Package ‘imbalance’

December 18, 2019

Type Package
Title Preprocessing Algorithms for Imbalanced Datasets
Version 1.0.2
Maintainer Ignacio Cordón <nacho.cordon.castillo@gmail.com>
Description Class imbalance usually damages the performance of classifiers. Thus, it is important to treat data before applying a classifier algorithm. This package includes recent resampling algorithms in the literature: (Barua et al. 2014) <doi:10.1109/tkde.2012.232>; (Das et al. 2015) <doi:10.1109/tkde.2014.2324567>, (Zhang et al. 2014) <doi:10.1016/j.inffus.2013.12.003>; (Gao et al. 2014) <doi:10.1016/j.neucom.2014.02.006>; (Almogahed et al. 2014) <doi:10.1007/s00500-014-1484-5>. It also includes an useful interface to perform oversampling.
License GPL (>= 2) | file LICENSE
Encoding UTF-8
LazyData true
BugReports http://github.com/ncordon/imbalance/issues
URL http://github.com/ncordon/imbalance
Depends R (>= 3.3.0)
Imports bnlearn, KernelKnn, ggplot2, utils, stats, mvtnorm, Rcpp, smotefamily, FNN, C50
Suggests testthat, knitr, rmarkdown
RoxygenNote 7.0.2
VignetteBuilder knitr
LinkingTo Rcpp, RcppArmadillo
NeedsCompilation yes
Author Ignacio Cordón [aut, cre], Salvador García [aut], Alberto Fernández [aut], Francisco Herrera [aut]
Repository CRAN
Date/Publication 2019-12-18 05:40:02 UTC
R topics documented:

banana ... 2
ecoli ... 3
glass0 .. 4
haberman ... 5
imbalance .. 5
imbalanceRatio .. 6
iris0 ... 7
mwmote ... 7
neater .. 9
newthyroid1 ... 10
oversample ... 11
pdfos .. 12
plotComparison ... 13
racog .. 14
rwo ... 15
trainWrapper ... 16
wisconsin .. 17
wracog .. 18
yeast4 ... 19

Index

banana}. \textbf{Binary banana dataset}

Description

Dataset containing two attributes as well as a class one, that, if plotted, represent a banana shape

Usage

banana

banana_orig

Format

\textbf{At1} First attribute.
\textbf{At2} Second attribute.
\textbf{Class} Two possible classes: positive (banana shape), negative (surrounding of the banana).

Shape

banana: A data frame with 2640 instances, 264 of which belong to positive class, and 3 variables

banana_orig: A data frame with 5300 instances, 2376 of which belong to positive class, and 3 variables:
Source

KEEL Repository.

Description

Imbalanced binary dataset containing protein traits for predicting their cellular localization sites.

Usage

ecoli1

Format

A data frame with 336 instances, 77 of which belong to positive class, and 8 variables:

- **Mcg** McGeoch’s method for signal sequence recognition. Continuous attribute.
- **Lip** von Heijne’s Signal Peptidase II consensus sequence score. Discrete attribute.
- **Chg** Presence of charge on N-terminus of predicted lipoproteins. Discrete attribute.
- **Aac** Score of discriminant analysis of the amino acid content of outer membrane and periplasmic proteins. Continuous attribute.
- **Alm1** Score of the ALOM membrane spanning region prediction program. Continuous attribute.
- **Alm2** Score of ALOM program after excluding putative cleavable signal regions from the sequence. Continuous attribute.
- **Class** Two possible classes: positive (type im), negative (the rest).

Source

KEEL Repository.

See Also

Original available in UCI ML Repository.
Description

Imbalanced binary classification dataset containing variables to identify types of glass.

