Package ‘imsig’

July 10, 2018

Type Package

Title Immune Cell Gene Signatures for Profiling the Microenvironment of Solid Tumours

Version 1.0.0

Author Ajit Johnson Nirmal

Maintainer Ajit Johnson Nirmal <ajitjohnson.n@gmail.com>

Description Estimate the relative abundance of tissue-infiltrating immune subpopulations abundances using gene expression data.

License GPL-3

URL https://github.com/ajitjohnson/imsig/

BugReports https://github.com/ajitjohnson/imsig/issues

Encoding UTF-8

LazyData true

Imports HiClimR (>= 1.2), RColorBrewer (>= 1.1), igraph (>= 1.2), ggplot2 (>= 2.2), gridExtra (>= 2.3), survival (>= 2.4)

RoxygenNote 6.0.1

Suggests testthat

NeedsCompilation no

Repository CRAN

Date/Publication 2018-07-10 20:50:03 UTC

R topics documented:

corr_matrix . 2
example_cli . 3
example_data . 3
feature_select . 4
gene_stat . 4
imsig . 5
imsig_survival . 6
corr_matrix

Description

Creates a correlation matrix of ImSig signature genes.

Usage

```r
corr_matrix(exp, r)
```

Arguments

- `exp` Dataframe of transcriptomic data (natural scale) containing genes as rows and samples as columns. Note: Gene names should be set as row names and duplicates are not allowed. Missing values are not allowed within the expression matrix. Check example- `head(example_data): example_data`.

- `r` Use a value between 0 and 1. Default is 0.6. This is a user defined correlation cut-off to perform feature selection (`feature_select`). Feature selection aids to enrich the prediction of relative abundance of immune cells by filtering off poorly correlated ImSig genes. To get an idea of what cut-off to use check the results of (`gene_stat`) and choose a cut-off that displays high median correlation and maintains a high proportion of genes after feature selection.

Value

Gene-gene correlation matrix of ImSig genes.
example_cli

Example clinical data file for survival analysis with ImSig

Description

An example clinical data file. Minimum required informations are the sample name (same as that of the expression matrix), event (dead or alive) and time to event (days, months or years).

Usage

```json
example_cli
```

Format

dataframe

example_data

Example transcriptomics data

Description

Example expression data matrix. The data is preferred to be in natural scale with genes as rows and samples as columns. Note: Gene names should be set as row names and duplicates are not allowed. Missing values are not allowed within the expression matrix. Check example- `head(example_data)`

Usage

```json
example_data
```

Format

dataframe
feature_select
Feature selection of signature genes

Description

ImSig genes were designed to be co-expressed in tissue transcriptomic data. However, depending on the dataset some of the genes may not co-express with the dominant module. In order to remove such deviant genes, a feature selection can be carried out based on correlation. This function removes genes that exhibit a poor correlation (less than the defined \(r \) value) with the dominant ImSig module. This step of feature selection is recommended to enrich the prediction of relative abundance of immune cells.

Usage

feature_select(exp, \(r = 0.6 \))

Arguments

\(exp \)
Dataframe of transcriptomic data (natural scale) containing genes as rows and samples as columns. Note: Gene names should be set as row names and duplicates are not allowed. Missing values are not allowed within the expression matrix. Check example- head(example_data): example_data.

\(r \)
Use a value between 0 and 1. Default is 0.6. This is a user defined correlation cut-off to perform feature selection. To get an idea of what cut-off to use check the results of (gene_stat) and choose a cut-off that displays high median correlation and maintains a high proportion of genes after feature selection.

Value

Returns a list of 'feature selected' genes based on the set \(r \) value.

Examples

feature_select (exp = example_data, \(r = 0.7 \))

gene_stat
General statistics of ImSig analysis

Description

[Total genes in ImSig]: The total number of genes in ImSig list.
[No. of ImSig genes in user dataset]: The number of ImSig genes found in user’s dataset. Like all signatures, ImSig works best when this overlap is high, preferably over 75
imsig

Usage

gene_stat(exp, r = 0.6)

Arguments

exp Dataframe of transcriptomic data (natural scale) containing genes as rows and samples as columns. Note: Gene names should be set as row names and duplicates are not allowed. Missing values are not allowed within the expression matrix. Check example- head(example_data): example_data.

r Use a value between 0 and 1. Default is 0.6. This is a user defined correlation cut-off to perform feature selection (feature_select). Feature selection aids to enrich the prediction of relative abundance of immune cells by filtering off poorly correlated ImSig genes. To get an idea of what cut-off to use check the results of (gene_stat) and choose a cut-off that displays high median correlation and maintains a high proportion of genes after feature selection.

