- **xlab**: a character.
- **scales**: character. Control the scale of y-axis (the parameter in `ggplot2::facet_wrap()`) free adjusts y-axis for parameters. Default is fixed.
- **width**: numeric. Width of the error bars.
- **show_point**: logical. The default is TRUE. This is an option when calculating credible intervals.
- **...**: additional arguments not used.

Value

keyATM_fig object.

See Also

`save_fig()`
predict.keyATM_output

Usage

S3 method for class 'keyATM_output'
predict(
 object,
 newdata,
 transform = FALSE,
 burn_in = NULL,
 parallel = TRUE,
 posterior_mean = TRUE,
 ci = 0.9,
 method = c("hdi", "eti"),
 point = c("mean", "median"),
 label = NULL,
 raw_values = FALSE,
...
)

Arguments

object the keyATM_output object for the covariate model.
newdata New observations which should be predicted.
transform Transorm and standardize the newdata with the same formula and option as model_settings used in keyATM().
burn_in integer. Burn-in period. If not specified, it is the half of samples. Default is NULL.
parallel logical. If TRUE, parallelization for speeding up. Default is TRUE. Please plan() before use this function.
posterior_mean logical. If TRUE, the quantity of interest to estimate is the posterior mean. Default is TRUE.
ci value of the credible interval (between 0 and 1) to be estimated. Default is 0.9 (90%).
method method for computing the credible interval. The Highest Density Interval (hdi, default) or Equal-tailed Interval (eti).
point method for computing the point estimate. mean (default) or median.
label a character. Add a label column to the output. The default is NULL (do not add it).
raw_values a logical. Returns raw values. The default is FALSE.
... additional arguments not used.
Description

This function converts or reads a dictionary object from quanteda to a named list. "Glob"-style wildcard expressions (e.g. politic*) are resolved based on the available terms in your texts.

Usage

```r
read_keywords(file = NULL, docs = NULL, dictionary = NULL, split = TRUE, ...)
```

Arguments

- `file`: file identifier for a foreign dictionary, e.g. path to a dictionary in YAML or LIWC format
- `docs`: texts read via `keyATM_read()
- `dictionary`: a quanteda dictionary object, ignore if file is not NULL
- `split`: boolean, if multi-word terms be seperated, e.g. "air force" splits into "air" and "force".
- `...`: additional parameters for `quanteda::dictionary()`

Value

a named list which can be used as keywords for e.g. `keyATM()`

See Also

dictionary

Examples

```r
## Not run:
library(keyATM)
library(quanteda)
## using the moral foundation dictionary example from quanteda
dictfile <- tempfile()
data(keyATM_data_bills)
bills_dfm <- keyATM_data_bills$doc_dfm
keyATM_docs <- keyATM_read(bills_dfm)
read_keywords(file = dictfile, docs = keyATM_docs, format = "LIWC")
```

End(Not run)
save.keyATM_output

Save a keyATM_output object

Description

Save a keyATM_output object

Usage

save.keyATM_output(x, file = stop("'file' must be specified"))

Arguments

x a keyATM_output object (see keyATM()).
file file name to create on disk.

See Also

keyATM(), weightedLDA(), keyATMvb()

save_fig

Save a figure

Description

Save a figure

Usage

save_fig(x, filename, ...)

Arguments

x the keyATM_fig object.
filename file name to create on disk.
... other arguments passed on to the ggplot2::ggsave() function.

See Also

visualize_keywords(), plot_alpha(), plot_modelfit(), plot_pi(), plot_timetrend(), by_strata_DocTopic(), values_fig()
top_docs

Show the top documents for each topic

Description

Show the top documents for each topic

Usage

top_docs(x, n = 10)

Arguments

x the output from a keyATM model (see keyATM()).
n How many documents to show. Default is 10.

Value

An n x k table of the top n documents for each topic, each number is a document index.

top_topics

Show the top topics for each document

Description

Show the top topics for each document

Usage

top_topics(x, n = 2)

Arguments

x the output from a keyATM model (see keyATM()).
n integer. The number of topics to show. Default is 2.

Value

An n x k table of the top n topics in each document.
top_words

Show the top words for each topic

Description

If `show_keyword` is TRUE then words in their keyword topics are suffixed with a check mark. Words from another keyword topic are labeled with the name of that category.

Usage

```r
top_words(x, n = 10, measure = c("probability", "lift"), show_keyword = TRUE)
```

Arguments

- `x`: the output (see `keyATM()` and `by_strata_TopicWord()`).
- `n`: integer. The number terms to visualize. Default is 10.
- `measure`: character. The way to sort the terms: probability (default) or lift.
- `show_keyword`: logical. If TRUE, mark keywords. Default is TRUE.

Value

An n x k table of the top n words in each topic

values_fig

Get values used to create a figure

Description

Get values used to create a figure

Usage

```r
values_fig(x)
```

Arguments

- `x`: the keyATM_fig object.

See Also

`save_fig()`, `visualize_keywords()`, `plot_alpha()`, `plot_modelfit()`, `plot_pi()`, `plot_timetrend()`, `by_strata_DocTopic()`
visualize_keywords Visualize keywords

Description

Visualize the proportion of keywords in the documents.

