Package ‘hypervolume’

May 28, 2022

Type Package

Title High Dimensional Geometry, Set Operations, Projection, and Inference Using Kernel Density Estimation, Support Vector Machines, and Convex Hulls

Version 3.0.4

Date 2022-05-27

Author Benjamin Blonder, with contributions from Cecina Babich Morrow, David J. Harris, Stuart Brown, Gregoire Butruille, Alex Laini, and Dan Chen

Maintainer Benjamin Blonder <benjamin.blonder@berkeley.edu>

Description Estimates the shape and volume of high-dimensional datasets and performs set operations: intersection / overlap, union, unique components, inclusion test, and hole detection. Uses stochastic geometry approach to high-dimensional kernel density estimation, support vector machine delineation, and convex hull generation. Applications include modeling trait and niche hypervolumes and species distribution modeling.

License GPL-3

Depends Rcpp, methods, R (>= 3.0.2)

LinkingTo Rcpp, RcppArmadillo, progress

Imports raster, maps, MASS, geometry, ks, hitandrun, pdist, fastcluster, compiler, e1071, progress, mvtnorm, data.table, rgeos, sp, foreach, doParallel, parallel, ggplot2, pbapply, palmerpenguins, purrr, dplyr, caret

Suggests rgl, magick, alphahull, knitr, rmarkdown, gridExtra

NeedsCompilation yes

RoxygenNote 7.1.1

VignetteBuilder knitr

Repository CRAN

Date/Publication 2022-05-28 14:40:02 UTC
R topics documented:

- hypervolume-package ... 3
- copy_param_hypervolume ... 4
- estimate_bandwidth .. 5
- expectation_ball .. 6
- expectation_box ... 7
- expectation_convex .. 8
- expectation_maximal .. 9
- get_centroid .. 10
- get_centroid_weighted ... 11
- get_volume .. 12
- hypervolume ... 12
- Hypervolume-class .. 13
- HypervolumeList-class ... 14
- hypervolume_box ... 14
- hypervolume_distance .. 15
- hypervolume_estimate_probability 16
- hypervolume_funnel .. 18
- hypervolume_gaussian .. 19
- hypervolume_general_model .. 21
- hypervolume_holes .. 22
- hypervolume_inclusion_test .. 24
- hypervolume_join ... 25
- hypervolume_n_occupancy .. 26
- hypervolume_n_occupancy_permute 28
- hypervolume_n_occupancy_test 30
- hypervolume_overlap_confidence 31
- hypervolume_overlap_statistics 33
- hypervolume_overlap_test .. 34
- hypervolume_permute .. 36
- hypervolume_project .. 38
- hypervolume_prune .. 40
- hypervolume_redundancy ... 41
- hypervolume_resample .. 41
- hypervolume_save_animated_gif 44
- hypervolume_segment ... 45
- hypervolume_set ... 46
- hypervolume_set_n_intersection 48
- hypervolume_svm ... 50
- hypervolume_thin .. 51
- hypervolume_threshold ... 52
- hypervolume_variable_importance 53
- morphSnodgrassHeller ... 55
- padded_range ... 56
- plot.HypervolumeList ... 57
- print.Hypervolume .. 60
- quercus ... 61
Description

Estimates the shape and volume of high-dimensional datasets and performs set operations: intersection/overlap, union, unique components, inclusion test, and hole detection. Uses stochastic geometry approach to high-dimensional kernel density estimation, support vector machine delineation, and convex hull generation. Applications include modeling trait and niche hypervolumes and species distribution modeling.

Details

A frequently asked questions document (FAQ) can be found at http://www.benjaminblonder.org/hypervolume_faq.html. More details are also available in a user guide within our 2018 paper (see reference below).

Author(s)

Benjamin Blonder, with contributions from Cecina Babich Morrow, David J. Harris, Stuart Brown, Gregoire Butruille, Alex Laini, and Dan Chen

Maintainer: Benjamin Blonder <benjamin.blonder@berkeley.edu>

References

copy_param_hypervolume

Generate hypervolumes using pre-existing parameters

Description

`copy_param_hypervolume` takes in a hypervolume and data. After detecting the method used to generate the input hypervolume, the function returns a new hypervolume generated from the data using the same method and parameters as the input hypervolume.

Usage

```r
copy_param_hypervolume(hv, data, name = NULL)
```

Arguments

- `hv`
 hypervolume object
- `data`
 A m x n matrix or data frame, where m is the number of observations and n is the dimensionality.
- `name`
 String name of hypervolume

Details

`copy_param_hypervolume` only works if the input hypervolume was generated using method = "box", method = "gaussian", or method = "svm". Calling this function on hypervolumes generated from `hypervolume_set` will result in an error. Note that `kde.bandwidth` is affected by size of the data and will be re-estimated using whichever method was used to generate the original bandwidth if method = "gaussian" or method = "box". Use `hv@Parameters` to see what parameters are copied from the input hypervolume.

Value

hypervolume object

Examples

```r
## Not run:
library(palmerpenguins)
data("penguins")
bill_data = na.omit(penguins[,3:4])
hv = hypervolume(data = bill_data,
  method = "gaussian",
  quantile.requested = .9,
  quantile.requested.type = "volume")

# Generates a new hypervolume using the same hypervolume and data
hv_copy = copy_param_hypervolume(hv, hv@Data)
# Check to see that the information of the two hypervolumes is the same
```
estimate_bandwidth

print(hv)
print(hv_copy)

End(Not run)

Description

Estimates bandwidth vector from data using multiple approaches.

Usage

```r
estimate_bandwidth(data, method="silverman", value=NULL)
```

Arguments

- **data**
 - m x n matrix or data frame, where m is the number of observations and n the number of dimensions.
- **method**
 - One of "fixed", "silverman", "silverman-1d", "plug-in", or "cross-validation" - see 'details' section.
- **value**
 - If method="fixed", a scalar or vector value to be used. Otherwise ignored.

Details

The fixed ("fixed") is a constant value (scalar or vector of length equal to the dimensionality of the data). The value can be set via the value argument. If the input has length 1, the value will be repeated for all dimensions.

The Silverman ("silverman") estimator is defined as
\[(4/(n+2))^{(1/(n+4))} * m^{(-1/(n+4))} * \text{sd}(X)\]
where m is the number of observations, n is the dimensionality, and X is the data vector in each dimension. This corresponds to the Silverman rule of thumb for multivariate data and is chosen as the default for computational speed, though other more advanced algorithms may perform better.

The Silverman ("silverman-1d") estimator is defined as
\[1.06 * \text{sd}(X) * m^{(-1/5)}\]
where m is the number of observations and X is the data vector in each dimension. Minimizes mean integrated square error under the assumption the data are univariate normal. This was the default behavior in versions 1.x and 2.x of the package.

The plug-in ("plug-in") estimator is defined using a diagonal plug-in estimator with a 2-stage pilot estimation and a pre-scaling transformation (in ks::Hpi.diag). The resulting diagonal variances are then transformed to standard deviations and multiplied by two to be consistent for the box kernels used here. Available only in n<7 dimensions. Minimizes sum of asymptotic mean squared error.

The cross-validation ("cross-validation") estimator is defined using a diagonal smoothed cross validation estimator with a 2-stage pilot estimation and a pre-scaling transformation (in ks::Hscv.diag). The resulting diagonal variances are then transformed to standard deviations and multiplied by two.
to be consistent for the box kernels used here. Available only in $n<7$ dimensions. Minimizes sum of asymptotic mean squared error.

Note that all estimators are optimal only for normal kernels, whereas the hypervolume algorithms use box kernels - as the number of data points increases, this difference will become increasingly less important.

Computational run-times for the plug-in and cross-validation estimators may become infeasibly large in $n>=4$ dimensions.

Value

Vector of length n with each entry corresponding to the estimated bandwidth along each axis. An attribute method is also set indicating the algorithm used.

References

Examples

```r
## Not run:
data(penguins, package='palmerpenguins')
penguins_no_na = as.data.frame(na.omit(penguins))
penguins_adelie = penguins_no_na[penguins_no_na$species=='Adelie',
c("bill_length_mm","bill_depth_mm","flipper_length_mm")]

estimate_bandwidth(penguins_adelie, method="fixed", value=c(2,1,2))
estimate_bandwidth(penguins_adelie, method="silverman")
estimate_bandwidth(penguins_adelie, method="plug-in") # may be quite slow to run
estimate_bandwidth(penguins_adelie, method="cross-validation") # may be quite slow to run

## End(Not run)
```

expectation_ball

Hypersphere expectation

Description

Generates expectation hypervolume corresponding to a hypersphere that minimally encloses the data.

Usage

```r
expectation_ball(input, point.density = NULL, num.samples = NULL, 
                  use.random = FALSE)
```
expectation_box

Arguments

- **input**: A m x n matrix or data frame, where m is the number of observations and n is the dimensionality.
- **point.density**: The point density of the output expectation. If NULL, defaults to \(v / \text{num.points} \) where d is the dimensionality of the input and v is the volume of the hypersphere.
- **num.samples**: The number of points in the output expectation. If NULL, defaults to \(10^{(3+\sqrt{\text{ncol(d)}})} \) where d is the dimensionality of the input. num.points has priority over point.density; both cannot be specified.
- **use.random**: If TRUE and the input is of class Hypervolume, sets boundaries based on the @RandomPoints slot; otherwise uses @Data.

Value

A Hypervolume-class object corresponding to the expectation.

Examples

```r
data(penguins, package='palmerpenguins')
penguins_no_na = as.data.frame(na.omit(penguins))
penguins_adelie = penguins_no_na[penguins_no_na$species=='Adelie',
c('bill_length_mm','bill_depth_mm','flipper_length_mm')]
e_ball <- expectation_ball(penguins_adelie)
```

expectation_box Hyperbox expectation

Description

Generates expectation hypervolume corresponding to an axis-aligned hyperbox that minimally encloses the data.

Usage

```r
expectation_box(input, point.density = NULL, num.samples = NULL, use.random = FALSE)
```

Arguments

- **input**: A m x n matrix or data frame, where m is the number of observations and n is the dimensionality.
- **point.density**: The point density of the output expectation. If NULL, defaults to \(v / \text{num.points} \) where d is the dimensionality of the input and v is the volume of the hypersphere.
- **num.samples**: The number of points in the output expectation. If NULL, defaults to \(10^{(3+\sqrt{\text{ncol(d)}})} \) where d is the dimensionality of the input. num.points has priority over point.density; both cannot be specified.
- **use.random**: If TRUE and the input is of class Hypervolume, sets boundaries based on the @RandomPoints slot; otherwise uses @Data.
Value

A Hypervolume-class object corresponding to the expectation.

Examples

```r
data(penguins, package='palmerpenguins')
penguins_no_na = as.data.frame(na.omit(penguins))
penguins_adelie = penguins_no_na[penguins_no_na$species=='Adelie',
  c("bill_length_mm","bill_depth_mm","flipper_length_mm")]
e_box <- expectation_box(penguins_adelie)
```

Description

Generates expectation hypervolume corresponding to a convex hull (polytope) that minimally encloses the data.

Usage

```r
expectation_convex(input, point.density = NULL, num.samples = NULL,
    num.points.on.hull = NULL, check.memory = TRUE,
    verbose = TRUE, use.random = FALSE, method =
    "hitandrun", chunksize = 1000)
```

Arguments

- **input**
 A m x n matrix or data frame, where m is the number of observations and n is the dimensionality.

- **point.density**
 The point density of the output expectation. If NULL, defaults to \(v / d \) where \(d \) is the dimensionality of the input and \(v \) is the volume of the hypersphere.

- **num.samples**
 The number of points in the output expectation. If NULL, defaults to \(10^{3+\sqrt{\text{ncol}(d)}} \) where \(d \) is the dimensionality of the input. num.points has priority over point.density; both cannot be specified.

- **num.points.on.hull**
 Number of points of the input used to calculate the convex hull. Larger values are more accurate but may lead to slower runtimes. If NULL, defaults to using all of the data (most accurate).

- **check.memory**
 If TRUE, reports expected number of convex hull simplices required for calculation and stops further memory allocation. Also warns if dimensionality is high.

- **verbose**
 If TRUE, prints diagnostic progress messages.