Usage

\texttt{glass0}

Format

A data frame with 214 instances, 70 of which belong to positive class, and 10 variables:

- **RI** Refractive Index. Continuous attribute.
- **Na** Sodium, weight percent in component. Continuous attribute.
- **Mg** Magnesium, weight percent in component. Continuous attribute.
- **Al** Aluminum, weight percent in component. Continuous attribute.
- **Si** Silicon, weight percent in component. Continuous attribute.
- **K** Potassium, weight percent in component. Continuous attribute.
- **Ca** Calcium, weight percent in component. Continuous attribute.
- **Ba** Barium, weight percent in component. Continuous attribute.
- **Fe** Iron, weight percent in component. Continuous attribute.
- **Class** Two possible glass types: positive (building windows, float processed) and negative (the rest).

Source

KEEL Repository.

See Also

Original available in UCI ML Repository.
Haberman's survival data

Description

The dataset contains cases from a study that was conducted between 1958 and 1970 at the University of Chicago’s Billings Hospital on the survival of patients who had undergone surgery for breast cancer.

Usage

haberman

Format

A data frame with 306 instances, 81 of which belong to positive class, and 4 variables:

- **Age** Age of patient at time of operation. Discrete attribute.
- **Year** Patient’s year of operation. Discrete attribute.
- **Positive** Number of positive axillary nodes detected. Discrete attribute.
- **Class** Two possible survival status: positive(survival rate of less than 5 years), negative (survival rate or more than 5 years).

Source

KEEL Repository.

See Also

Original available in UCI ML Repository.

imbalance

imbalance: A package to treat imbalanced datasets

Description

Focused on binary class datasets, the imbalance package provides methods to generate synthetic examples and achieve balance between the minority and majority classes in dataset distributions.

Oversampling

Methods to oversample the minority class: racog, wracog, rwo, pdfos, mwmote
Evaluation

Method to measure imbalance ratio in a given two-class dataset: `imbalanceRatio`.

Method to visually evaluate algorithms: `plotComparison`.

Filtering

Methods to filter oversampled instances `neater`.

`imbalanceRatio`
Compute imbalance ratio of a binary dataset

Description

Given a two-class dataset, it computes its imbalance ratio as \(\frac{\text{Size of minority class}}{\text{Size of majority class}}\)

Usage

`imbalanceRatio(dataset, classAttr = "Class")`

Arguments

- `dataset`: A target `data.frame` to compute its imbalance ratio
- `classAttr`: A character containing the class name attribute.

Value

A real number in \([0, 1]\) representing the imbalance ratio of `dataset`

Examples

```r
data(glass0)
imbalanceRatio(glass0, classAttr = "Class")
```
Description

Modification of iris dataset. Measurements in centimeters of the variables sepal length and width and petal length and width, respectively, for 50 flowers from each of 3 species of iris. The possible classifications are positive (setosa) and negative (versicolor + virginica).

Usage

`iris0`

Format

A data frame with 150 instances, 50 of which belong to positive class, and 5 variables:

- **SepalLength** Measurement of sepal length, in cm. Continuous attribute.
- **SepalWidth** Measurement of sepal width, in cm. Continuous attribute.
- **PetalLength** Measurement of petal length, in cm. Continuous attribute.
- **PetalWidth** Measurement of petal width, in cm. Continuous attribute.
- **Class** Two possible classes: positive (setosa) and negative (versicolor + virginica).

Source

KEEL Repository.

mmote

Majority weighted minority oversampling technique for imbalance dataset learning

Description

Modification for SMOTE technique which overcomes some of the problems of the SMOTE technique when there are noisy instances, in which case SMOTE would generate more noisy instances out of them.
Usage

```r
mwmote(
  dataset,
  numInstances,
  kNoisy = 5,
  kMajority = 3,
  kMinority,
  threshold = 5,
  cmax = 2,
  cclustering = 3,
  classAttr = "Class"
)
```