Value

Dataframe of general statistics of ImSig analysis.

See Also

feature_select

Examples

gene_stat (exp = example_data, r = 0.7)

imsig

Estimate the relative abundance of tissue-infiltrating immune subpopulations abundances using gene expression data

Description

Estimates the relative abundance of immune cells across patients/samples.

Usage

imsig(exp, r = 0.6)

Arguments

exp Dataframe of transcriptomic data (natural scale) containing genes as rows and samples as columns. Note: Gene names should be set as row names and duplicates are not allowed. Missing values are not allowed within the expression matrix. Check example- head(example_data): example_data.
Use a value between 0 and 1. Default is 0.6. This is a user defined correlation cut-off to perform feature selection (feature_select). Feature selection aids to enrich the prediction of relative abundance of immune cells by filtering off poorly correlated ImSig genes. To get an idea of what cut-off to use check the results of (gene_stat) and choose a cut-off that displays high median correlation and maintains a high proportion of genes after feature selection.

Value
Relative abundance of immune cells across samples. Returns a dataframe.

See Also
feature_select, example_data

Examples
```r
cell_abundance = imsig (exp = example_data, r = 0.7)
head(cell_abundance)
```

Description
Patients are split into two groups based on their immune cell abundance (median abundance value) and a regular survival analyis is carried out.

Usage
```r
imsig_survival(exp, cli, time = "time", status = "status", r = 0.6)
```

Arguments
- **exp**: Dataframe of transcriptomic data (natural scale) containing genes as rows and samples as columns. Note: Gene names should be set as row names and duplicates are not allowed. Missing values are not allowed within the expression matrix. Check example- head(example_data): example_data.
- **cli**: Clinical metadata containing the event data (dead or alive) and time to event data. Samples names should be in rownames and same as that in the expression file. Check head() of example_cli for an example clinical data.
- **time**: Column name of time-to-event parameter.
- **status**: Column name of event (dead or alive) parameter.
plot_abundance

Use a value between 0 and 1. Default is 0.6. This is a user defined correlation cut-off to perform feature selection (feature_select). Feature selection aids to enrich the prediction of relative abundance of immune cells by filtering off poorly correlated ImSig genes. To get an idea of what cut-off to use check the results of (gene_stat) and choose a cut-off that displays high median correlation and maintains a high proportion of genes after feature selection.

Value

Hazard Ratio

See Also

feature_select, example_data, example_cli

Examples

```r
survival = imsig_survival (exp = example_data)
head(survival)
```

plot_abundance

Plot relative abundance of immune cells

Description

Barplots of relative abundance of immune cells across samples. The order of the samples are the same as that of imsig.

Usage

```r
plot_abundance(exp, r = 0.6)
```

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
</table>
| `exp` | Dataframe of transcriptomic data (natural scale) containing genes as rows and samples as columns. Note: Gene names should be set as row names and duplicates are not allowed. Missing values are not allowed within the expression matrix. Check example-data: `example_data`.
| `r` | Use a value between 0 and 1. Default is 0.6. This is a user defined correlation cut-off to perform feature selection (feature_select). Feature selection aids to enrich the prediction of relative abundance of immune cells by filtering off poorly correlated ImSig genes. To get an idea of what cut-off to use check the results of (gene_stat) and choose a cut-off that displays high median correlation and maintains a high proportion of genes after feature selection. |
plot_network

Value

ggplot

See Also

feature_select, example_data

Examples

plot_abundance (exp = example_data, r = 0.7)

plot_network

Network graph of ImSig genes

Description

A Network visualization displays undirected graph structures and highlights the relationships between entities. The nodes are ImSig genes and the edges represent the correlation between them. The nodes are coloured based on cell type. Try using a correlation cut-off of '0' to get a complete picture.