- **use.random**
 If TRUE and the input is of class Hypervolume, sets boundaries based on the @RandomPoints slot; otherwise uses @Data.
expectation_maximal

method One of "rejection" (rejection sampling) or "hitandrun" (adaptive hit and run Monte Carlo sampling)
chunksize Number of random points to process per internal step. Larger values may have better performance on machines with large amounts of free memory. Changing this parameter does not change the output of the function; only how this output is internally assembled.

Details

The rejection sampling algorithm generates random points within a hyperbox enclosing the points, then sequentially tests whether each is in or out of the convex polytope based on a dot product test. It becomes exponentially inefficient in high dimensionalities. The hit-and-run sampling algorithm generates a Markov chain of samples that eventually converges to the true distribution of points within the convex polytope. It performs better in high dimensionalities but may not converge quickly. It will also be slow if the number of simplices on the convex polytope is large.

Both algorithms may become impracticably slow in >= 6 or 7 dimensions.

Value

A Hypervolume-class object corresponding to the expectation hypervolume.

Examples

```r
## Not run:
data(penguins, package='palmerpenguins')
penguins_no_na = as.data.frame(na.omit(penguins))
penguins_adelie = penguins_no_na[penguins_no_na$species=='Adelie',
                                 ,c("bill_length_mm","bill_depth_mm","flipper_length_mm")]
e_convex <- expectation_convex(penguins_adelie, check.memory=FALSE)
## End(Not run)
```

Description

Creates a hypervolume from a set of points reflecting the maximal expectation.

Usage

expectation_maximal(input, ...)

Arguments

input A dataset to be used as input to the hypervolume function
... Arguments to the hypervolume function
get_centroid

Details

This function is effectively an alias for the hypervolume function. You must decide what the maximal expectation is yourself!

Value

A Hypervolume object.

get_centroid

Get centroid of hypervolume or hypervolume list

Description

Returns the column mean of the random points in each hypervolume.

Usage

get_centroid(hv)

Arguments

hv

A Hypervolume or HypervolumeList object.

Value

Either a vector or a matrix of column of centroid values along each axis.

Examples

Not run:
data(penguins, package='palmerpenguins')
penguins_no_na = as.data.frame(na.omit(penguins))
penguins_adelie = penguins_no_na[penguins_no_na$species=='Adelie',
c("bill_length_mm","bill_depth_mm","flipper_length_mm")]
hv = hypervolume_gaussian(penguins_adelie)
get_centroid(hv)

End(Not run)
get_centroid_weighted

Get weighted centroid of hypervolume or hypervolume list.

Description

Returns the column weighted mean of the random points in each hypervolume. Useful for hypervolumes generated with hypervolume_n_occupancy or hypervolume_n_occupancy_test.

Usage

get_centroid_weighted(hv)

Arguments

hv
A Hypervolume or HypervolumeList object.

Value

Either a vector or a matrix of column of centroid values along each axis.

Examples

Not run:
data(penguins, package='palmerpenguins')
penguins_no_na = as.data.frame(na.omit(penguins))

penguins_no_na_split = split(penguins_no_na,
paste(penguins_no_na$species, penguins_no_na$sex, sep = "_"))

hv_list = lapply(penguins_no_na_split, function(x)
 hypervolume_gaussian(x[, c("bill_length_mm","bill_depth_mm","flipper_length_mm")],
 samples.per.point=100))

names(hv_list) <- names(penguins_no_na_split)
hv_list <- hypervolume_join(hv_list)
hv_occupancy <- hypervolume_n_occupancy(hv_list)

unweighted centroids
get_centroid(hv_occupancy)

weighted centroids
get_centroid_weighted(hv_occupancy)

End(Not run)
get_volume

Description

Extract volume from Hypervolume or HypervolumeList object

Usage

S3 method for class 'Hypervolume'
get_volume(object)
S3 method for class 'HypervolumeList'
get_volume(object)

Arguments

object A Hypervolume or HypervolumeList object

Value

A named numeric vector with the volume of each input hypervolume

hypervolume

Description

Constructs hypervolumes using one of several possible methods after error-checking input data.

Usage

hypervolume(data, method = "gaussian", ...)

Arguments

data A m x n matrix or data frame, where m is the number of observations and n is the dimensionality.

method One of "box" (box kernel density estimation), "gaussian" (Gaussian kernel density estimation), or "svm" (one-class support vector machine). See respective functions for details.

... Further arguments passed to hypervolume_box, hypervolume_gaussian, or hypervolume_svm.
Details

Checks for collinearity, missingness of input data, and appropriate random point coverage. Generates warning/errors as appropriate.

Value

A `Hypervolume-class` object corresponding to the inferred hypervolume.

See Also

`weight_data`, `estimate_bandwidth`, `expectation_convex`, `expectation_ball`, `expectation_box`, `hypervolume_threshold`

Examples

```r
data(penguins, package=’palmerpenguins’)
penguins_no_na = as.data.frame(na.omit(penguins))
penguins_adelie = penguins_no_na[penguins_no_na$species==”Adelie”,
                               c(”bill_length_mm”, “bill_depth_mm”, “flipper_length_mm”)]
hv = hypervolume(penguins_adelie, method=’box’)
```

Description

Primary storage class for stochastic descriptions of hypervolumes

Objects from the Class

Objects can be created by calls of the form `new("Hypervolume", ...).

Slots

- **Name**: Object of class "character" ~~ the name of the hypervolume
- **Method**: Object of class "character" ~~ the method used to construct this hypervolume
- **Data**: Object of class "matrix" ~~ May be empty if the hypervolume is not associated with data (e.g. convex expectation, set operations)
- **Dimensionality**: Object of class "numeric" ~~ Dimensionality of the hypervolume
- **Volume**: Object of class "numeric" ~~ Volume of the hypervolume
- **PointDensity**: Object of class "numeric" ~~ Number of random points per unit volume
- **Parameters**: Object of class "list" ~~ List of parameters that will depend on the method used to construct the hypervolume
- **RandomPoints**: Object of class "matrix" ~~ A matrix of uniformly random points distributed within the hypervolume
- **ValueAtRandomPoints**: Object of class "numeric" ~~ A vector of positive numbers representing the probability density at each random point in @RandomPoints
HypervolumeList-class Class "HypervolumeList"

Description

A class used for storing more than one hypervolume.

Objects from the Class

Objects can be created by calls of the form new("HypervolumeList", ...).

Slots

HVList: Object of class "list" containing multiple hypervolumes

hypervolume_box Hypervolume construction via hyperbox kernel density estimation

Description

Constructs a hypervolume from a set of observations via thresholding a kernel density estimate of the observations. Assumes an axis-aligned hyperbox kernel.

Usage

hypervolume_box(data, name = NULL, verbose = TRUE, samples.per.point =
 ceiling((10^((3 + sqrt(ncol(data))))/nrow(data)),
 kde.bandwidth = 2*estimate_bandwidth(data),
 tree.chunksize = 10000)

Arguments

data A m x n matrix or data frame, where m is the number of observations and n is the dimensionality.
name A string to assign to the hypervolume for later output and plotting. Defaults to the name of the variable if NULL.
verbose Logical value; print diagnostic output if TRUE.
samples.per.point Number of random points to be evaluated per data point in data.
kde.bandwidth A scalar or a n x 1 vector corresponding to the half-width of the box kernel in each dimension. If a scalar input, the single value is used for all dimensions. Several estimation methods are available in estimate_bandwidth.
tree.chunksize Number of random points to process per internal step. Larger values may have better performance on machines with large amounts of free memory. Changing this parameter does not change the output of the function; only how this output is internally assembled.
Details

Constructs a kernel density estimate by overlaying hyperbox kernels on each datapoint, then sampling uniformly random points from each kernel. Kernel density at each point is then determined by a range query on a recursive partitioning tree and used to resample these random points to a uniform density and fixed number, from which a volume can be inferred.

Note that when comparing among hypervolumes constructed with fixed bandwidth, volume will be approximately a linear function of the number of input data points.

Note that this function returns an unthresholded hypervolume. To assign a quantile threshold, use hypervolume_threshold.

Value

A Hypervolume-class object corresponding to the inferred hypervolume.

See Also

hypervolume_threshold, estimate_bandwidth

Examples

data(penguins, package='palmerpenguins')
penguins_no_na = as.data.frame(na.omit(penguins))
penguins_adelie = penguins_no_na[penguins_no_na$species=="Adelie", c("bill_length_mm","bill_depth_mm","flipper_length_mm")]
hv = hypervolume_box(penguins_adelie, name='Adelie')
summary(hv)

hypervolume_distance Distance between two hypervolumes

Description

Calculates the distance between two hypervolumes either defined as the Euclidean distance between centroids or as the minimum Euclidean distance between the random points comprising either hypervolume.

Usage

hypervolume_distance(hv1, hv2, type = "centroid",
num.points.max = 1000, check.memory = TRUE)
hypervolume_estimate_probability

Estimate probability a given location

Description

Estimates probability density at one or more of points within or outside a hypervolume. The estimation is carried out as the weighted sum of the probability density of all subsampled random points in the input hypervolume, where the weights are proportional to the distance from the test point raised to a certain power. The default power, -1, corresponds to inverse distance weighting.

Arguments

hv1 A Hypervolume object.

hv2 A Hypervolume object.

type If 'centroid', the centroid distance; if 'minimum', the minimum distance.

num.points.max The number of random points to subsample from each input hypervolume. Ignored if type='centroid'.

check.memory If TRUE, prints expected memory usage and returns an error before allocating memory. Ignored if type='centroid'.

Details

Minimum distance calculations scale quadratically with npmax and may be computationally costly.

Value

The distance between the two hypervolumes.

Examples

Not run:
data(penguins, package='palmerpenguins')
penguins_no_na = as.data.frame(na.omit(penguins))
penguins_adelie = penguins_no_na[penguins_no_na$species=="Adelie",
c("bill_length_mm","bill_depth_mm","flipper_length_mm")]
penguins_chinstrap = penguins_no_na[penguins_no_na$species=="Chinstrap",
c("bill_length_mm","bill_depth_mm","flipper_length_mm")]

hv1 = hypervolume_gaussian(penguins_adelie)
hv2 = hypervolume_gaussian(penguins_chinstrap)

note that minimum distance is smaller than centroid distance as expected
hypervolume_distance(hv1, hv2, type='centroid')
hypervolume_distance(hv1, hv2, type='minimum', num.points.max=500, check.memory=FALSE)

End(Not run)
Usage

```r
hypervolume_estimate_probability(hv, points,
    reduction.factor = 1, weight.exponent = -1,
    set.edges.zero = TRUE, edges.zero.distance.factor = 1,
    parallel = FALSE, n.cores = 1,
    verbose = TRUE, ...)
```

Arguments

- `hv` An input hypervolume
- `points` A m x n matrix of m points of dimensionality n (same as the input hypervolume). These are the points at which the probability is to be estimated.
- `reduction.factor` A value between 0 and 1 corresponding to a thinning factor applied to random points of the input hypervolume. Smaller values result in faster runtimes but lower accuracy.
- `weight.exponent` The exponent of the distance weights. Should be negative and probably does not need to be changed.
- `set.edges.zero` If TRUE, any test points more than a critical distance (multiplied by `edges.zero.distance.factor`) away from a random point in the input hypervolume are assumed to have probability zero. Otherwise the weighted sum is used with no further modification.
- `edges.zero.distance.factor` Positive number used to multiply the critical distance for `set.edges.zero`. Larger values lead to more stringent criteria for test points being set to zero.
- `parallel` If TRUE, uses multiple cores.
- `n.cores` Number of cores to use in parallel operation.
- `verbose` If TRUE, prints diagnostic progress messages.
- `...` Other arguments to be passed to `pbsapply` for parallelization.

Details

Identifies the uniformly random points enclosed within a hypersphere centered on the point of interest, then averages the probability density at each of these points.

Value

A vector of probability densities of length corresponding to m, the number of input points.

See Also

- `hypervolume_inclusion_test`
- `hypervolume_redundancy`
Examples

```r
data(penguins, package='palmerpenguins')
penguins_no_na = as.data.frame(na.omit(penguins))
penguins_adelie = penguins_no_na[penguins_no_na$species=='Adelie',
       c('bill_length_mm','bill_depth_mm','flipper_length_mm')]
hv = hypervolume_box(penguins_adelie, name='Adelie')

new_points = data.frame(bill_length_mm=c(0,38), bill_depth_mm=c(0,18), flipper_length_mm=c(0,190))

probs <- hypervolume_estimate_probability(hv, points=new_points)
probs
# should give a zero value and a non-zero value

# example for parallel operation
# probs_new <- hypervolume_estimate_probability(hv, points=new_points, parallel=TRUE, n.cores=2)
```

hypervolume_funnel

Hypervolumes at different sample sizes

Description

This function takes in hypervolumes bootstrapped at different sample sizes and applies a function to each hypervolume. The output of the function can either be a plot of nonparametric confidence intervals or a table of the mean and quantiles.