Arguments

- **dataset** `data.frame` to treat. All columns, except classAttr one, have to be numeric or coercible to numeric.
- **numInstances** Integer. Number of new minority examples to generate.
- **kNoisy** Integer. Parameter of euclidean KNN to detect noisy examples as those whose whole kNoisy-neighbourhood is from the opposite class.
- **kMajority** Integer. Parameter of euclidean KNN to detect majority borderline examples as those who are in any kMajority-neighbourhood of minority instances. Should be a low integer.
- **kMinority** Integer. Parameter of euclidean KNN to detect minority borderline examples as those who are in the KMinority-neighbourhood of majority borderline ones. It should be a large integer. By default if not parameter is fed to the function, \(|S^+|/2 \) where \(S^+ \) is the set of minority examples.
- **threshold** Numeric. A positive real indicating how much we measure tolerance of closeness to the boundary of minority boundary examples. A large integer indicates more margin of distance for a example to be considered important boundary one.
- **cmax** Numeric. A positive real indicating how much we measure tolerance of closeness to the boundary of minority boundary examples. The larger this number, the more we are valuing boundary examples.
- **cclustering** Numeric. A positive real for tuning the output of an internal clustering. The larger this parameter, the more area focused is going to be the oversampling.
- **classAttr** character. Indicates the class attribute from `dataset`. Must exist in it.

Value

A `data.frame` with the same structure as `dataset`, containing the generated synthetic examples.

References

Barua, Sukarna; Islam, Md.M.; Yao, Xin; Murase, Kazuyuki. Mwmote–majority Weighted Minority Oversampling Technique for Imbalanced Data Set Learning. IEEE Transactions on Knowledge and Data Engineering 26 (2014), Nr. 2, p. 405–425
Examples

data(iris0)

Generates new minority examples
newSamples <- mwmote(iris0, numInstances = 100, classAttr = "Class")

neater Filtering of oversampled data based on non-cooperative game theory

Description

Filters oversampled examples from a binary class dataset using game theory to find out if keeping an example is worthy enough.

Usage

neater(
 dataset,
 newSamples,
 k = 3,
 iterations = 100,
 smoothFactor = 1,
 classAttr = "Class"
)

Arguments

dataset The original data.frame. All columns, except classAttr one, have to be numeric or coercible to numeric.

newSamples A data.frame containing the samples to be filtered. Must have the same structure as dataset.

k Integer. Number of nearest neighbours to use in KNN algorithm to rule out samples. By default, 3.

iterations Integer. Number of iterations for the algorithm. By default, 100.

smoothFactor A positive numeric. By default, 1.

classAttr character. Indicates the class attribute from dataset and newSamples. Must exist in them.

Details

Uses game theory and Nash equilibriums to calculate the minority examples probability of truly belonging to the minority class. It discards examples which at the final stage of the algorithm have more probability of being a majority example than a minority one.
newthyroid1

Value
Filtered samples as a data.frame with same structure as newSamples.

References

Examples
data(iris0)

newSamples <- smotefamily::SMOTE(iris0[, -5], iris0[, 5])$syn_data
SMOTE overrides Class attr turning it into class
and dataset must have same class attribute as newSamples
names(newSamples) <- c(names(newSamples)[-5], "Class")

neater(iris0, newSamples, k = 5, iterations = 100,
 smoothFactor = 1, classAttr = "Class")

newthyroid1

Imbalanced binary thyroid gland data

Description
Data to predict patient’s hyperthyroidism.

Usage
newthyroid1

Format
A data frame with 215 instances, 35 of which belong to positive class, and 6 variables:

T3resin T3-resin uptake test, percentage. Discrete attribute.
Thyroxin Total Serum thyroxin as measured by the isotopic displacement method. Continuous attribute.
Triiodothyronine Total serum triiodothyronine as measured by radioimmuno assay. Continuous attribute.
Thyroidstimulating Basal thyroid-stimulating hormone (TSH) as measured by radioimmuno assay. Continuous attribute.
TSH_value Maximal absolute difference of TSH value after injection of 200 micro grams of thyrotropin-releasing hormone as compared to the basal value. Continuous attribute.
Class Two possible classes: positive as hyperthyroidism, negative as non hyperthyroidism.
oversample

Source

KEEL Repository.

See Also

Original available in UCI ML Repository.