Usage

plot_network(exp, r = 0.6, pt.cex = 2, cex = 1, inset = 0,
 x.intersp = 2, vertex.size = 3, vertex.label = NA,
 layout = layout_with_fr)

Arguments

exp Dataframe of transcriptomic data (natural scale) containing genes as rows and samples as columns. Note: Gene names should be set as row names and duplicates are not allowed. Missing values are not allowed within the expression matrix. Check example-head(example_data): example_data.
r Use a value between 0 and 1. Default is 0.6. This is a user defined correlation cut-off to perform feature selection (feature_select). Feature selection aids to enrich the prediction of relative abundance of immune cells by filtering off poorly correlated ImSig genes. To get an idea of what cut-off to use check the results of (gene_stat) and choose a cut-off that displays high median correlation and maintains a high proportion of genes after feature selection.
pt.cex expansion factor(s) for the points.
cex character expansion factor relative to current par("cex"). Used for text, and provides the default for pt.cex.
inset inset distance(s) from the margins as a fraction of the plot region when legend is placed by keyword.
x.intersp character interspacing factor for horizontal (x) spacing.
plot_survival

```
vertex.size        Node size of network graph
vertex.label      Add gene names to the network graph. Default set to NA.
layout            Layout algorithm to be used for building network. Default set to force-directed layout algorithm by Fruchterman and Reingold. Read documentation of 'igraph' for other available algorithms.

Value
Network graph

See Also
feature_select

Examples
plot_network (exp = example_data, r = 0.7)
```

plot_survival

Forest plot of survival analysis by ImSig

Description
Patients are split into two groups based on their immune cell abundance (median abundance value) and a regular survival analysis is carried out. Raw values can be obtained from `imsig_survival`.

Usage

```
plot_survival(exp, cli, time = "time", status = "status", r = 0.6)
```

Arguments
- **exp**: Dataframe of transcriptomic data (natural scale) containing genes as rows and samples as columns. Note: Gene names should be set as row names and duplicates are not allowed. Missing values are not allowed within the expression matrix. Check example- head(example_data): example_data.
- **cli**: Clinical metadata containing the event data (dead or alive) and time to event data. Samples names should be in rownames and same as that in the expression file. Check head() of exampleCli for an example clinical data.
- **time**: Column name of time-to-event parameter.
- **status**: Column name of event (dead or alive) parameter.
- **r**: Use a value between 0 and 1. Default is 0.6. This is a user defined correlation cut-off to perform feature selection (feature_select). Feature selection aids to enrich the prediction of relative abundance of immune cells by filtering off poorly correlated ImSig genes. To get an idea of what cut-off to use check the results of (gene_stat) and choose a cut-off that displays high median correlation and maintains a high proportion of genes after feature selection.
Value

Forest plot

See Also

`feature_select`, `example_data`, `example_cli`

Examples

```r
plot_survival (exp = example_data, r = 0.7, cli = example_cli, time = 'time', status= 'status')
```

pp_exp

Pre-processing expression matrix

Description

Subsets the user’s dataset based on the genes that are common to the users dataset and ImSig.

Usage

```r
pp_exp(exp)
```

Arguments

- `exp` Dataframe of transcriptomic data (natural scale) containing genes as rows and samples as columns. Note: Gene names should be set as row names and duplicates are not allowed. Missing values are not allowed within the expression matrix. Check example: head(example_data): `example_data`.

Value

Expression dataframe

pp_sig

Pre-processing ImSig file

Description

Subsets ImSig genes based on the genes that are common to the users dataset and ImSig

Usage

```r
pp_sig(exp)
```
Arguments

exp Dataframe of transcriptomic data (natural scale) containing genes as rows and samples as columns. Note: Gene names should be set as row names and duplicates are not allowed. Missing values are not allowed within the expression matrix. Check example- head(example_data): example_data.

Value

ImSig dataframe

<table>
<thead>
<tr>
<th>sig</th>
<th>ImSig genes</th>
</tr>
</thead>
</table>

Description

ImSig signature genes and the cell type they represent

Usage

sig

Format

dataframe
Index

*Topic datasets
 example_cli, 3
 example_data, 3
 sig, 11

corr_matrix, 2
example_cli, 3, 6, 7, 9, 10
example_data, 2, 3, 4–11

feature_select, 2, 4, 5–10

gene_stat, 2, 4, 4, 5–9

imsig, 5, 7
imsig_survival, 6, 9

plot_abundance, 7
plot_network, 8
plot_survival, 9
pp_exp, 10
pp_sig, 10

sig, 11