Usage

```r
hypervolume_funnel(input_path,
                   title = NULL,
                   func = get_volume,
                   CI = .95,
                   as_table = FALSE)
```

Arguments

- `input_path`: output of `resample` with method = "bootstrap seq"; path to a sequence of different sample sized bootstraps
- `title`: title of output plot, ignore if outputting as table
- `func`: a function that takes a single parameter which is a hypervolume and returns a numerical value.
- `CI`: Confidence interval is taken by using the the (1-CI)/2 and (1+CI)/2 quantile
- `as_table`: If TRUE, returns a table with columns upper quantile, mean, lower quantile

Details

This function is used to evaluate the behavior of hypervolumes at different sample sizes and determine bias. Statistics such as volume are affected by sample size especially when the hypervolumes are constructed with method = "gaussian" since the bandwidth estimate is dependent on sample size.
hypervolume_gaussian

Value

ggplot object, or dataframe object

Examples

```r
## Not run:
# 3000 data point hypervolume
data(quercus)
hv_quercus = hypervolume(quercus[,c(2,3)])

# the seq argument is equivalent to a length 30 vector {10, 139, ... , 3649, 3779}
# 6hr sequential runtime
quercus_bootstrap_seq <- resample('quercus_bootstrap_seq',
    hv_quercus,
    method = 'bootstrap seq',
    points_per_resample = "sample_size",
    seq = floor(seq(10, 3779, length.out = 30)),
    cores = 20)

# Compatible with ggplot syntax when used with as_table = FALSE
hypervolume_funnel(quercus_bootstrap_seq,
    title = 'Resampled volumes of Quercus',
    func = get_volume) +
  geom_line(aes(y = get_volume(hv_quercus))) +
  ylab("Volume")

## End(Not run)
```

hypervolume_gaussian Hypervolume construction via Gaussian kernel density estimation

Description

Constructs a hypervolume by building a Gaussian kernel density estimate on an adaptive grid of random points wrapping around the original data points. The bandwidth vector reflects the axis-aligned standard deviations of a hyperelliptical kernel.

Because Gaussian kernel density estimates do not decay to zero in a finite distance, the algorithm evaluates the kernel density in hyperelliptical regions out to a distance set by sd.count.

After delineating the probability density, the function calls hypervolume_threshold to determine a boundary. The default behavior ensures that 95 percent of the estimated probability density is enclosed by the chosen boundary. However note that the accuracy of the total probability density depends on having set a large value of sd.count.

Most use cases should not require modification of any parameters except kde.bandwidth.

Optionally, weighting of the data (e.g. for abundance-weighting) is possible. By default, the function estimates the probability density of the observations via Gaussian kernel functions, assuming each data point contributes equally. By setting a weight parameter, the algorithm can instead take a weighted average the kernel functions centered on each observation. Code for weighting data written by Yuanzhi Li (Yuanzhi.Li@usherbrooke.ca).
Usage

```r
hypervolume_gaussian(data, name = NULL, weight = NULL, samples.per.point = ceiling((10^3 + sqrt(ncol(data))))/nrow(data)),
  kde.bandwidth = estimate_bandwidth(data),
  sd.count = 3,
  quantile.requested = 0.95,
  quantile.requested.type = "probability",
  chunk.size = 1000,
  verbose = TRUE,
  ...)```

Arguments

data A m x n matrix or data frame, where m is the number of observations and n is the dimensionality.

name A string to assign to the hypervolume for later output and plotting. Defaults to the name of the variable if NULL.

weight An optional vector of weights for the kernel density estimation. Defaults to even weighting (`rep(1/nrow(data), nrow(data))`) if NULL.

samples.per.point Number of random points to be evaluated per data point in `data`.

kde.bandwidth A bandwidth vector obtained by running `estimate_bandwidth`. Note that previous package version (<3.0.0) allowed inputting a scalar/vector value here - this is now handled through the `estimate_bandwidth` interface.

sd.count The number of standard deviations (converted to actual units by multiplying by `kde.bandwidth`) at which the 'edge' of the hypervolume should be evaluated. Larger values of `threshold.sd.count` will come closer to a true estimate of the Gaussian density over a larger region of hyperspace, but require rapidly increasing computational resources (see Details section). It is generally better to use a large/default value for this parameter. Warnings will be generated if chosen to take a value less than 3.

quantile.requested The quantile value used to delineate the boundary of the kernel density estimate. See `hypervolume_threshold`.

quantile.requested.type The type of quantile (volume or probability) used for the boundary delineation. See `hypervolume_threshold`.

chunk.size Number of random points to process per internal step. Larger values may have better performance on machines with large amounts of free memory. Changing this parameter does not change the output of the function; only how this output is internally assembled.

verbose Logical value; print diagnostic output if TRUE.

... Other arguments to pass to `hypervolume_threshold`
Value

A `Hypervolume-class` object corresponding to the inferred hypervolume.

See Also

`hypervolume_threshold`

Examples

data(penguins, package=’palmerpenguins’)
penguins_no_na = as.data.frame(na.omit(penguins))
penguins_adelie = penguins_no_na[penguins_no_na$species==”Adelie”,
c(”bill_length_mm”, ”bill_depth_mm”, ”flipper_length_mm”)]

# low samples per point for CRAN demo
hv = hypervolume_gaussian(penguins_adelie, name=’Adelie’, samples.per.point=100)
summary(hv)

hypervolume_general_model

Generates hypervolume by sampling from arbitrary model object.

Description

Uses rejection sampling to obtain predicted values of a model object at uniformly random points within a range box, then converts output to a hypervolume.

Usage

`hypervolume_general_model(model, name = NULL, verbose = TRUE,
data = NULL, range.box = NULL, num.samples = ceiling(10^(3 + sqrt(ncol(range.box)))),
chunk.size = 10000, min.value = 0, ...)`

Arguments

- `model`: Any model object which can be used within a `predict(model, newdata, ...)` call.
- `name`: Name of the output hypervolume.
- `verbose`: If `TRUE`, prints diagnostic output.
- `data`: If not `NULL`, used to specify `range.box=padded_range(data)`.
- `range.box`: A 2 x n matrix, where n is the number of dimensions of the data, and the first row corresponds to a lower limit and the second row to an upper limit. Each column is thus the low and high limits of the range box along each axis. Can be generated via `padded_range`.
- `num.samples`: Number of samples to draw from the range box.
chunk.size Number of samples to process in each `predict` call. Changing this value may affect the speed of function return but not the returned values.

min.value If TRUE, discards sampled values below this threshold. Effectively used to set hypervolume boundaries.

... Other arguments to be passed to `predict`, e.g. `type='response'`.

Value

A Hypervolume-class object corresponding to retained values within the hyperbox of interest.

Examples

data(penguins, package='palmerpenguins')
penguins_no_na = as.data.frame(na.omit(penguins))
penguins_no_na$is_adelie = penguins_no_na$species=='Adelie'
penguins_no_na = penguins_no_na[,c("is_adelie","bill_length_mm","bill_depth_mm")]

m_glm = glm(is_adelie~., data=penguins_no_na)

hv_general_glm = hypervolume_general_model(m_glm, range.box=padded_range(penguins_no_na[,2:3]), type='response')
plot(hv_general_glm)

hypervolume_holes Hole detection

Description

Detects the holes in an observed hypervolume relative to an expectation

Usage

hypervolume_holes(hv.obs, hv.exp, set.num.points.max = NULL, set.check.memory = TRUE)

Arguments

hv.obs The observed hypervolume whose holes are to be detected
hv.exp The expected hypervolume that provides a baseline expectation geometry
set.num.points.max Maximum number of points to be used for set operations comparing `hv.obs` to `hv.exp`. Defaults to $10^{(3+\sqrt{n})}$, where $n$ is the dimensionality of the input hypervolumes.
set.check.memory

If TRUE, estimates the memory usage required to perform set operations, then exits. If FALSE, prints resource usage and continues algorithm. It is useful for preventing crashes to check the estimated memory usage on large or high dimensional datasets before running the full algorithm.
hypervolume_holes

Details

This algorithm has a good Type I error rate (rarely detects holes that do not actually exist). However, it can have a high Type II error rate (failure to find holes when they do exist). To reduce this error rate, make sure to re-run the algorithm with input hypervolumes with higher values of @PointDensity, or increase set.num.points.max.

The algorithm performs the set difference between the observed and expected hypervolumes, then removes stray points in this hypervolume by deleting any random point whose distance from any other random point is greater than expected.

A 'rule of thumb' is that the algorithm has acceptable statistical performance when log_e(m) > n, where m is the number of data points and n is the dimensionality.

Value

A Hypervolume object containing a uniformly random set of points describing the holes in hv_obs. Note that the point density of this object is likely to be much lower than that of the input hypervolumes due to the stochastic geometry algorithms used.

Examples

## Not run:
# generate annulus data
data_annulus <- data.frame(matrix(data=runif(4000),ncol=2))
names(data_annulus) <- c("x","y")
data_annulus <- subset(data_annulus,
  sqrt((x-0.5)^2+(y-0.5)^2) > 0.4 & sqrt((x-0.5)^2+(y-0.5)^2) < 0.5)
  # MAKE HYPERVOLUME (low reps for fast execution)
hv_annulus <- hypervolume_gaussian(data_annulus,
    kde.bandwidth=0.05,name=\'annulus\',samples.per.point=1)
  # GET CONVEX EXPECTATION
hv_convex <- expectation_convex(hypervolume_thin(hv_annulus,num.samples=500),
    check.memory=FALSE,use.random=TRUE)
  # DETECT HOLES (low npoints for fast execution)
features_annulus <- hypervolume_holes(hv.obs=hv_annulus,
    hv.exp=hv_convex,
    set.check.memory=FALSE)
  # CLEAN UP RESULTS
features_segmented <- hypervolume_segment(features_annulus,
    check.memory=FALSE,distance.factor=2)
features_segmented_pruned <- hypervolume_prune(features_segmented,
    volume.min=0.02)
  # PLOT RETAINED HOLE(S)
plot(hypervolume_join(hv_annulus, features_segmented_pruned))

## End(Not run)
Description

Determines if a set of points are within a hypervolume. Can operate using a 'fast' algorithm which determines whether at least one random point of the hypervolume is within a critical distance of the test point. This algorithm is very efficient but leads to noisy and error-prone results when the point density is slow. A warning is generated if this algorithm is used.

The function can also operate using an 'accurate' algorithm which estimates the probability density at the test point, and rejects it if it is below the requested threshold value. This is very slow but guarantees good results.

Usage

```r
hypervolume_inclusion_test(hv, points, reduction.factor = 1, fast.or.accurate = "fast", fast.method.distance.factor = 1,
 accurate.method.threshold = quantile(hv@ValueAtRandomPoints, 0.5), verbose = TRUE, ...)
```

Arguments

- **hv**: n-dimensional hypervolume to compare against
- **points**: Candidate points. A m x n matrix or dataframe, where m is the number of candidate points and n is the number of dimensions.
- **reduction.factor**: A number in (0,1] that represents the fraction of random points sampled from the hypervolume for the stochastic inclusion test. Larger values are more accurate but computationally slower.
- **fast.or.accurate**: If 'fast', uses the critical distance test. If 'accurate', uses a probability density estimate.
- **fast.method.distance.factor**: Numeric value; multiplicative factor applied to the critical distance for all inclusion tests (see below). Used only when fast.or.accurate='fast'.
- **accurate.method.threshold**: Numeric value; threshold probability value below which the point is determined to be out of the hypervolume. Used only when fast.or.accurate='accurate'.
- **verbose**: Logical value; print diagnostic output if true.
- **...**: Additional arguments to be passed to either `hypervolume_estimate_probability` or `hypervolume_inclusion_test`. 
Value
A m x 1 logical vector indicating whether each candidate point is in the hypervolume.

Examples
```r
Not run:
construct a hypervolume of points in the unit square [0,1] x [0,1]
data = data.frame(x=runif(100,min=0,max=1), y=runif(100,min=0,max=1))
hv = hypervolume_gaussian(data)

test if (0.5,0.5) and (-1,-1) are in - should return TRUE FALSE
hypervolume_inclusion_test(hv, points=data.frame(x=c(0.5,-1),y=c(0.5,-1)))

