Package ‘kayadata’

March 28, 2021

Type Package

Title Kaya Identity Data for Nations and Regions

Version 0.5.1

Date 2021-03-24

Description Provides data for Kaya identity variables (population, gross domestic product, primary energy consumption, and energy-related CO2 emissions) for the world and for individual nations, and utility functions for looking up data, plotting trends of Kaya variables, and plotting the fuel mix for a given country or region. The Kaya identity (Yoichi Kaya and Keiichi Yokobori, "Environment, Energy, and Economy: Strategies for Sustainability" (United Nations University Press, 1998) and [https://en.wikipedia.org/wiki/Kaya_identity]) expresses a nation's or region's greenhouse gas emissions in terms of its population, per-capita Gross Domestic Product, the energy intensity of its economy, and the carbon-intensity of its energy supply.

URL https://jonathan-g.github.io/kayadata/, https://github.com/jonathan-g/kayadata

BugReports https://github.com/jonathan-g/kayadata/issues

License MIT + file LICENSE

Depends R (>= 3.5), ggplot2 (>= 3.0)

Imports magrittr (>= 1.5), forcats (>= 0.3), dplyr (>= 0.8), tidyr (>= 0.8), stringr (>= 1.3.1), scales (>= 1.0)

Encoding UTF-8

Language en-US

LazyData true

RoxygenNote 7.1.1

Suggests broom (>= 0.5), knitr (>= 1.22), purrr (>= 0.3), rmarkdown (>= 1.12), testthat (>= 2.0), vdiffrr (>= 0.3.1)

VignetteBuilder knitr
kayadata-package

Description

kayadata is a package for working with Kaya identity data for many countries and regions.

The Kaya identity, named for the economist Yoichi Kaya, who introduced it (Kaya, 1998); It decomposes the energy-related carbon dioxide emissions from a nation, region, or the world into the product of four components:

\[F = P \times g \times e \times f, \]

where \(F \) is the total emissions, \(P \) is the population, \(g \) is the per-capita GDP, \(e \) is the energy intensity of the economy, and \(f \) is the emissions-intensity of the energy supply. (Nakicenovic and Swart, 2000, Ch. 3, p. 105; Raupach et al, 2007)

The package uses data on population and GDP from the World Bank, using market exchange rates (MER) for GDP because those data go back to 1960. From 1990 onward, Purchasing-Power-Parity (PPP) GDP figures are available as \(G_{ppp}\) but using these would require re-calculating \(G\), \(g\), \(e\), and \(ef\) in the \texttt{kaya_data} data frame.

The package uses data on energy consumption and fossil-fuel CO2 emissions from the 2019 BP Statistical Review of World Energy.

License

The \texttt{kayadata} package is open source licensed under the MIT License.

Bug reports

- kayadata issue tracker (https://github.com/jonathan-g/kayadata/issues)

References

\texttt{emissions_factors} \hspace{1cm} \textit{Get emission factors for different energy sources}

Description

Get emission factors for different energy sources

Usage

\texttt{emissions_factors(collapse_renewables = TRUE)}

Arguments

\texttt{collapse_renewables}

Combine hydroelectricity and other renewables into a single category.

Value

a tibble of values for emissions factors, in million metric tons of carbon dioxide per quad of energy.

See Also

\texttt{regions}
fuel_mix

Examples

```r
e_fac <- emissions_factors()
e_fac
```

fuel_mix
Mix of fuels contributing to primary energy supply for many countries and regions

Description

A dataset containing the fuel mix of how many quads and what fraction of total primary energy supply comes from coal, gas, oil, nuclear, and renewable sources.

Usage

`fuel_mix`

Format

A tibble containing 948 rows and 7 variables

- **region** Country or region name
- **region_code** Three-letter country or region code
- **geography** Geographic category: "nation", "region", or "world"
- **year** The year
- **fuel** The fuel: "Coal", "Natural Gas", "Oil", "Nuclear", "Hydro", and "Renewables"
- **quads** The number of quads of that fuel consumed in the given country or region and year
- **frac** The fraction of that country or region’s total primary energy consumption from the fuel

Source

See Also

`regions`
generation_capacity

Get power output from generation sources

Description

Nameplate capacity and capacity factors for different electrical generation technologies. The average power supplied over a year is the nameplate capacity times the capacity factor.