Description

Wrapper that encapsulates a collection of algorithms to perform a class balancing preprocessing task for binary class datasets

Usage

```r
oversample(
  dataset, 
  ratio = NA, 
  method = c("RACOG", "wRACOG", "PDFOS", "RWO", "ADASYN", "ANSMOTE", "SMOTE", "MWMOTE", 
               "BLSMOTE", "DBSMOTE", "SLMOTE", "RSLSMOTE"),
  filtering = FALSE, 
  classAttr = "Class",
  wrapper = c("KNN", "C5.0"),
  ... 
)
```

Arguments

- **dataset** A binary class data.frame to balance.
- **ratio** Number between 0 and 1 indicating the desired ratio between minority examples and majority ones, that is, the quotient size of minority class/size of majority class. There are methods, such as ADASYN or wRACOG to which this parameter does not apply.
- **method** A character corresponding to method to apply. Possible methods are: RACOG, wRACOG, PDFOS, RWO, ADASYN, ANSMOTE, SMOTE, MWMOTE, BLSMOTE, DBSMOTE, SLMOTE, RSLSMOTE
- **filtering** Logical (TRUE or FALSE) indicating whether to apply filtering of oversampled instances with neater algorithm.
- **classAttr** character. Indicates the class attribute from dataset. Must exist in it.
- **wrapper** A character corresponding to wrapper to apply if selected method is wracog. Possibilities are: "C5.0" and "KNN".
- **...** Further arguments to apply in selected method.
Value
A balanced data.frame with same structure as dataset, containing both original instances and new ones

Examples

data(glass0)

Oversample glass0 to get an imbalance ratio of 0.8
imbalanceRatio(glass0)
0.4861111
newDataset <- oversample(glass0, ratio = 0.8, method = "MWMOTE")
imbalanceRatio(newDataset)
newDataset <- oversample(glass0, method = "ADASYN")
newDataset <- oversample(glass0, ratio = 0.8, method = "SMOTE")

pdfos

Probability density function estimation based oversampling

Description
Generates synthetic minority examples for a numerical dataset approximating a Gaussian multivariate distribution which best fits the minority data.

Usage
pdfos(dataset, numInstances, classAttr = "Class")

Arguments
dataset data.frame to treat. All columns, except classAttr one, have to be numeric or coercible to numeric.
numInstances Integer. Number of new minority examples to generate.
classAttr character. Indicates the class attribute from dataset. Must exist in it.

Details
To generate the synthetic data, it approximates a normal distribution with mean a given example belonging to the minority class, and whose variance is the minority class variance multiplied by a constant; that constant is computed so that it minimizes the mean integrated squared error of a Gaussian multivariate kernel function.

Value
A data.frame with the same structure as dataset, containing the generated synthetic examples.
plotComparison

References

Examples

data(iris0)

newSamples <- pdfos(iris0, numInstances = 100, classAttr = "Class")

plotComparison(dataset, anotherDataset, attrs, cols = 2, classAttr = "Class")

Arguments

dataset A data.frame. The former imbalanced dataset.
anotherDataset A data.frame. The balanced dataset. dataset and anotherDataset must have the same columns.
attrs Vector of character. Attributes to compare. The function generates each possible combination of attributes to build the comparison.
cols Integer. It indicates the number of columns of resulting grid. Must be an even number. By default, 2.
classAttr character. Indicates the class attribute from dataset. Must exist in it.

Value

Plot of 2D comparison between the variables.
Examples

```r
data(iris0)
set.seed(12345)

rwoSamples <- rwo(iris0, numInstances = 100)
rwoBalanced <- rbind(iris0, rwoSamples)
plotComparison(iris0, rwoBalanced, names(iris0), cols = 2, classAttr = "Class")
```

racog
Rapidly converging Gibbs algorithm.

Description

Allows you to treat imbalanced discrete numeric datasets by generating synthetic minority examples, approximating their probability distribution.