End(Not run)
```

---

### hypervolume_join

Concatenate hypervolumes

Description
Combines multiple hypervolumes or hypervolume lists into a single HypervolumeList suitable for analysis or plotting.

Usage
```
hypervolume_join(...)
```

Arguments
... One or more objects of class Hypervolume or HypervolumeList, or a list() of Hypervolume objects.

Value
A HypervolumeList containing all hypervolumes in all arguments.

Examples
```r
data(penguins,package='palmerpenguins')
penguins_no_na = as.data.frame(na.omit(penguins))
penguins_adelie = penguins_no_na[penguins_no_na$species=="Adelie",
c("bill_length_mm","bill_depth_mm","flipper_length_mm")]
penguins_chinstrap = penguins_no_na[penguins_no_na$species=="Chinstrap",
c("bill_length_mm","bill_depth_mm","flipper_length_mm")]
hv1 = hypervolume_box(penguins_adelie,name='Adelie')
hv2 = hypervolume_box(penguins_chinstrap,name='Chinstrap')

hvs Joined = hypervolume_join(hv1, hv2)
```
hypervolume_n_occupancy

Operations for groups of hypervolumes

Description

Computes the occupancy of hyperspace by one or more groups of hypervolumes.

Usage

```r
hypervolume_n_occupancy(hv_list,
 classification = NULL,
 method = "subsample",
 FUN = mean,
 num.points.max = NULL,
 verbose = TRUE,
 distance.factor = 1,
 check.hyperplane = FALSE,
 box_density = 5000)
```

Arguments

- `hv_list`: An HypervolumeList.
- `classification`: A vector assigning each Hypervolume in the HypervolumeList to a group.
- `method`: Can be `subsample` or `box`. See details.
- `FUN`: A function to aggregate points within each group. Default to `mean`.
- `num.points.max`: Maximum number of random points to use for set operations. If `NULL` default is `10^(3+sqrt(n))` where `n` is the dimensionality of the input hypervolumes. Note that this default parameter value has been increased by a factor of 10 since the 1.2 release of this package.
- `verbose`: Logical value; print diagnostic output if true.
- `distance.factor`: Numeric value; multiplicative factor applied to the critical distance for all inclusion tests (see below). Recommended to not change this parameter.
- `check.hyperplane`: Check if data is hyperplanar.
- `box_density`: Density of random point to fill the hyperbox when method is equal to box.

Details

Uses the inclusion test approach to count how many hypervolumes in each group includes random points. Counts range from 0 (no hypervolume contains a given random point), to the number of hypervolumes in a group (all the hypervolumes contains a given random point). A function `FUN`, usually `mean` or `sum`, is then applied. An hypervolume is then returned for each group and the occupancy
stored in @ValueAtRandomPoints. IMPORTANT: random points with @ValueAtRandomPoints equal to 0 are not removed to ease downstream calculation.

The computation is actually performed on a random sample from input hypervolumes, constraining each to have the same point density given by the minimum of the point density of each input hypervolume, and the point density calculated using the volumes of each input hypervolume divided by num.points.max.

Because this algorithm is based on distances calculated between the distributions of random points, the critical distance (point density ^ (-1/n)) can be scaled by a user-specified factor to provide more or less liberal estimates (distance_factor greater than or less than 1).

Two methods can be used for calculating the occupancy. The method subsample is based on a random sample of points from input hypervolumes. Each point is selected with a probability set to the inverse of the number of neighbour points calculated according to the critical distance. This method performs accurately when input hypervolumes have a low degree of overlap. The method box create a bounding box around the union of input hypervolumes. The bounding box is filled with points following a uniform distribution and with a density set with the argument box_density. A greater density provides more accurate results. The method box_density performs better than the method subsample in low dimensions, while in higher dimensions box_density become computationally inefficient as nearly all of the hyperbox sampling space will end up being empty and most of the points will be rejected.

When verbose = TRUE the volume of each input hypervolume will be printed together with the recomputed volume and the ratio between the original and recomputed hypervolumes. Mean absolute error (MAE) and root mean square error (RMSE) will be also provided as overall measures of the goodness of fit.

Value

hypervolume_n_occupancy returns an HypervolumeList whose number of elements equals the number of groups in classification.

Examples

data(penguins, package = 'palmerpenguins')
penguins_no_na = as.data.frame(na.omit(penguins))

penguins_no_na_split = split(penguins_no_na, 
    paste(penguins_no_na$species, penguins_no_na$sex, sep = "_"))

hv_list = lapply(penguins_no_na_split, function(x) 
    hypervolume_gaussian(x[, c("bill_length_mm","bill_depth_mm","flipper_length_mm")], 
                        samples.per.point=75))

names(hv_list) <- names(penguins_no_na_split)
hv_list <- hypervolume_join(hv_list)

hv_occupancy <- hypervolume_n_occupancy(hv_list)
plot(hv_occupancy, cex.random = 1)
hv_occupancy_list_sex <- hypervolume_n_occupancy(hv_list,
classification = rep(c("female", "male"), each = 3))

plot(hv_occupancy_list_sex, cex.random = 1, show.density = FALSE)

hypervolume_n_occupancy_permute

*Hypervolumes through permuting labels of n pairwise groups of hypervolumes*

**Description**

Permute labels of an hypervolume_n_occupancy object and calculate hypervolume_n_occupancy for the permuted objects. This function is meant for taking a sample of all permutations and does not guarantee that permutations are not repeated. Newly generated hypervolume objects are written to file. This function is to be used within the n_occupancy routine.

**Usage**

```r
hypervolume_n_occupancy_permute(name,
hv_list1,
hv_list2,
classification = NULL,
verbose = TRUE,
distance.factor = 1,
FUN = mean,
n = 9,
cores = 1)
```

**Arguments**

- **name**: File name; The function writes hypervolumes to file in ./Objects/<name>
- **hv_list1**: An hypervolume list generated with hypervolume_n_occupancy
- **hv_list2**: The hypervolume list used to generate hv_list1
- **classification**: The vector used to assign each Hypervolume in hv_list1 to a group.
- **verbose**: Logical value; If function is being run sequentially, outputs progress bar in console.
- **distance.factor**: Numeric value; multiplicative factor applied to the critical distance for all inclusion tests (see below). Recommended to not change this parameter. MUST be the same used for calculating hv_list1.
- **FUN**: A function to aggregate points within each group. Default to mean. It should be the same function used to generate hv_list1.
- **n**: Number of permutations to take
- **cores**: Number of logical cores to use while generating permuted hypervolumes. If parallel backend already registered to doParallel, function will use that backend and ignore the argument in cores.
hypervolume_n_occupancy_permute

Details

hypervolume_n_occupancy_permute creates a directory called Objects in the current working directory if a directory of that name doesn’t already exist. Within this directory, it creates a directory for each pairwise combinations of elements within hv_list1. Group labels are permuted and a new HypervolumeList is saved as a rds file for each pairwise combination. IMPORTANT: only group labels are permuted, random points are kept fixed and will be the same across all the permuted hypervolumes.

Use hypervolume_n_occupancy_permute when generating null distribution of test statistics. hypervolume_n_occupancy_test takes in a hypervolume_n_occupancy_permute filepath output.

It is also possible to access the hypervolumes by using readRDS to read the hypervolume objects in one by one.

WARNING!!! hypervolume_n_occupancy_permute requires a lot of disk space especially when building occupancy hypervolumes with method = "box". Try with a small number of replication and check the folder Objects for memory usage before to proceed.

Value

returns a string containing an absolute path equivalent to ./Objects/<name>

See Also

hypervolume_n_occupancy

Examples

## Not run:

data(penguins, package='palmerpenguins')
penguins_no_na = as.data.frame(na.omit(penguins))

penguins_no_na_split = split(penguins_no_na, 
  paste(penguins_no_na$species, penguins_no_na$sex, sep = "_"))

hv_list = lapply(penguins_no_na_split, function(x) 
  hypervolume_gaussian(x[, c("bill_length_mm","bill_depth_mm","flipper_length_mm")], 
    samples.per.point=100))

names(hv_list) <- names(penguins_no_na_split)
hv_list <- hypervolume_join(hv_list)

hv_occupancy_list_sex <- hypervolume_n_occupancy(hv_list, 
  classification = rep(c("female", "male"), each = 3))

# takes 9 permutations on 1 core
hypervolume_n_occupancy_permute("permute", hv_occupancy_list_sex, hv_list, 
  classification = rep(c("female", "male"), each = 3), n = 9, cores = 1)
hypervolume_n_occupancy_test

Significance of random points occupancy

Description

Calculates overlap for two hypervolumes.

Usage

hypervolume_n_occupancy_test(observed, path, alternative = "two_sided", CI = 0.95, cores = 1)

Arguments

- observed: An HypervolumeList generated from hypervolume_n_occupancy.
- path: A path to a directory of permuted hypervolumes generated with hypervolume_n_occupancy_permute.
- alternative: Alternative hypothesis, can be one of two_sided, more, less or more_less.
- CI: Desired confidence interval proportion.
- cores: Number of logical cores to use while generating permuted hypervolumes. If parallel backend already registered to doParallel, function will use that backend and ignore the argument in cores.

Details

The observed difference between ValueAtRandomPoints of two groups is compared against null expectations generated with hypervolume_n_occupancy_permute.

Value

An HypervolumeList with length equal to the number of pairwise combination of the observed HypervolumeList elements. ValueAtRandomPoints are calculated as the difference between the ValueAtRandomPoints of the first and the second group for each pairwise combinations. Only significant values are retained according to CI.
**Examples**

```r
Not run:
data(penguins, package='palmerpenguins')
penguins_no_na = as.data.frame(na.omit(penguins))

penguins_no_na_split = split(penguins_no_na,
 paste(penguins_no_na$species, penguins_no_na$sex, sep = "_"))

hv_list = lapply(penguins_no_na_split, function(x)
 hypervolume_gaussian(x[, c("bill_length_mm","bill_depth_mm","flipper_length_mm")],
 samples.per.point=100))

names(hv_list) <- names(penguins_no_na_split)
hv_list <- hypervolume_join(hv_list)

hv_occupancy_list_sex <- hypervolume_n_occupancy(hv_list,
 classification = rep(c("female", "male"), each = 3))

takes 99 permutations on 1 core
hyper_permuted <- hypervolume_n_occupancy_permute("permute",
 hv_occupancy_list_sex, hv_list, classification = rep(c("female", "male"), each = 3),
 n = 99, cores = 1)

hypervolume_test <- hypervolume_n_occupancy_test(hv_occupancy_list_sex, hyper_permuted,
 alternative = "more")

End(Not run)
```

---

**hypervolume_overlap_confidence**

*Confidence intervals for overlap statistics*

**Description**

Generates confidence intervals of four different overlap statistics. In order to find the confidence interval for the overlap statistics of two hypervolumes, use `hypervolume_resample` twice to generate bootstraps. The function takes in paths to two sets of bootstrapped hypervolumes and gets overlap statistics for each possible pair. Confidence interval is calculated by taking a quantile of generated overlap statistics.

**Usage**

```r
hypervolume_overlap_confidence(path1, path2, CI = .95, cores = 1)
```
Arguments

- **path1**: A path to a directory of bootstrapped hypervolumes
- **path2**: A path to a directory of bootstrapped hypervolumes
- **CI**: Desired confidence interval proportion
- **cores**: Number of logical cores to use while generating overlap statistics. If parallel backend already registered to `doParallel`, function will use that backend and ignore the argument in cores.

Details

The four overlap statistics are Sorensen, Jaccard, frac_unique_1, frac_unique_2. See [hypervolume_overlap_statistics](#hypervolume_overlap_statistics)

Each hypervolume from path1 is overlapped with each hypervolume from path2 using `hypervolume_set`.

The four overlap statistics are calculated for each overlap.

Value

- **jaccard**: Confidence interval for jaccard similarity score
- **sorensen**: Confidence interval for sorensen similarity score
- **frac_unique_1**: Confidence interval for fraction of first hypervolume that is unique
- **frac_unique_2**: Confidence interval for fraction of second hypervolume that is unique
- **distribution**: a matrix of overlap statistics used to generate the confidence intervals

See Also

- [hypervolume_resample](#hypervolume_resample)

Examples