Usage

visualize_keywords(docs, keywords, prune = TRUE, label_size = 3.2)

Arguments

docs a keyATM_docs object, generated by keyATM_read() function
keywords a list of keywords
prune logical. If TRUE, prune keywords that do not appear in docs. Default is TRUE.
label_size the size of keyword labels in the output plot. Default is 3.2.

Value

keyATM_fig object

See Also

save_fig()

Examples

Not run:
Prepare a keyATM_docs object
keyATM_docs <- keyATM_read(input)

Keywords are in a list
keywords <- list(Education = c("education", "child", "student"),
 Health = c("public", "health", "program"))

Visualize keywords
keyATM_viz <- visualize_keywords(keyATM_docs, keywords)

View a figure
keyATM_viz

Save a figure
save_fig(keyATM_viz, filename)

End(Not run)
weightedLDA

Weighted LDA main function

Description

Fit weighted LDA models.

Usage

```r
weightedLDA(
  docs, 
  model, 
  number_of_topics, 
  model_settings = list(), 
  priors = list(), 
  options = list(), 
  keep = c()
)
```

Arguments

- `docs` texts read via `keyATM_read()`.
- `model` Weighted LDA model: base, covariates, and dynamic.
- `number_of_topics` the number of regular topics.
- `model_settings` a list of model specific settings (details are in the online documentation).
- `priors` a list of priors of parameters.
- `options` a list of options (details are in the documentation of `keyATM()`).
- `keep` a vector of the names of elements you want to keep in output.

Value

A `keyATM_output` object containing:

- `V` number of terms (number of unique words)
- `N` number of documents
- `model` the name of the model
- `theta` topic proportions for each document (document-topic distribution)
- `phi` topic specific word generation probabilities (topic-word distribution)
- `topic_counts` number of tokens assigned to each topic
- `word_counts` number of times each word type appears
- `doc_lens` length of each document in tokens
- `vocab` words in the vocabulary (a vector of unique words)
weightedLDA

- **priors**: priors
- **options**: options
- **keywords_raw**: NULL for LDA models
- **model_fit**: perplexity and log-likelihood
- **pi**: estimated pi for the last iteration (NULL for LDA models)
- **values_iter**: values stored during iterations
- **number_of_topics**: number of topics
- **kept_values**: outputs you specified to store in keep option
- **information**: information about the fitting

See Also

```
save.keyATM_output(), https://keyatm.github.io/keyATM/articles/pkgdown_files/Options.html
```

Examples

```r
## Not run:
library(keyATM)
library(quanteda)
data(keyATM_data_bills)
bills_dfm <- keyATM_data_bills$doc_dfm  # quanteda dfm object
keyATM_docs <- keyATM_read(bills_dfm)

# Weighted LDA
out <- weightedLDA(docs = keyATM_docs, model = "base",
                   number_of_topics = 5)

# Weighted LDA Covariates
bills_cov <- as.data.frame(keyATM_data_bills$cov)
out <- weightedLDA(docs = keyATM_docs, model = "covariates",
                   number_of_topics = 5,
                   model_settings = list(covariates_data = bills_cov,
                                          covariates_formula = ~ RepParty))

# Weighted LDA Dynamic
bills_time_index <- keyATM_data_bills$time_index
# Time index should start from 1 and increase by 1
bills_time_index <- as.integer(bills_time_index - 100)
out <- weightedLDA(docs = keyATM_docs, model = "dynamic",
                   number_of_topics = 5,
                   model_settings = list(num_states = 5,
                                          time_index = bills_time_index))

# Visit our website for full examples: https://keyatm.github.io/keyATM/

## End(Not run)
```
Index

* datasets
 keyATM_data_bills, 9
 by_strata_DocTopic, 3
 by_strata_DocTopic(), 11, 12, 18, 20
 by_strata_TopicWord, 3
 by_strata_TopicWord(), 20
 covariates_get, 4
 covariates_info, 4
 dictionary, 17
 ggplot2::facet_wrap(), 12, 15
 ggplot2::ggsave(), 18
 keyATM, 5
 keyATM(), 3, 4, 8, 12–20, 22
 keyATM-package, 2
 keyATM_data_bills, 9
 keyATM_read, 9
 keyATM_read(), 4, 5, 8, 17, 22
 keyATMvb, 7
 keyATMvb(), 18
 multiPGreg, 10
 plot.strata_doctopic, 11
 plot_alpha, 12
 plot_alpha(), 18, 20
 plot_modelfit, 13
 plot_modelfit(), 18, 20
 plot_pi, 13
 plot_pi(), 18, 20
 plot_timetrend, 14
 plot_timetrend(), 18, 20
 predict(), 3
 predict.keyATM_output, 15
 quanteda::dictionary(), 17
 read_keywords, 17
 save.keyATM_output, 18
 save.keyATM_output(), 7, 23
 save_fig, 18
 save_fig(), 12–15, 20, 21
 top_docs, 19
 top_topics, 19
 top_words, 20
 values_fig, 20
 values_fig(), 18
 visualize_keywords, 21
 visualize_keywords(), 18, 20
 weightedLDA, 22
 weightedLDA(), 18

24