Usage

generation_capacity()

Details

Data for fossil fuels comes from EIA

Value

a tibble of values for generation sources

- **fuel** Energy source: Coal, Nuclear, Gas, Solar Thermal, Solar Photovoltaic, Onshore Wind, or Offshore Wind
- **description** Text description of the power source
- **nameplate_capacity** Maximum sustained power output, in megawatts
- **capacity_factor** Capacity factor: the fraction of the nameplate capacity that the plant can provide, averaged over a typical year

References

Examples

```r
gc <- generation_capacity()
gc
```
get_fuel_mix

get_fuel_mix

Get fuel mix for one or more countries or regions

Description

Get fuel mix for one or more countries or regions

Usage

get_fuel_mix(
 region_name,
 collapse_renewables = TRUE,
 quiet = FALSE,
 region_code = NULL
)

Arguments

region_name A character vector with the names of one or more countries or regions to look up
collapse_renewables Combine hydroelectricity and other renewables into a single category.
quiet Suppress warnings if there is no data for that country or region.
region_code Optional three-letter country or region codes to look up instead of the region_name

Value

A tibble of fuel mix for the countries or regions specified. That is, the number of quads of each fuel and the fraction of total primary energy coming from that fuel for each country or region:

region The name of the country or region
year The year reported
fuel The name of the fuel
quads The number of quads per year the country or region consumes
frac The fraction of the country’s energy that comes from that fuel

See Also

regions

Examples

get_fuel_mix("United States")
get_fuel_mix("World", collapse_renewables = FALSE)
get_fuel_mix(region_code = "LCN")
Get Kaya data for one or more countries or regions

Usage

get_kaya_data(
 region_name,
 gdp = c("MER", "PPP"),
 quiet = FALSE,
 region_code = NULL
)

Arguments

region_name The name of one or more countries or regions to look up

Arguments

gdp Use market exchange rates (MER) or purchasing power parity (PPP). Default is MER.

quiet Suppress warnings if there is no such country or region.

region_code Optional three-letter country or region codes to look up instead of the region_name

Details

Units for G, g, e, and ef depend on whether the data is requested in MER or PPP dollars: For MER, dollars are constant 2010 U.S. dollars. For PPP, dollars are constant 2011 international dollars.

._P_ and MER values for GDP and related quantities are available from 1960 onward.

PPP values for GDP and related quantities are only available from 1990 onward.

Energy-related values (_E_, _F_, and derived quantities) are available from 1965 onward.

Note that emissions (_F_, _f_, and _ef_) are reported as millions of metric tons of carbon dioxide, not carbon.

Value

a tibble of Kaya identity data for the countries or regions specified:

region The name of the country or region

year The year
get_top_down_trends

P Population, in billions
G Gross domestic product, in trillions of constant 2010 U.S. dollars.
E Total primary energy consumption, in quads
F CO2 emissions from fossil fuel consumption, in millions of metric tons
 g Per-capita GDP, in thousands of dollars per person.
e Energy intensity of the economy, in quads per trillion dollars.
f Emissions intensity of the energy supply, in million metric tons per quad.
ef Emissions intensity of the economy, in metric tons per million dollars of GDP.

See Also
regions

Examples

get_kaya_data("Brazil")
get_kaya_data("United Kingdom", "PPP")
get_kaya_data(region_name = "United States")
get_kaya_data(region_code = "MYS")

get_top_down_trends Get top-down trends for Kaya variables for one or more countries or regions, using projections from U.S. Energy Information Administration’s International Energy Outlook report.

Description

Get top-down trends for Kaya variables for one or more countries or regions, using projections from U.S. Energy Information Administration’s International Energy Outlook report.

Usage

get_top_down_trends(region_name, quiet = FALSE, region_code = NULL)

Arguments

region_name The name of one or more countries or regions to look up
quiet Suppress warnings if there is no data for the specified countries or regions.
region_code Optional three-letter country or region codes to look up instead of the region_name

Value

a tibble of trends for P, G, E, F, g, e, f, and ef for each country or region in percent per year.
get_top_down_values

See Also

regions

Examples

get_top_down_trends("Spain")
get_top_down_trends(region_code = "RUS")

get_top_down_values

Get top-down projections of Kaya variables for one or more countries or regions

Description

Get top-down projections of Kaya variables for one or more countries or regions

Usage

get_top_down_values(region_name, quiet = FALSE, region_code = NULL)

Arguments

region_name The name of a country or region to look up
quiet Suppress warnings if there is no data for that country or region.
region_code Optional three-letter country or region code to look up instead of the region_name

Value

a tibble of values for \(P, G, E, F, g, e, f \), and \(ef \) for each country or region:

region The name of the country or region
P Population, in billions
G Gross domestic product, in trillions of constant 2010 U.S. dollars.
E Total primary energy consumption, in quads
F CO2 emissions from fossil fuel consumption, in millions of metric tons
\(g \) Per-capita GDP, in thousands of constant 2010 U.S. dollars per person.
\(e \) Energy intensity of the economy, in quads per trillion dollars.
\(f \) Emissions intensity of the energy supply, in million metric tons per quad.
\(ef \) Emissions intensity of the economy, in metric tons per million dollars of GDP.