```r
Not run:
Let us overlap two hypervolumes generated from multivariate normal
distributions with different means and same covariance matrices.
sample1 = rmvnorm(150, mean = c(0, 0))
sample2 = rmvnorm(150, mean = c(0.5, 0.5))

hv1 = hypervolume(sample1)
hv2 = hypervolume(sample2)

generates confidence intervals from quantiles of 20x20 overlaps
path1 = hypervolume_resample("mean_0_0", hv1, n = 20)
path2 = hypervolume_resample("mean_0.5_0.5", hv2, n = 20)

result = hypervolume_overlap_confidence(path1, path2)
confidence index of Sorensen coefficient
print(result["sorensen"])
```

## End(Not run)
hypervolume_overlap_statistics

Overlap statistics for set operations (Sorensen, Jaccard, etc.)

Description
Calculates overlap metrics for two hypervolumes

Usage
hypervolume_overlap_statistics(hvlist)

Arguments
hvlist A set of hypervolumes calculated from hypervolume_set

Value
A set of multiple metrics
jaccard Jaccard similarity (volume of intersection of 1 and 2 divided by volume of union of 1 and 2)
sorensen Sorensen similarity (twice the volume of intersection of 1 and 2 divided by volume of 1 plus volume of 2)
frac_unique_1 Unique fraction 1 (volume of unique component of 1 divided by volume of 1)
frac_unique_2 Unique fraction 2 (volume of unique component of 2 divided by volume of 2)

Examples
## Not run:
data(penguins, package='palmerpenguins')
penguins_no_na = as.data.frame(na.omit(penguins))
penguins_adelie = penguins_no_na[penguins_no_na$species=='Adelie',
c("bill_length_mm","bill_depth_mm","flipper_length_mm")]
penguins_chinstrap = penguins_no_na[penguins_no_na$species=='Chinstrap',
c("bill_length_mm","bill_depth_mm","flipper_length_mm")]
hv1 = hypervolume_box(penguins_adelie, name='Adelie')
hv2 = hypervolume_box(penguins_chinstrap, name='Chinstrap')
hv_set <- hypervolume_set(hv1, hv2, check.memory=FALSE)
hypervolume_overlap_statistics(hv_set)
## End(Not run)
Null distribution for overlap statistics

Description

Generates null distribution of four different overlap statistics under the null hypothesis that two samples are drawn from the same population. Observed value of overlap statistic is calculated from inputed hypervolumes. calculates p value for observed value of each statistic with respect to the generated null distributions.

Usage

```r
hypervolume_overlap_test(hv1, hv2, path, alternative = "one-sided", bins = 100, cores = 1)
```

Arguments

- `hv1`: A hypervolume object
- `hv2`: A hypervolume object
- `path`: a path to a directory containing permuted hypervolumes, bootstrapped hypervolumes, or a vector of two paths to bootstrapped hypervolumes
- `alternative`: "one-sided" or "two-sided"
- `bins`: plotting parameter for histogram of overlap statistics
- `cores`: Number of logical cores to use while generating overlap statistics. If parallel backend already registered to doParallel, function will use that backend and ignore the argument in cores.

Details

Generating overlap statistics can be parallelized using the `cores` argument.

`hypervolume_overlap_test` can generate a null distribution from the output of `hypervolume_permute`, `hypervolume_resample` with method = "bootstrap", or a vector of two bootstrap outputs. See examples for how to use each case.

`path` should point to hypervolumes generated from the two input hypervolumes. There are three valid choices:

- `path` is generated from `hypervolume_permute(<name>, hv1, hv2, ...)`. In this case the null distribution is generated by taking the overlap statistics of every single pair of permutations and turning them into a histogram.

OR

- `path` is generated by resampling the hypervolume generated by combining the data of `hv1` and `hv2`. If the number of data points used to generate `hv1` is the same as `hv2` then the `path` is `hypervolume_resample(<name>, hv_combined, "bootstrap", points_per_resample = nrow(hv1@Data))`. In this case, the list bootstrapped hypervolumes is split in half and overlap statistics are taken for every possible pair
of hypervolumes from the two halves. A histogram of these overlap statistics represent the null
distribution.

If the number of data points is different between hv1 and hv2 path is a list of two paths generated
from hypervolume_resample(<name>, hv_combined, "bootstrap", points_per_resample = nrow(hv1@Data),
...) and hypervolume_resample(<name>, hv_combined, "bootstrap", points_per_resample
= nrow(hv2@Data), ...). Overlap statistics are taken for every possible pair of hypervolumes
from each bootstrap. A histogram of these overlap statistics represent the null distribution. See
example for appropriate path inputs.

The four overlap statistics are Sorensen, Jaccard, frac_unique_1, frac_unique_2. See hypervolume_overlap_statistics
for description of the statistics.

Value

- p_values: a list of p_values indexed by the name of the relevant statistic
- plots: a list of ggplot objects indexed by the name of the relevant statistic. The ob-
served value of each statistic is represented as a vertical line on the x axis.
- distribution: a matrix of overlap statistics used to generate the null distribution

See Also

hypervolume_resample, hypervolume_permute

Examples

```r
Not run:
We will use the data in "quercus" as our population in this example
data("quercus")
Consider taking two samples of size 150 from the population and you want to figure out whether
the samples are similar by seeing if they occupy the same area in feature space.
qsample1 = quercus[sample(1:nrow(quercus), 150),]
qsample2 = quercus[sample(1:nrow(quercus), 150),]

Construct two hypervolumes from the samples
hv1 = hypervolume(qsample1[,2:3])
hv2 = hypervolume(qsample2[,2:3])

Approach 1
Take 200 permutations of the 300 data points. Using more cores is faster.
perm_path = hypervolume_permute("Quercus_perm_150", hv1, hv2, n = 200, cores = 20)

hypervolume_overlap_test takes perm_path as an input.
Results include p values for the overlap statistics of hv1 and hv2 as well as
the corresponding null distributions generated from perm_path.
results1 = hypervolume_overlap_test(hv1, hv2, perm_path, cores = 20)

Approach 2
Under our null hypothesis the samples come from the same population.
Approximate the original population by combining the data
then simulate drawing 150 data points 50 times.
hv_combine = hypervolume(rbind(qsample1[,2:3],qsample2[,2:3]))
```
bootstrap_path = hypervolume_resample("Quercus_boot_150",
    hv_combine,
    method = "bootstrap",
    n = 50,
    points_per_resample = 150,
    cores = 20)

# hypervolume_overlap_test splits the 50 resampled hypervolumes in half and gets
# overlap statistic for each of the 25x25 pairs to generate the null
# distribution. This method allows us to approximate the null distribution using
# 625 data points while only generating 50 hypervolumes as opposed to
# hypervolume_permute which uses 400 hypervolumes to generate 200 data points.
results2 = hypervolume_overlap_test(hv1, hv2, bootstrap_path)

# Approach 3
# Suppose we have a size 300 sample and a size 150 sample and we want to know
# whether they come from the same distribution.
qsample3 = quercus[sample(1:nrow(quercus), 300),]
hv3 = hypervolume(qsample3[,2:3])

# Permutation still works in this case, however we can also use bootstrap by
# combining the data and drawing size 150 then size 300 samples.
hv_combine = hypervolume(rbind(qsample1[,2:3], qsample3[,2:3]))
b150_path = resample("Quercus_150",
    hv_combine,
    method = "bootstrap",
    n = 25,
    points_per_resample = 150,
    cores = 20)
b300_path = resample("Quercus_300",
    hv_combine,
    method = "bootstrap",
    n = 25,
    points_per_resample = 300,
    cores = 20)

# hypervolume_overlap_test generates overlap statistics for each of the 25x25
# possible pairs of size 150 and size 300 hypervolumes.
results3 = hypervolume_overlap_test(hv1, hv2, c(b150_path, b300_path), cores = 1)

## End(Not run)

hypervolume_permute  

Hypervolumes through permuting data of two hypervolumes

Description

Takes two data of two hypervolume objects (with the same column labels) and generates pairs of
hypervolumes with the original sizes of the input hypervolumes but with permuted data (the rows of
the original hypervolumes' data are combined and redistributed to the two new hypervolumes). This
function is meant for taking a sample of all permutations and does not guarantee that permutations are not repeated. Newly generated hypervolume objects are written to file.

Usage

```r
hypervolume_permute(name,
 hv1,
 hv2,
 n = 50,
 cores = 1,
 verbose = TRUE)
```

Arguments

- **name**: File name; The function writes hypervolumes to file in ./Objects/<name>
- **hv1**: A hypervolume object
- **hv2**: A hypervolume object
- **n**: number of permutations to take
- **cores**: Number of logical cores to use while generating permuted hypervolumes. If parallel backend already registered to `doParallel`, function will use that backend and ignore the argument in cores.
- **verbose**: Logical value; If function is being run sequentially, outputs progress bar in console.

Details

`hypervolume_permute` creates a directory called Objects in the current working directory if a directory of that name doesn’t already exist. Returns an absolute path to directory with permuted hypervolumes. rds files are stored in separate subdirectories for each permutation. Use `hypervolume_permute` when generating null distribution of overlap statistics. `hypervolume_overlap_test` takes in a `hypervolume_permute` filepath output.

It is also possible to access the hypervolumes by using `readRDS` to read the hypervolume objects in one by one.

Value

returns a string containing an absolute path equivalent to ./Objects/<name>

See Also

`hypervolume_overlap_test`

Examples

```r
Not run:
data("quercus")
For this example consider taking two samples of size 150 from the data.
qsampl1 = quercus[sample(1:nrow(quercus), 150),]
```
qsampl2 = quercus[sample(1:nrow(quercus), 150),]

# Construct two hypervolumes from the samples
hv1 = hypervolume(qsample1[,2:3])
hv2 = hypervolume(qsample2[,2:3])

# Take 200 permutations of the 300 data points. Using more cores is faster.
perm_path = hypervolume_permute("Quercus_perm_150", hv1, hv2, n = 200, cores = 20)

# hypervolume_overlap_test takes perm_path as an input.
# Results include p value for the overlap statistics of hv1 and hv2 as well as
# null distribution generated from perm_path. The null distribution assumes data
# for hv1 and hv2 are drawn from the same distribution and permuting data will
# not change the overlap statistics.
results = hypervolume_overlap_test(hv1, hv2, perm_path)

## End(Not run)

hypervolume_project

Geographical projection of hypervolume for species distribution modeling, using the hypervolume as the environmental niche model.

Description

Determines a suitability score by calculating the hypervolume value at each of a set of points in an input raster stack based on either a probability density estimation or inclusion test. Note that projected values are not normalized and are not necessarily constrained to fall between 0 and 1. Note also that additional arguments can be passed to this function to enable parallel operation (see ... below).

Usage

hypervolume_project(hv, rasters, type = "probability", verbose = TRUE, 
...)

Arguments

hv An input hypervolume
rasters A RasterStack with the same names as the dimension names of the hypervolume.
type If 'probability', suitability scores correspond to probability density values estimated using hypervolume_estimate_probability; if 'inclusion', scores correspond to binary presence/absence values from calling hypervolume_inclusion_test.
... Additional arguments to be passed to either hypervolume_estimate_probability or hypervolume_inclusion_test.
verbose If TRUE, prints diagnostic and progress output.
Value

A raster object of same resolution and extent as the input layers corresponding to suitability values.

See Also

hypervolume_estimate_probability, hypervolume_inclusion_test

Examples

