Package ‘kdensity’

July 11, 2019

Type Package

Title Kernel Density Estimation with Parametric Starts and Asymmetric Kernels

Version 1.0.1

Author Jonas Moss, Martin Tveten

Maintainer Jonas Moss <jonas.gjertsen@gmail.com>

License MIT + file LICENSE

Encoding UTF-8

LazyData true

Suggests extraDistr, SkewHyperbolic, testthat, covr, EQL, knitr, rmarkdown

Imports assertthat

RoxygenNote 6.1.1

VignetteBuilder knitr

NeedsCompilation no

Repository CRAN

Date/Publication 2019-07-11 13:43:21 UTC
Description

The available options for bandwidth selectors, passed as the `bw` argument to `kdensity`.

Arguments

- `x`: The input data.
- `kernel_str`: A string specifying the kernel, e.g. "gaussian."
- `start_str`: A string specifying the parametric start, e.g. "normal."
- `support`: The domain of definition for the kernel. (-Inf, Inf) for symmetric kernels.

Details

The bandwidth functions are not exported. They are members of the environment `bw_environments`, and can be accessed by `kdensity:::bw_environments`.

Bandwidth selectors

- "nrd0", "nrd", "bcv", "SJ": Bandwidth selectors from `stats`. They are documented in `bandwidth stats:bandwidth`. "nrd0" is the standard bandwidth selector for symmetric kernels with constant parametric starts.
- "ucv": Unbiased cross validation. The standard option for asymmetric kernels.
- "RHE": Selector for parametric starts with a symmetric kernel, based on a reference rule with Hermite polynomials. Described in Hjort & Glad (1995). The default method in `kdensity` when a parametric start is supplied and the kernel is symmetric.
- "JH": Selector for the Gaussian copula kernel, based on normal reference rule. Described in Jones & Henderson. The default method when the `gcopula` kernel is used in `kdensity`.

Structure

The bandwidth selector is a function of four arguments: The data `x`, a kernel string `kernel`, a start string `start`, and a support vector `support`. To obtain the functions associated with these strings, use `get_kernel` and `get_start`. The function should return a double.
kdensity

References

See Also
kdensity, bandwidth for the bandwidth selectors of density. In addition, kernels; parametric_starts

Examples
Not a serious bandwidth function.
silly_width = function(x, kernel = NULL, start = NULL, support = NULL) {
 rexp(1)
}
kdensity(mtcars$mpg, start = "gumbel", bw = silly_width)

kdensity
Parametrically guided kernel density estimation

Description
kdensity computes a parametrically guided kernel density estimate for univariate data. It supports asymmetric kernels and parametric starts through the kernel and start arguments.

Usage
kdensity(x, bw = NULL, adjust = 1, kernel = NULL, start = NULL, support = NULL, na.rm = FALSE, normalized = TRUE, tolerance = 0.01)

Arguments

x
Numeric vector containing the data.

bw
A bandwidth function. Can be either a string, a custom-made function, or a double. The supported bandwidth functions are documented in bandwidths.

adjust
An adjustment constant, so that \(h = \text{adjust} \times \text{bw} \times \text{sd} \), where \(\text{sd} \) varies with the chosen kernel.

kernel
The kernel function. Can be chosen from the list of built-in kernels or be custom-made. See kernels for details.

start
Parametric start. Can be chosen from the list of built-in parametric starts or be custom-made. See parametric_starts for details.

support
The support of the data. Must be compatible with the supplied \(x \) and the supplied start and kernel. Is used to find the normalization constant, see normalized.

na.rm
Logical; if TRUE, NAs will be removed from \(x \).

normalized
Logical; if TRUE, the density is normalized.

tolerance
Numeric; the relative error to tolerate in normalization.
Details

The default values for bw, kernel, start, and support are interdependent, and are chosen to make sense. E.g., the default value for support when start = beta is c(0, 1).

The start argument defaults to uniform, which corresponds to ordinary kernel density estimation. The typical default value for kernel is gaussian.

If normalized is FALSE and start != "uniform", the resulting density will not integrate to 1 in general.

Value

kdensity returns an S3 function object of class "kdensity". This is a callable function with the following elements, accessible by '$':

bw_str, bw, adjust, h The bandwidth function, the resulting bandwidth, the adjust argument, and the adjusted bandwidth.

kernel, start, support Name of the kernel, name of the parametric start, and the support of the density.

data.name, n, range, has.na Name of the data, number of observations, the range of the data, and whether the data x contained NA values.

call The call to kdensity.

estimates Named numeric vector containing the parameter estimates from the parametric start.

References

See Also

The stats package function density.

Examples

Use gamma kernels to model positive data, the concentration of theophylline

concentration = Theoph$conc + 0.001

plot(kdensity(concentration, start = "gamma", kernel = "gamma", adjust = 1/3),
 ylim = c(0, 0.15), lwd = 2, main = "Concentration of theophylline")
lines(kdensity(concentration, start = "gamma", kernel = "gaussian"),
 lty = 2, col = "grey", lwd = 2)
lines(kdensity(concentration, start = "gaussian", kernel = "gaussian"), lty = 3, col = "blue", lwd = 2)
lines(kdensity(concentration, start = "gaussian", kernel = "gamma", adjust = 1/3), lty = 4, col = "red", lwd = 2)
rug(concentration)

Using a density and estimator from another package.

skew_hyperbolic = list(
density = SkewHyperbolic::dskewhyp,
estimator = function(x) SkewHyperbolic::skewhypfit(x, printOut = FALSE)$param,
support = c(-Inf, Inf)
)
kde = kdensity(diff(LakeHuron), start = skew_hyperbolic)
plot(kde, lwd = 2, col = "blue",
 main = "Annual differences in water level (ft) of Lake Huron, 1875 - 1972")
lines(kde, plot_start = TRUE, lty = 2, lwd = 2) # Plots the skew hyperbolic density.
rug(diff(LakeHuron))

kde$estimates # Also: coef(kde)
Displays the parameter estimates:
mu delta beta nu
-1.140713 3.301112 2.551657 26.462469

kernels

Kernel functions

Description

Kernel functions are an important part of kdensity. This document lists the available built-in functions and the structure of them. Any kernel in the list can be used in kdensity by using kernel = "kernel" for the intended kernel.