See Also

regions
Examples

```r
get_top_down_values("New Zealand")
get_top_down_values("OECD")
get_top_down_values(region_code = "PAK")
```

kaya_data

Kaya identity data for many countries and regions

Description

A dataset containing Kaya identity parameters P, G, E, F, g, e, f, and ef for many countries

Usage

`kaya_data`

Format

A tibble containing 5160 rows and 14 variables:

- **region** Country or region name
- **region_code** Three-letter country or region code
- **geography** Geographic category: "nation", "region", or "world"
- **year** The year
- **P** Population, in billions
- **G** Gross domestic product, in trillions of constant 2010 U.S. dollars.
- **E** Total primary energy consumption, in quads
- **F** CO2 emissions from fossil fuel consumption, in millions of tons
- **g** Per-capita GDP, in thousands of constant 2010 U.S. dollars per person.
- **e** Energy intensity of the economy, in quads per trillion dollars.
- **f** Emissions intensity of the energy supply, in million metric tons per quad.
- **ef** Emissions intensity of the economy, in metric tons per million dollars of GDP.
- **G_ppp** Gross domestic product adjusted for purchasing power parity, in trillions of constant 2011 international dollars
- **G_mer** Gross domestic product at market-exchange-rate, in trillions of constant 2010 U.S. dollars

Source

- https://data.worldbank.org/indicator/SP.POP.TOTL

See Also

- regions
kaya_region_list

Get a list of countries in the Kaya data

Description

Get a list of countries in the Kaya data

Usage

kaya_region_list()

Value

a vector of country and region names

See Also

regions

megawatts_per_quad

The number of megawatts it takes to replace a quad.

Description

The number of megawatts of average power output over a year to produce one quad of energy

Usage

megawatts_per_quad()

Value

The number of megawatts equivalent to one quad per year.

Examples

mwe <- megawatts_per_quad()

mwe
plot_fuel_mix

Description

Plot fuel mix

Usage

plot_fuel_mix(
 fuel_mix,
 collapse_renewables = TRUE,
 title = NULL,
 colors = NULL
)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>fuel_mix</td>
<td>A tibble with the mixture of fuels for one or more countries or regions:</td>
</tr>
<tr>
<td>region</td>
<td>The name of the country or region</td>
</tr>
<tr>
<td>fuel</td>
<td>The name of the fuel</td>
</tr>
<tr>
<td>quads</td>
<td>The number of quads per year the country or region consumes</td>
</tr>
<tr>
<td>frac</td>
<td>The fraction of the country’s energy that comes from that fuel</td>
</tr>
<tr>
<td>collapse_renewables</td>
<td>Combine hydroelectricity and other renewables into a single category.</td>
</tr>
<tr>
<td>title</td>
<td>Include a title on the plot. If title is NULL (default) or TRUE, a default title is created from the names of the regions in fuel_mix. If title is a character string, that string is used. If title is FALSE, the plot is produced with no title.</td>
</tr>
<tr>
<td>colors</td>
<td>A named vector with the colors to use for Coal, Oil, Natural Gas, Nuclear, Hydro, and Renewables.</td>
</tr>
</tbody>
</table>

Value

A plot object.

Examples

usa_fuel <- get_fuel_mix("United States", collapse_renewables = FALSE)
plot_fuel_mix(usa_fuel)
plot_fuel_mix(usa_fuel, collapse_renewables = FALSE)
plot_fuel_mix(usa_fuel, collapse_renewables = FALSE,
 colors = c(Coal = "black", "Natural Gas" = "gray60",
 Oil = "gray30", Nuclear = "forestgreen",
 Hydro = "royalblue", Renewables="palegreen"))
plot_kaya

Plot Kaya-identity variable

Description
Plot Kaya-identity variable

Usage
plot_kaya(
 kaya_data,
 variable,
 start_year = NA,
 stop_year = NA,
 y_lab = NULL,
 log_scale = FALSE,
 trend_line = FALSE,
 points = TRUE,
 font_size = 20,
 colors = NULL,
 pre_color = NULL,
 post_color = NULL,
 in_range_color = NULL,
 trend_color = NULL
)

Arguments
kaya_data A tibble with Kaya-identity data
variable The name of the variable to plot (character)
start_year The year to start highlighting the data (should correspond to the beginning of the trend calculation). Set to NULL to turn off highlighting.
stop_year The year to stop highlighting the data (should correspond to the beginning of the trend calculation). Set to NULL to turn off highlighting.
y_lab Optional label for the y-axis
log_scale Use log scale for y axis
trend_line Include a trend line
points Plot points in addition to the line.
font_size Base size of the font for axis labels and titles.
colors Named vector of colors to use for the plot. Elements should include PRE, POST, IN-RANGE, and TREND, which respectively give the colors for the portion of the plot before start_year, after stop_year, between start_year and stop_year, and the trend line.
pre_color Override default color for the portion of the chart before start_year.
post_color Override default color for the portion of the chart after stop_year.
in_range_color Override default color for the portion of the chart between start_year and stop_year.
trend_color Override default color for the trend line.