```r
Not run:
load in lat/lon data
data('quercus')
data_alba = subset(quercus, Species="Quercus alba")[,c("Longitude","Latitude")]
data_alba = data_alba[sample(1:nrow(data_alba),500),]

get worldclim data from internet
require(maps)
require(raster)
climatelayers = getData('worldclim', var='bio', res=10, path=tempdir())

z-transform climate layers to make axes comparable
climatelayers_ss = climatelayers[[c(1,12)]]
for (i in 1:nlayers(climatelayers_ss))
{
 climatelayers_ss[[i]] <-
 (climatelayers_ss[[i]] - cellStats(climatelayers_ss[[i]], 'mean')) /
 cellStats(climatelayers_ss[[i]], 'sd')
}
climatelayers_ss = crop(climatelayers_ss, extent(-150,-50,15,60))

extract transformed climate values
climate_alba = extract(climatelayers_ss, data_alba[1:300,])

compute hypervolume
hv_alba <- hypervolume_gaussian(climate_alba)

do geographical projection
raster_alba_projected_accurate <- hypervolume_project(hv_alba,
rasters=climatelayers_ss)
raster_alba_projected_fast = hypervolume_project(hv_alba,
rasters=climatelayers_ss,
type='inclusion',
fast.or.accurate='fast')

draw map of suitability scores
plot(raster_alba_projected_accurate,xlim=c(-100,-60),ylim=c(25,55))
map('usa',add=TRUE)

plot(raster_alba_projected_fast,xlim=c(-100,-60),ylim=c(25,55))
map('usa',add=TRUE)
```
## End(Not run)

### hypervolume_prune

Removes small hypervolumes from a HypervolumeList

**Description**

Identifies hypervolumes characterized either by a number of uniformly random points or a volume below a user-specified value and removes them from a HypervolumeList.

This function is useful for removing small features that can occur stochastically during segmentation after set operations or hole detection.

**Usage**

```r
hypervolume_prune(hvlist, num.points.min = NULL, volume.min = NULL, return.ids=FALSE)
```

**Arguments**

- **hvlist**: A HypervolumeList object.
- **num.points.min**: The minimum number of points in each input hypervolume.
- **volume.min**: The minimum volume in each input hypervolume
- **return.ids**: If TRUE, returns indices of input list as well as a pruned hypervolume list

**Details**

Either `minnp` or `minvol` (but not both) must be specified.

**Value**

A HypervolumeList pruned to only those hypervolumes of sizes above the desired value. If `returnids=TRUE`, instead returns a list structure with first item being the HypervolumeList and the second item being the indices of the retained hypervolumes.

**See Also**

- hypervolume_holes
- hypervolume_segment

**Examples**

```r
Not run:
data(penguins,package='palmerpenguins')
penguins_no_na = as.data.frame(na.omit(penguins))
penguins_adelie = penguins_no_na[penguins_no_na$species=='Adelie',
c("bill_length_mm","bill_depth_mm","flipper_length_mm")]
hv = hypervolume_gaussian(penguins_adelie,name='Adelie')
hv_segmented <- hypervolume_segment(hv,

```
hypervolume_redundancy

Redundancy of a point in a hypervolume

Description
Estimates squared probability density at a given point. This metric is proportional to the number of data points multiplied by the probability density at a point.

Usage
hypervolume_redundancy(...)

Arguments
...Arguments to be passed to hypervolume_estimate_probability

See Also
hypervolume_estimate_probability

hypervolume_resample
Hypervolume resampling methods

Description
hypervolume_resample generates new hyperolumes based on the method input. Outputs written to file.
- "bootstrap": Generates n hyperolumes using data bootstrapped from original data
- "bootstrap seq": Generates n hyperolumes for each sample size in sequence specified by user
- "biased bootstrap": Bootstraps input hypervolume with biases applied through multivariate normal weights or user specified weights
Usage

hypervolume_resample(name, 
    hv, 
    method, 
    n = 10, 
    points_per_resample = "sample_size", 
    seq = 3:nrow(hv@Data), 
    k = 5, 
    cores = 1, 
    verbose = TRUE, 
    mu = NULL, 
    sigma = NULL, 
    cols_to_bias = 1:ncol(hv@Data), 
    weight_func = NULL)

Arguments

name
    File name; The function writes hypervolumes to file in ./Objects/<name>

hv
    A hypervolume object

method
    String input; options are "bootstrap", "bootstrap seq", and "biased bootstrap".

n
    Number of resamples to take. Used for every method.

points_per_resample
    Number of points in each resample. If the input is "sample_size", then the same number of points as the original sample is used. Used for method = "bootstrap" and method = "biased bootstrap".

seq
    Sequence of sample sizes. If method = "bootstrap seq" then the function generates n bootstrapped hypervolumes for each sample size in seq. Used for method = "bootstrap seq".

k
    Number of splits. Used only for method = "k_split".

cores
    Number of logical cores to use while generating bootstrapped hypervolumes. If parallel backend already registered to doParallel, function will use that backend and ignore the argument in cores.

verbose
    Logical value; If function is being run sequentially, outputs progress bar in console.

mu
    Array of values specifying the mean of multivariate normal weights. Used for method = "biased bootstrap".

sigma
    Array of values specifying the variance in each dimension. (Lower variance corresponds to stronger bias) Used for method = "biased bootstrap".

cols_to_bias
    Array of column indices; must be same length as mu and sigma. Used for method = "biased bootstrap".

weight_func
    Custom weight function that takes in a matrix of values and returns desired weights for each row Used for method = "biased bootstrap".
hypervolume_resample

Details

hypervolume_resample creates a directory called Objects in the current working directory if a
directory of that name doesn’t already exist. Returns an absolute path to directory with resampled
hypervolumes. rds files are stored in different file structures depending on which method is called.

Use to_hv_list to extract every hypervolume object in a directory into a HypervolumeList object.
It is also possible to access the hypervolumes by using readRDS to read the hypervolume objects in
one by one.

The resampled hypervolumes are generated using the same parameters used to generate the input
hypervolume. The only exception is that the bandwidth is re-estimated if method = "gaussian" or
method = "box". See copy_param_hypervolume for more details.

Value

returns a string containing an absolute path equivalent to ./Objects/<name>

See Also

to_hv_list, hypervolume_overlap_test, hypervolume_funnel, hypervolume_overlap_confidence

Examples

```r
Not run:
library(palmerpenguins)
data(penguins)
bill_data = na.omit(penguins[,3:4])
hv = hypervolume(bill_data)

Example 1: Get 50 resampled hypervolumes
Use detectCores to see how many cores are available in current environment
Set cores = 1 to run sequentially (default)
path = hypervolume_resample("example_bootstrap",
hv,
 method = "bootstrap",
 n = 50,
 cores = 12)
hvs = to_hv_list(path)

Example 2: Get resample with applied bias
Get maximum bill length
max_bill = max(bill_data$bill_length_mm)
Make data with larger bill length slightly more likely to be resampled
biased_path = hypervolume_resample("biased test",
hv,
 method = "biased bootstrap",
 n = 50,
 cores = 12,
 mu = max_bill,
 sigma = 90,
 cols_to_bias = "bill_length_mm")
hvs_biased = to_hv_list(biased_path)
```
## End(Not run)

### hypervolume_save_animated_gif

Saves animated GIF of three-dimensional hypervolume plot.

**Description**

Rotates the plot around an axis at a given speed and saves results as a series of GIFs. Requires that the rgl library is installed. Assumes there is an open RGL plot (e.g. from calling `plot(hv, show.3d=TRUE)`). If the magick package is available, combines these GIFs into a single animation.

**Usage**

```r
hypervolume_save_animated_gif(image.size = 400,
 axis = c(0, 0, 1), rpm = 4, duration = 15, fps = 10,
 file.name = "movie", directory.output = ".", ...)
```

**Arguments**

- `image.size`: Number of pixels on each side of the animated image.
- `axis`: A three-element vector describing the rotation axis.
- `rpm`: Animation speed in rotations per minute.
- `duration`: Animation duration in seconds.
- `fps`: Animation speed in frames per second.
- `file.name`: A base name (no extension) for the GIFs.
- `directory.output`: The folder in which output should be located.
- `...`: Other arguments to be passed to `rgl::movie3d`.

**Value**

None; used for the side-effect of producing files.

**Examples**

```r
Not run:
data(penguins, package='palmerpenguins')
penguins_no_na = as.data.frame(na.omit(penguins))
penguins_adelie = penguins_no_na[penguins_no_na$species=="Adelie",
 c("bill_length_mm","bill_depth_mm","flipper_length_mm")]

hv = hypervolume_gaussian(penguins_adelie, name='Adelie')

if(interactive())
```
```r
{
 plot(hv, show.3d=TRUE)
 hypervolume_save_animated_gif()
 rgl.close()
}
End(Not run)

hypervolume_segment Segments a hypervolume into multiple separate hypervolumes.

Description

Performs hierarchical clustering (using the 'single' method described in fastcluster::hclust) on the input hypervolume to determine which sets of points are closest to others, then cuts the resulting tree at a height equal to the characteristic distance between points multiplied by a distance factor. Random points in the input hypervolume corresponding to each distinct cluster are assigned to distinct output hypervolumes.

Because clustering algorithms scale quadratically with the number of input points, this algorithm can run slowly. Therefore by default, the function can thin the input hypervolume to a reduced number of random points before analysis. This causes some loss of resolution but improves runtimes.

Usage

```r
hypervolume_segment(hv, distance.factor = 1, num.points.max = NULL,  
                    verbose = TRUE, check.memory = TRUE)
```  

Arguments

- `hv`: An input Hypervolume class object.
- `distance.factor`: A numeric value characterizing the distance multiplication factor. Larger values result in fewer distinct output hypervolumes; smaller values result in more.
- `num.points.max`: A numeric value describing the maximum number of random points to be retained in the input; passed to hypervolume_thin before analysis. Set to NULL to disable thinning.
- `verbose`: Logical value; print diagnostic output if TRUE.
- `check.memory`: Logical value; returns information about expected memory usage if true.

Value

A HypervolumeList object.

See Also

hypervolume_thin
Examples

```r
# low sample sizes to meet CRAN time requirements
data(penguins, package='palmerpenguins')
penguins_no_na = as.data.frame(na.omit(penguins))
penguins_adelie = penguins_no_na[penguins_no_na$species=='Adelie',
    c("bill_length_mm","bill_depth_mm","flipper_length_mm")]

# intentionally make a holey shape for segmentation example
hv = hypervolume_gaussian(penguins_adelie, name='Adelie',
    kde.bandwidth=estimate_bandwidth(penguins_adelie)/3)

hv_segmented <- hypervolume_segment(hv,
    num.points.max=200, distance.factor=1.25,
    check.memory=FALSE) # intentionally under-segment
plot(hv_segmented, show.contour=FALSE)
```

hypervolume_set

Set operations (intersection / union / unique components)

Description

Computes the intersection, union, and unique components of two hypervolumes.

Usage

```r
hypervolume_set(hv1, hv2, num.points.max = NULL,
    verbose = TRUE, check.memory = TRUE, distance.factor = 1)
```

Arguments

- `hv1`: A n-dimensional hypervolume
- `hv2`: A n-dimensional hypervolume
- `num.points.max`: Maximum number of random points to use for set operations. If NULL defaults to \(10^{3+\sqrt{n}}\) where \(n\) is the dimensionality of the input hypervolumes. Note that this default parameter value has been increased by a factor of 10 since the 1.2 release of this package.
- `verbose`: Logical value; print diagnostic output if true.
- `check.memory`: Logical value; returns information about expected memory usage if true.
- `distance.factor`: Numeric value; multiplicative factor applied to the critical distance for all inclusion tests (see below). Recommended to not change this parameter.
Details

Uses the inclusion test approach to identify points in the first hypervolume that are or are not within the second hypervolume and vice-versa, based on determining whether each random point in each hypervolume is within a critical distance of at least one random point in the other hypervolume.

The intersection is the points in both hypervolumes, the union those in either hypervolume, and the unique components the points in one hypervolume but not the other.

If you have more than two hypervolumes and wish to calculate only an intersection, consider instead using `hypervolume_set_n_intersection` rather than iteratively applying this function.

By default, the function uses `check.memory=TRUE` which will provide an estimate of the computational cost of the set operations. The function should then be re-run with `check_memory=FALSE` if the cost is acceptable. This algorithm’s memory and time cost scale quadratically with the number of input points, so large datasets can have disproportionately high costs. This error-checking is intended to prevent the user from large accidental memory allocation.

The computation is actually performed on a random sample from both input hypervolumes, constraining each to have the same point density given by the minimum of the point density of each input hypervolume, and the point density calculated using the volumes of each input hypervolume divided by `num.points.max`.

Because this algorithm is based on distances calculated between the distributions of random points, the critical distance (point density ^ (-1/n)) can be scaled by a user-specified factor to provide more or less liberal estimates (`distance_factor` greater than or less than 1).

Value

If `check_memory` is false, returns a HypervolumeList object, with six items in its HVList slot:

- **HV1**: The input hypervolume hv1
- **HV2**: The input hypervolume hv2
- **Intersection**: The intersection of hv1 and hv2
- **Union**: The union of hv1 and hv2
- **Unique_1**: The unique component of hv1 relative to hv2
- **Unique_2**: The unique component of hv2 relative to hv1

Note that the output hypervolumes will have lower random point densities than the input hypervolumes.