Usage

```r
racog(dataset, numInstances, burnin = 100, lag = 20, classAttr = "Class")
```

Arguments

- `dataset`
 data.frame to treat. All columns, except `classAttr` one, have to be numeric or coercible to numeric.

- `numInstances`
 Integer. Number of new minority examples to generate.

- `burnin`
 Integer. It determines how many examples generated for a given one are going to be discarded firstly. By default, 100.

- `lag`
 Integer. Number of iterations between new generated example for a minority one. By default, 20.

- `classAttr`
 character. Indicates the class attribute from `dataset`. Must exist in it.

Details

Approximates minority distribution using Gibbs Sampler. Dataset must be discretized and numeric. In each iteration, it builds a new sample using a Markov chain. It discards first `burnin` iterations, and from then on, each `lag` iterations, it validates the example as a new minority example. It generates $d(\text{iterations} - \text{burnin})/\text{lag}$ where d is minority examples number.

Value

A `data.frame` with the same structure as `dataset`, containing the generated synthetic examples.

References

Random walk oversampling

Description

Generates synthetic minority examples for a dataset trying to preserve the variance and mean of the minority class. Works on every type of dataset.

Usage

rwo(dataset, numInstances, classAttr = "Class")

Arguments

dataset data.frame to treat. All columns, except classAttr one, have to be numeric or coercible to numeric.

numInstances Integer. Number of new minority examples to generate.

classAttr character. Indicates the class attribute from dataset. Must exist in it.

Details

Generates numInstances new minority examples for dataset, adding to the each numeric column of the j-th example its variance scalated by the inverse of the number of minority examples and a factor following a \(N(0, 1)\) distribution which depends on the example. When the column is nominal, it uses a roulette scheme.

Value

A data.frame with the same structure as dataset, containing the generated synthetic examples.

References

Examples

```r
data(iris0)
newSamples <- rwo(iris0, numInstances = 100, classAttr = "Class")
```

trainWrapper

Generic methods to train classifiers

Description

Generic methods to train classifiers

Usage

```r
trainWrapper(wrapper, train, trainClass, ...)
```

Arguments

- `wrapper` the wrapper instance
- `train` data.frame of the train dataset without the class column
- `trainClass` a vector containing the class column for `train`
- `...` further arguments for `wrapper`

Value

A model which is `predict` callable.

See Also

`predict`

Examples

```r
myWrapper <- structure(list(), class="C50Wrapper")
trainWrapper.C50Wrapper <- function(wrapper, train, trainClass){
  C50::C5.0(train, trainClass)
}
```
Description

Binary class dataset containing traits about patients with cancer. Original dataset was obtained from the University of Wisconsin Hospitals, Madison from Dr. William H. Wolberg.

Usage

wisconsin

Format

A data frame with 683 instances, 239 of which belong to positive class, and 10 variables:

- ClumpThickness Discrete attribute.
- CellSize Discrete attribute.
- CellShape Discrete attribute.
- MarginalAdhesion Discrete attribute.
- EpithelialSize Discrete attribute.
- BareNuclei Discrete attribute.
- BlandChromatin Discrete attribute.
- NormalNucleoli Discrete attribute.
- Mitoses Discrete attribute.
- Class Two possible classes: positive (cancer) and negative (not cancer).

Source

KEEL Repository.

See Also

Original available in UCI ML Repository.
Description
Generates synthetic minority examples by approximating their probability distribution until sensitivity of \texttt{wrapper} over \texttt{validation} cannot be further improved. Works only on discrete numeric datasets.