Value
A plot object.

Examples
china <- get_kaya_data("China")
plot_kaya(china, "F", 2001, 2011)
Not run:
uk <- get_kaya_data("United Kingdom")
plot_kaya(uk, "e", log_scale = TRUE, trend_line = TRUE)
plot_kaya(uk, "e", log_scale = TRUE, trend_line = TRUE,
 start_year = 1970, stop_year = 2000,
 colors = c(PRE="limegreen", POST="darkgreen",
 "IN-RANGE" = "cadetblue", TREND="orange"))
plot_kaya(uk, "e", log_scale = TRUE, trend_line = TRUE,
 start_year = 1970, stop_year = 2000,
 pre_color = "limegreen", post_color = "limegreen",
 trend_color = "magenta")
End(Not run)

world <- get_kaya_data("World")
plot_kaya(world, "g", 1982, log_scale = TRUE, trend_line = TRUE)

project_top_down Get top-down projections of Kaya variables for one or more countries or regions for a given year

Description
Get top-down projections of Kaya variables for one or more countries or regions for a given year

Usage
project_top_down(region_name, year, quiet = FALSE, region_code = NULL)

Arguments
region_name The name of a country or region to look up
year The year to project to
quiet Suppress warnings if there is no data for that country or region.
region_code Optional three-letter country or region code to look up instead of the region_name
Value

a tibble of values for P, G, E, F, g, e, f, and ef for each country or region:

region The name of the country or region
year The year
P Population, in billions
G Gross domestic product, in trillions of constant 2010 U.S. dollars.
E Total primary energy consumption, in quads
F CO2 emissions from fossil fuel consumption, in millions of metric tons
g Per-capita GDP, in thousands of constant 2010 U.S. dollars per person.
e Energy intensity of the economy, in quads per trillion dollars.
f Emissions intensity of the economy, in million metric tons per quad.
ef Emissions intensity of the economy, in metric tons per million dollars of GDP.

See Also

regions

Examples

project_top_down("China", 2037)
project_top_down(region_code = "VNM", year = 2043)

regions Aggregate regional data

Description

Problems with aggregate regional data

Details

The World Bank is missing GDP data for a number of nations, such as Syria and Taiwan. Because of this and the incommensurability between the regions used for aggregate statistics in the World Bank data and the BP data, aggregate regional data (e.g., for the Middle East and Africa) should be treated with caution. This problem does not hold for individual nations, where missing data appears as NA values.
td_trends

Top-down projections of trends in Kaya variables for many countries and regions

Description

Usage

`td_trends`

Format

A tibble containing 226 rows and 11 variables

- **region** Country or region name
- **region_code** Three-letter country or region code
- **geography** Geographic category: "nation", "region", or "world"
- **P** Trend in population, in fraction per year
- **G** Trend in gross domestic product, in fraction per year
- **E** Trend in total primary energy consumption, in fraction per year
- **F** Trend in CO2 emissions, in fraction per year
- **g** Trend in per-capita GDP, in fraction per year
- **e** Trend in energy intensity of the economy, in fraction per year
- **f** Trend in emissions intensity of the energy supply, in fraction per year
- **ef** Trend in emissions intensity of the economy, in fraction per year

Source

https://www.eia.gov/outlooks/archive/ieo17/

See Also

regions
td_values

td_values

Top-down projections of future Kaya variables for many countries and regions

Description

Usage

td_values

Format

A tibble containing 640 rows and 12 variables

- **region** Country or region name
- **region_code** Three-letter country or region code
- **geography** Geographic category: "nation", "region", or "world"
- **year** The year
- **P** Population, in billions
- **G** Gross domestic product, in trillions of constant 2010 U.S. dollars
- **E** Total primary energy consumption, in quads
- **F** Total CO2 emissions, in millions of metric tons
- **g** Per-capita GDP, in thousands of constant 2010 U.S. dollars per person.
- **e** Energy intensity of the economy, in quads per trillion dollars.
- **f** Emissions intensity of the energy supply, in million metric tons per quad.
- **ef** Emissions intensity of the economy, in metric tons per million dollars of GDP.

Source

https://www.eia.gov/outlooks/archive/ieo17/

See Also

regions
Index

* datasets
 fuel_mix, 4
 kaya_data, 10
 td_trends, 16
 td_values, 17

emissions_factors, 3

fuel_mix, 4

generation_capacity, 5
get_fuel_mix, 6
get_kaya_data, 7
get_top_down_trends, 8
get_top_down_values, 9

kaya_data, 10
kaya_region_list, 11
kayadata-package, 2

megawatts_per_quad, 11

plot_fuel_mix, 12
plot_kaya, 13
project_top_down, 14

regions, 15

td_trends, 16
td_values, 17