Details

Be careful combining kernels with compact support with parametric starts, as the normalizing integral typically fails to converge. Use gaussian instead.

Symmetric kernels

gaussian, normal: The Gaussian kernel. The default argument when starts is supported on R. epanechnikov, rectangular (uniform), triangular, biweight, cosine, optcosine: Standard symmetric kernels, also used in density. tricube, triweight: Standard symmetric kernels. Not supported by density. laplace: Uses the Laplace density, also known as the double exponential density.
Asymmetric kernels

Structure

A kernel is a list containing two mandatory elements and one optional element. The mandatory element 'kernel' is the kernel function. It takes arguments y, x, h, where x is the data supplied to kdensity and y is the point of evaluation. h is the bandwidth. Internally, the kernel function is evaluated as 1/h*kernel(y, x, h). It should be vectorized in x, but vectorization in y is not needed.

The second mandatory element is support, stating the domain of definition for the kernel. This is used to distinguish kernels on the unit interval / positive half-line from kernels on R.

sd is used for symmetric kernels, and states the standard error of the kernel. This is used to make kernels comparable to the Gaussian kernel when calculating bandwidths.

References

See Also

kdensity; parametric_starts; bandwidths.

Examples

gaussian = list(
 kernel = function(y, x, h) dnorm((y-x)/h),
 sd = 1,
 support = c(-Inf, Inf)
)

gcopula = list(
 kernel = function(y, x, h) {
 rho = 1 - h^2
 inside = rho^2*(qnorm(y)^2 + qnorm(x)^2) - 2*rho*qnorm(y)*qnorm(x)
 exp(-inside/(2*(1-rho^2)))
 },
 support = c(0, 1)
)
Description

A parametric start is a density function with an associated estimator which is used as a starting point in \texttt{kdensity}. Several parametric starts are implemented, all with maximum likelihood estimation. Custom-made parametric starts are possible, see the Structure section.

Built-in starts

\texttt{uniform}, \texttt{constant}: Selecting the uniform start makes \texttt{kdensity} act like an ordinary kernel density estimator. The default value for any choice of kernel or support. \texttt{gaussian}, \texttt{normal}: The normal distribution. A natural choice for densities on the real line \((-\infty, \infty)\). \texttt{laplace}, \texttt{gumbel}: Distributions on \((-\infty, \infty)\). \texttt{exponential}, \texttt{gamma}, \texttt{lognormal}, \texttt{inverse_gaussian}, \texttt{weibull}: Densities supported on the positive real line \((0, \infty)\). \texttt{beta}, \texttt{kumaraswamy}: The beta and Kumaraswamy distributions, supported on the unit interval \([0, 1]\). \texttt{pareto}: The Pareto distribution, supported on \([1, \infty)\). Has heavy tails.

Structure

The parametric start contains three elements: The density function, an estimation function, and the support of the density. The parameters of the density function must partially match the parameters of the estimator function. The estimator function takes one argument, a numeric vector, which is passed from \texttt{kdensity}.

See Also

\texttt{kdensity}; kernels; bandwidths

Examples

```r
start_exponential = list(
  density = dexp,
  estimator = function(data) {
    c(rate = 1/mean(data))
  },
  support = c(0, Inf)
)

start_inverse_gaussian = list(
  density = extradistr::dwald,
  estimator = function(data) {
    c(mu = mean(data),
      lambda = mean(1/data - 1/mean(data)))
  },
  support = c(0, Inf)
)
```
plot.kdensity

Plot Method for Kernel Density Estimation

Description

The plot method for kdensity objects.

Usage

```r
## S3 method for class 'kdensity'
plot(x, range = NULL, plot_start = FALSE,
     zero_line = TRUE, ...)
```

Arguments

- `x` a kdensity object.
- `range` range of x values.
- `plot_start` logical; if TRUE, plots the parametric start instead of the kernel density estimate.
- `zero_line` logical; if TRUE, add a base line at y = 0.
- `...` further plotting parameters.

Value

None.

See Also

kdensity

Examples

```r
## Using the data set "precip" to eye-ball the similarity between
## a kernel fit, a parametric fit, and a kernel with parametric start fit.

kde_gamma = kdensity(precip, kernel = "gaussian", start = "gamma")
kde = kdensity(precip, kernel = "gaussian", start = "uniform")

plot(kde_gamma, main = "Annual Precipitation in US Cities")
lines(kde_gamma, plot_start = TRUE, lty = 2)
lines(kde, lty = 3)
rug(precip)
```
Index

bandwidth, 2, 3
bandwidths, 2, 3, 6, 7

class, 4

density, 3–5

kdensity, 3, 3, 6–8
kernels, 3, 5, 7

parametric_starts, 3, 6, 7
plot.kdensity, 8