You may find it useful to define a Jaccard-type fractional overlap between hv1 and hv2 as `hv_set@HVList$Intersection@Volume / hv_set@HVList$Union@Volume`.

If `check_memory` is true, instead returns a scalar with the expected number of pairwise comparisons.

If one of the input hypervolumes has no random points, returns NA with a warning.

See Also

`hypervolume_set_n_intersection`
Examples

```r
data(penguins, package='palmerpenguins')
penguins_no_na = as.data.frame(na.omit(penguins))
penguins_adelie = penguins_no_na[penguins_no_na$species=='Adelie', 
c('bill_length_mm', 'bill_depth_mm', 'flipper_length_mm')]
penguins_chinstrap = penguins_no_na[penguins_no_na$species=='Chinstrap', 
c('bill_length_mm', 'bill_depth_mm', 'flipper_length_mm')]

hv1 = hypervolume_box(penguins_adelie, name='Adelie')
hv2 = hypervolume_box(penguins_chinstrap, name='Chinstrap')

hv_set <- hypervolume_set(hv1, hv2, check.memory=FALSE)

hypervolume_overlap_statistics(hv_set)
# examine volumes of each set component
get_volume(hv_set)
```

hypervolume_set_n_intersection

Multi-way set intersection

Description

Intersection of n hypervolumes.

Usage

```r
hypervolume_set_n_intersection(hv_list, num.points.max = NULL, 
verbose = TRUE, distance.factor = 1, check.hyperplane = FALSE)
```

Arguments

- `hv_list`: A list of hypervolumes (HypervolumeList)
- `num.points.max`: Maximum number of random points to use for the calculation of the intersection. If NULL defaults to $10^{3+\sqrt{n}}$ where n is the dimensionality of the input hypervolumes. Note that this default parameter value has been increased by a factor of 10 since the 1.2 release of this package.
- `verbose`: Logical value; print diagnostic output if true.
- `distance.factor`: Numeric value; multiplicative factor applied to the critical distance for all inclusion tests (see below). Recommended to not change this parameter.
- `check.hyperplane`: Checks whether data in the input hypervolumes forms a hyperplane (if so, the algorithm is not able to accurately calculate an intersection)
Details

Finds the intersection of multiple hypervolumes. Using this function is likely faster and more accurate than iteratively applying hypervolume_set to hypervolume pairs, as this function does not iteratively perform downsampling.

Stores all the points from the input hypervolumes in a single set. Then uses the inclusion test approach to identify and store points from this set that are within each individual resampled hypervolume, successively. All the points that are common to all the tests are grouped, resampled and used to generate the hypervolume corresponding to the intersection.

The computation is actually performed on a random sample from input hypervolumes, constraining each to have the same point density given by the minimum of the point density of each input hypervolume, and the point density calculated using the volumes of each input hypervolume divided by num.points.max. Because this algorithm is based on distances calculated between the distributions of random points, the critical distance (point density ^ (-1/n)) can be scaled by a user-specified factor to provide more or less liberal estimates (distance_factor greater than or less than 1).

Value

result The intersection of the input hypervolumes, as a unique hypervolume

Note that the output hypervolumes will have lower random point densities than the input hypervolumes.

If one of the input hypervolumes has no random points, returns NA with a warning.

See Also

hypervolume_set

Examples

```r
# Not run:
data(iris)
hv1 = hypervolume_gaussian(subset(iris, Species="setosa")[,1:3],
   name='setosa')
hv2 = hypervolume_gaussian(subset(iris, Species="virginica")[,1:3],
   name='virginica')
hv3 = hypervolume_gaussian(subset(iris, Species="versicolor")[,1:3],
   name='versicolor')

hv_list = hypervolume_join(hv1,hv2,hv3)
intersection = hv_set_n_intersection(hv_list)

# End(Not run)
```
hypervolume_svm

Hypervolume construction via one-class support vector machine (SVM) learning model

Description

Constructs a hypervolume by building a one-class support vector machine that classifies data points as 'in' and other locations as 'out'. This is accomplished by 1) transforming the input data into a high-dimensional nonlinear space in which the data points can be optimally separated from background by a single hyperplane, 2) back-transforming the hyperplane into the original space, 3) delineating an adaptive grid of random points near the original data points, and 4) using the SVM to predict if each of these points is in or out.

Usage

```r
hypervolume_svm(data, name = NULL,
                  samples.per.point = ceiling((10^(3 + sqrt(ncol(data))))/nrow(data)),
                  svm.nu = 0.01, svm.gamma = 0.5,
                  scale.factor = 1,
                  chunk.size = 1000, verbose = TRUE)
```

Arguments

- **data**: A m x n matrix or data frame, where m is the number of observations and n is the dimensionality.
- **name**: A string to assign to the hypervolume for later output and plotting. Defaults to the name of the variable if NULL.
- **samples.per.point**: Number of random points to be evaluated per data point in data.
- **svm.nu**: A SVM parameter determining an upper bound on the fraction of training errors and a lower bound of the fraction of support vectors. Lower values result in tighter wrapping of the shape to the data (see section 2.2. of https://www.csie.ntu.edu.tw/~cjlin/papers/libsvm.pdf).
- **svm.gamma**: A SVM parameter defining the inverse radius of influence of a single point. Low values yield large influences (smooth less complex wraps around the data) and high values yield small influences (tighter but potentially noiser wraps around the data) (see http://scikit-learn.org/stable/auto_examples/svm/plot_rbf_parameters.html).
- **scale.factor**: A multiplicative factor used to determine the boundaries of the hyperelliptical sampling region. Larger values yield larger boundaries and can prevent clipping. Should not need to be changed in almost any situation.
- **chunk.size**: Number of random points to process per internal step. Larger values may have better performance on machines with large amounts of free memory. Changing this parameter does not change the output of the function; only how this output is internally assembled.
- **verbose**: Logical value; print diagnostic output if TRUE.
Value

A `Hypervolume-class` object corresponding to the inferred hypervolume.

See Also

`hypervolume_threshold`

Examples

```r
data(penguins, package='palmerpenguins')
penguins_no_na = as.data.frame(na.omit(penguins))
penguins_adelie = penguins_no_na[penguins_no_na$species=='Adelie',
  c("bill_length_mm","bill_depth_mm","flipper_length_mm")]

hv = hypervolume_svm(penguins_adelie, name='Adelie')
summary(hv)
```

hypervolume_thin
Reduces the number of random points in a hypervolume

Description

Many hypervolume algorithms have computational complexities that scale with the number of random points used to characterize a hypervolume (@RandomPoints). This value can be reduced to improve runtimes at the cost of lower resolution.

Usage

```r
hypervolume_thin(hv, factor = NULL, num.points = NULL)
```

Arguments

- **hv**: An object of class Hypervolume
- **factor**: A number in (0,1) describing the fraction of random points to keep.
- **num.points**: A number describing the number random points to keep.

Details

Either `factor` or `npoints` (but not both) must be specified.

Value

A Hypervolume object
Examples

```r
data(penguins, package='palmerpenguins')
penguins_no_na = as.data.frame(na.omit(penguins))
penguins_adelie = penguins_no_na[penguins_no_na$species=='Adelie',
c('bill_length_mm','bill_depth_mm','flipper_length_mm')]

hv = hypervolume_box(penguins_adelie, name='Adelie')

# downsample to 1000 random points
hv_thinned = hypervolume_thin(hv, num.points=1000)
hv_thinned
```

hypervolume_threshold
Thresholds hypervolume and calculates volume quantile statistics (empirical cumulative distribution function)

Description

Thresholds a hypervolume at a given value that can correspond to a quantile of the hypervolume. All random points below the threshold value are removed and the volume is adjusted accordingly. Provides threshold-quantile plots if multiple thresholds are specified (as by default).

Quantiles can be specified to be either of the total volume enclosed by the hypervolume \(p(\text{proportional to} \; \text{row(hv@RandomPoints)}) \), or of the total probability density (proportional to \(\text{sum(hv@ValueAtRandomPoints)} \)).

Usage

```r
hypervolume_threshold(hv, 
    thresholds = NULL, 
    num.thresholds = 20, 
    quantile.requested = NULL, 
    quantile.requested.type = "volume", 
    uniform.density = TRUE, 
    plot = TRUE, verbose = TRUE)
```

Arguments

- `hv`: An input hypervolume
- `thresholds`: A sequence of probability threshold values. If NULL, defaults to a sequence of length `num.thresholds` spanning the minimum and maximum probability values in the hypervolume.
- `num.thresholds`: The number of threshold values to use if `thresholds=NULL`. Otherwise ignored.
- `quantile.requested`: If not NULL, selects a single hypervolume corresponding to the threshold value that comes closest to enclosing the requested quantile fraction of the type `quantile.requested.type`. Using high values of `num.thresholds` enables more accurate threshold and quantile selection.
hypervolume_variable_importance

quantile.requested.type
 Determines the quantile type: either "volume" or "probability".

uniform.density
 Logical value. If TRUE, sets all @ValueAtRandomPoints values to 1 in order to
 represent thresholded hypervolume as a solid geometrical shape.

plot
 Plots a threshold-quantile plot if TRUE. Quantiles are shown for both volume and
 probability density. This plot is similar to an empirical cumulative distribution
 function.

verbose
 If TRUE, prints diagnostic progress messages.

Details

Hypervolumes constructed using the hypervolume_box method may not always yield quantiles
close to the requested value because of the flat shape of the kernel.

Value

A list containing two elements: a HypervolumeList or Hypervolume object corresponding to the
hypervolumes at each threshold value, and a dataframe Statistics corresponding to the relevant
quantiles and thresholds.

Examples

```r
## Not run:
data(penguins, package='palmerpenguins')
penguins_no_na = as.data.frame(na.omit(penguins))
penguins_adelie = penguins_no_na[penguins_no_na$species=="Adelie",
c("bill_length_mm","bill_depth_mm","flipper_length_mm")]

hv = hypervolume_box(penguins_adelie, name='Adelie')

# get hypervolumes at multiple thresholds
hvlist = hypervolume_threshold(hv, plot=TRUE)
head(hvlist$Statistics)
plot(hvlist$HypervolumesThresholded[[c(1,5,10,15,20)]],
    show.random=TRUE, show.data=FALSE, show.centroid=FALSE)

# get hypervolume for a single low quantile value
plot(hypervolume_threshold(hv, plot=FALSE, verbose=FALSE,
    quantile.requested=0.1, quantile.requested.type="volume")[[1]])

## End(Not run)
```
Description

Assesses the contribution of each variable to the total hypervolume as a rough metric of variable importance.

Usage

hypervolume_variable_importance(hv, verbose = TRUE)

Arguments

hv A hypervolume for which the importance of each variable should be calculated.
verbose If TRUE, prints diagnostic progress messages.

Details

The algorithm proceeds by comparing the n-dimensional input hypervolume’s volume to all possible n-1 dimensional hypervolumes where each variable of interest has been deleted. The importance score reported is the ratio of the n-dimensional hypervolume relative to each of the n-1 dimensional hypervolumes. Larger values indicate that a variable makes a proportionally higher contribution to the overall volume.

The algorithm can only be used on Hypervolumes that have a Data and Method value, because the variable deletion process is not well defined for objects that are not associated with a particular set of observations and construction method.

Value

A named vector with importance scores for each axis. Note that these scores are not dimensionless but rather have units corresponding to the original units of each variable.

Examples

low parameter values for speed
data(penguins, package='palmerpenguins')
penguins_no_na = as.data.frame(na.omit(penguins))
penguins_adelie = penguins_no_na[penguins_no_na$species=='Adelie',
c('bill_length_mm','bill_depth_mm','flipper_length_mm')]

hv = hypervolume_box(penguins_adelie, name='Adelie')

varimp = hypervolume_variable_importance(hv, verbose=FALSE)
barplot(varimp, ylab='Importance', xlab='Variable')
Morphological data for Darwin’s finches

Description

Data for nine morphological traits for species of Darwin’s finches occurring on the Galapagos Islands.

Note that the underlying morphological dataset has been augmented and improved since version 1.3.1 to include more species and islands. Results are not comparable to version 1.3.0 and below. To duplicate results in the Blonder et al. (2014) paper please install an older version of the package.