Usage

\begin{verbatim}
wracog(
 train, validation, wrapper, slideWin = 10, threshold = 0.02, classAttr = "Class",
 ...)
\end{verbatim}

Arguments

\begin{itemize}
 \item \texttt{train} data.frame. A initial dataset to generate first model. All columns, except \texttt{classAttr} one, have to be numeric or coercible to numeric.
 \item \texttt{validation} data.frame. A dataset to compare results of consecutive classifiers. Must have the same structure of \texttt{train}.
 \item \texttt{wrapper} An S3 object. There must exist a method \texttt{trainWrapper} implemented for the class of the object, and a \texttt{predict} method implemented for the class of the model returned by \texttt{trainWrapper}. Alternatively, it can the name of one of the wrappers distributed with the package, "KNN" or "C5.0".
 \item \texttt{slideWin} Number of last sensitivities to take into account to meet the stopping criteria. By default, 10.
 \item \texttt{threshold} Threshold that the last \texttt{slideWin} sensitivities mean should reach. By default, 0.02.
 \item \texttt{classAttr} character. Indicates the class attribute from \texttt{train} and \texttt{validation}. Must exist in them.
 \item ... further arguments for \texttt{wrapper}.
\end{itemize}

Details

Until the last \texttt{slideWin} executions of \texttt{wrapper} over \texttt{validation} dataset reach a mean sensitivity lower than \texttt{threshold}, the algorithm keeps generating samples using Gibbs Sampler, and adding misclassified samples with respect to a model generated by a former train, to the train dataset. Initial model is built on initial \texttt{train}.
Value

A data.frame with the same structure as train, containing the generated synthetic examples.

References

Examples

```r
data(haberman)

# Create train and validation partitions of haberman
trainFold <- sample(1:nrow(haberman), nrow(haberman)/2, FALSE)
trainSet <- haberman[trainFold,]
validationSet <- haberman[-trainFold,]

# Defines our own wrapper with a C5.0 tree
myWrapper <- structure(list(), class="TestWrapper")
trainWrapper.TestWrapper <- function(wrapper, train, trainClass){
  C50::C5.0(train, trainClass)
}

# Execute wRACOG with our own wrapper
newSamples <- wracog(trainSet, validationSet, myWrapper,
                     classAttr = "Class")

# Execute wRACOG with predefined wrappers for "KNN" or "C5.0"
KNNSamples <- wracog(trainSet, validationSet, "KNN")
C50Samples <- wracog(trainSet, validationSet, "C5.0")
```

yeast4

Imbalanced binary yeast protein localization sites

Description

Imbalanced binary dataset containing protein traits for predicting their cellular localization sites.

Usage

yeast4
Format

A data frame with 1484 instances, 51 of which belong to positive class, and 9 variables:

- **Mcg** McGeoch’s method for signal sequence recognition. Continuous attribute.
- **Alm** Score of the ALOM membrane spanning region prediction program. Continuous attribute.
- **Mit** Score of discriminant analysis of the amino acid content of the N-terminal region (20 residues long) of mitochondrial and non-mitochondrial proteins. Continuous attribute.
- **Erl** Presence of "HDEL" substring (thought to act as a signal for retention in the endoplasmic reticulum lumen). Binary attribute. Discrete attribute.
- **Pox** Peroxisomal targeting signal in the C-terminus. Continuous attribute.
- **Vac** Score of discriminant analysis of the amino acid content of vacuolar and extracellular proteins. Continuous attribute.
- **Nuc** Score of discriminant analysis of nuclear localization signals of nuclear and non-nuclear proteins. Continuous attribute.
- **Class** Two possible classes: positive (membrane protein, uncleaved signal), negative (rest of localizations).

Source

KEEL Repository.

See Also

Original available in UCI ML Repository.
Index

*Topic datasets
 banana, 2
 ecoli1, 3
 glass0, 4
 haberman, 5
 iris0, 7
 newthyroid1, 10
 wisconsin, 17
 yeast4, 19

banana, 2
banana_orig (banana), 2

ecoli1, 3
glass0, 4
haberman, 5
imbalance, 5
imbalanceRatio, 6, 6
iris, 7
iris0, 7
mwmote, 5, 7
neater, 6, 9, 11
newthyroid1, 10
oversample, 11
pdfos, 5, 12
plotComparison, 6, 13
predict, 16, 18

racog, 5, 14
rwo, 5, 15

trainWrapper, 16, 18

wisconsin, 17
wracog, 5, 11, 18

yeast4, 19