Usage

data("morphSnodgrassHeller")

Format

A data frame with 549 observations on the following 20 variables.

Source a factor with levels Snodgrass & Heller (1904)

IslandID a factor with levels Balt_SS Drwn_Clp Esp_Hd Flor_Chr1 Frn_Nrb Gnov_Twr Isa_Alb Mrch_Bndl Pnt_Abng Pnz_Dnc SCris_Chat SCru_Inde SFe_Brngt Snti_Jams Wlf_Wnm

TaxonOrig a factor with levels Certhidea cinerascens bifasciata Certhidea cinerascens cinerascens Certhidea olivacea becki Certhidea olivacea fusca Certhidea olivacea luteola Certhidea olivacea mentalis Certhidea olivacea olivacea Geospiza affinis Geospiza conirostris conirostris Geospiza conirostris propinqua Geospiza crassirostris Geospiza fortis dubia Geospiza fortis fortis Geospiza fortis fratercula Geospiza fortis platyrhyncha Geospiza fuliginosa acutirostris Geospiza fuliginosa difficultis Geospiza fuliginosa fuliginosa Geospiza fuliginosa minor Geospiza fuliginosa parvula Geospiza habeli Geospiza helenobates Geospiza paupera Geospiza prothemelias prothemeleas Geospiza prothemeleas salvini Geospiza psittacula psittacula Geospiza scandens abingdoni Geospiza scandens fatigata Geospiza scandens rothschildi Geospiza scandens scandens Geospiza septentrionalis Geospiza strenua

GenusL69 a factor with levels Camarhynchus Certhidea Geospiza Platyspiza

SpeciesL69 a factor with levels conirostris crassirostris difficultis fortis fuliginosa heliobates magnirostris olivacea parvulus pauper psittacula scandens

SubspL69 a factor with levels abingdoni affinis becki bifasciatus cinerascens conirostris darwini fusca habeli intermedia luteola mentalis olivacea parvulus propinqua psittacula rothschildi salvini scandens septentrionalis strenua

SpeciesID a factor with levels Cam.hel Cam.par Cam.pau Cam.psi Cer.oli Geo.con Geo.dif Geo.for Geo.ful Geo.mag Geo.sca Pla.cra

SubspID a factor with levels Cam.hel Cam.par.par Cam.par.sal Cam.pau Cam.psi.aff Cam.psi.hab Cam.psi.psi.Cer.oli.bec Cer.oli.bif Cer.oli.cin Cer.oli.fus Cer.oli.lut Cer.oli.men Cer.oli.psi.Ge.con Geo.con.dar Geo.con.pro Geo.dif.sep Geo.for Geo.ful Geo.mag.str Geo.sca.abi Geo.sca.int Geo.sca.rot Geo.sca.sca Pla.cra
Sex a factor with levels F M
Plumage a logical vector
BodyL a numeric vector
WingL a numeric vector
TailL a numeric vector
BeakW a numeric vector
BeakH a numeric vector
LBeakL a numeric vector
UBeakL a numeric vector
N.UBkL a factor with levels 10 10.3 10.5 10.7 11 11.3 11.5 11.7 12 12.3 12.5 12.7 13 13.3
13.5 13.7 14 14.3 14.5 14.7 15 15.3 15.5 15.7 16 16.3 16.5 16.7 17 17.3 17.5 17.7 3
7.5 7.7 8.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8
TarsusL a numeric vector
MToeL a logical vector

Source
Snodgrass RE and Heller E (1904) Papers from the Hopkins-Stanford Galapagos Expedition, 1898-
Downloaded from http://datadryad.org/resource/doi:10.5061/dryad.152

Examples
data(morphSnodgrassHeller)
finch_isabela <- morphSnodgrassHeller[morphSnodgrassHeller$IslandID=="Isa_Alb",]

padded_range(data, multiply.interval.amount = 0, add.amount = 0)

Description
For each data axis, finds the minimum and maximum values. Then pads this range by a multiplica-
tive factor of the range interval, and pads again by an additive amount.

Usage
padded_range(data, multiply.interval.amount = 0, add.amount = 0)

Arguments
data A m x n matrix whose range limits should be found.
multiply.interval.amount A non-negative factor used to multiply the range interval. Can have either di-
mensionality 1 or n.
add.amount A non-negative factor used to add to the range limits. Can have either dimen-
sionality 1 or n.
Value

A 2 x n matrix, whose first row is the low value along each axis and whose second row is the high value along each axis.

Examples

data(morphSnodgrassHeller)
finch_isabela <- na.omit(morphSnodgrassHeller[morphSnodgrassHeller$IslandID=="Isa_Alb",
c("WingL","TailL","BeakW","BeakH")])

finch_isabela_rangebox_nopadding = padded_range(finch_isabela)
finch_isabela_rangebox_nopadding

finch_isabela_rangebox_padding = padded_range(finch_isabela,
multiply.interval.amount=0.5, add.amount=0.1)
finch_isabela_rangebox_padding

plot.HypervolumeList

Plot a hypervolume or list of hypervolumes

Description

Plots a single hypervolume or multiple hypervolumes as either a pairs plot (all axes) or a 3D plot (a subset of axes). The hypervolume is drawn as a uniformly random set of points guaranteed to be in the hypervolume.

Usage

S3 method for class 'HypervolumeList'
plot(x,
show.3d=FALSE, show.3d.axes.id=NULL,
show.axes=TRUE, show.frame=TRUE,
show.random=TRUE, show.density=TRUE,show.data=TRUE,
names=NULL, show.legend=TRUE, limits=NULL,
show.contour=TRUE, contour.lwd=1.5,
contour.type='kde',
contour.alphahull.alpha=0.25,
contour.ball.radius.factor=1,
contour.kde.level=1e-04,
contour.raster.resolution=100,
show.centroid=TRUE, cex.centroid=2,
colors=rainbow(floor(length(x@HVList)*1.5),alpha=0.8),
point.alpha.min=0.2, point.dark.factor=0.5,
cex.random=0.5,cex.data=0.75,cex.axis=0.75,cex.names=1.0,cex.legend=0.75,
um.points.max.data = 1000, num.points.max.random = 2000, reshuffle=TRUE,
plot.function.additional=NULL,
verbose=FALSE,
...
Arguments

x

A Hypervolume or HypervolumeList object. The objects to be plotted.

show.3d

If TRUE, makes a three-dimensional plot of a subset of axes determined by plot.3d.axes.id; otherwise, a pairs plot of all axes. Requires that the rgl library is installed.

plot.3d.axes.id

Numeric identities of axes to plot in three dimensions. Defaults to 1:3 if set to NULL.

show.axes

If TRUE, draws axes on the plot.

show.frame

If TRUE, frames the plot with a box.

show.random

If TRUE, shows random points from the hypervolume.

show.density

If TRUE, draws random points with alpha level proportional to their unit-scaled probability density. Note that this has no effect when probability density is not relevant, i.e. for hypervolumes that are the output of set operations.

show.data

If TRUE, draws data points from the hypervolume. Note that this has no effect if the hypervolume is not associated with data points, e.g. for those that are the output of set operations.

names

A vector of strings in the same order as the input hypervolumes. Used to draw the axes labels.

show.legend

If TRUE, draws a color legend.

limits

A list of two-element vectors corresponding to the axes limits for each dimension. If a single two-element vector is provided it is re-used for all axes.

show.contour

If TRUE, draws a boundary line around each two-dimensional projection. Ignored if show.3d=TRUE.

contour.lwd

Line width used for contour lines. Ignored if show.contour=FALSE.

contour.type

Type of contour boundary: any of "alphahull" (alpha hull), "ball" (experimental ball covering), "kde" (2D KDE smoothing), or "raster" (grid-based rasterization).

contour.alphahull.alpha

Value of the alpha parameter for a "alphahull" contour. Can be increased to provide smoother contours.

contour.ball.radius.factor

Factor used to multiply radius of ball surrounding each random point for a "ball" contour.

contour.kde.level

Probability level used to delineate edges for a "kde" contour.

contour.raster.resolution

Grid resolution for a "raster" contour.

show.centroid

If TRUE, draws a colored point indicating the centroid for each hypervolume.

cex.centroid

Expansion factor for the centroid symbol.

colors

A vector of colors to be used to plot each hypervolume, in the same order as the input hypervolumes.
plot.HypervolumeList

point.alpha.min
Fractional value corresponding to the most transparent value for plotting random points. 0 corresponds to full transparency.

point.dark.factor
Fractional value corresponding to the darkening factor for plotting data points. 0 corresponds to fully black.

cex.random
cex value for uniformly random points.

cex.data
cex value for data points.

cex.axis
cex value for axes, if pair=T.

cex.names
cex value for variable names printed on the diagonal, if pair=T.

cex.legend
cex value for the legend text

num.points.max.data
An integer indicating the maximum number of data points to be sampled from each hypervolume. Lower values result in faster plotting and smaller file sizes but less accuracy.

num.points.max.random
An integer indicating the maximum number of random points to be sampled from each hypervolume. Lower values result in faster plotting and smaller file sizes but less accuracy.

reshuffle
A logical value relevant when pair=TRUE. If false, each hypervolume is drawn on top of the previous hypervolume; if true, all points of all hypervolumes are randomly shuffled so no hypervolume is given visual preference during plotting.

plot.function.additional
Any function(i,j) that will add additional plotting commands for column i and row j of the pairs plot. Should not create new plots or change par() settings. Has no effect if show.3d=TRUE.

verbose
If TRUE, prints diagnostic information about the number of points being plotted

... Additional arguments to be passed to rgl::plot3d.

Value

None; used for the side-effect of producing a plot.

Note

Contour line plotting with alphahull requires the non-FOSS alphahull package to be installed. Please do so in order to use this functionality!

See Also

hypervolume_save_animated_gif
print.Hypervolume

Examples

```r
## Not run:
# low parameter values for speed
data(penguins, package='palmerpenguins')
penguins_no_na = as.data.frame(na.omit(penguins))
penguins_adelie = penguins_no_na[penguins_no_na$species=='Adelie',
   c("bill_length_mm","bill_depth_mm","flipper_length_mm")]

hv = hypervolume_gaussian(penguins_adelie, name='Adelie')

# 2d plot
plot(hv, show.3d=FALSE)

# 3d plot
if(interactive()){
  plot(hv, show.3d=TRUE)
}
## End(Not run)
```

print.Hypervolume

Print summary of hypervolume

Description

Summarizes all slots of Hypervolume-class object.

Usage

```r
## S3 method for class 'Hypervolume'
print(x, ...)
## S3 method for class 'HypervolumeList'
print(x, ...)
```

Arguments

- `x` The hypervolume to summarize
- `...`

Value

None; used for the side-effect of printing.
Description

Data for occurrences of Quercus alba and Quercus rubra based on geographic observations. Demonstration analysis of how to use hypervolumes for species distribution modeling using WorldClim data.

Usage

data(quercus)

Format

A data frame with 3779 observations on the following 3 variables.

Species a factor with levels Quercus alba Quercus rubra
Latitude a numeric vector
Longitude a numeric vector

Source

Occurrence data come from the BIEN database (https://biendata.org/). Climate data are from WorldClim.

References

Examples

demo('quercus', package='hypervolume')

summary.Hypervolume Summary of hypervolume

Description

Prints basic information about Hypervolume or HypervolumeList structure.
Usage

```r
## S3 method for class 'Hypervolume'
summary(object, ...)
## S3 method for class 'HypervolumeList'
summary(object, ...)
```

Arguments

- `object`: The hypervolume to summarize
- `...`

Value

None; used for the side-effect of printing.

to_hv_list

Read hypervolumes from directory

Description

Takes a path to a directory containing only rds files and reads them into a HypervolumeList object.

Usage

```r
to_hv_list(path)
```

Arguments

- `path`: absolute or relative path to directory containing rds files

Details

Use `to_hv_list` on the output from `hypervolume_resample` when method = "bootstrap" to read bootstrapped hypervolumes into memory.

Value

HypervolumeList object

Examples

```r
## Not run:
library(palmerpenguins)
data(penguins)
bill_data = na.omit(penguins[,3:4])
hv = hypervolume(bill_data)

# Use detectCores to see how many cores are available in current environment
```

weight_data

path = hypervolume_resample("example_bootstrap", hv, method = "bootstrap", n = 50, cores = 12)
 hvs = to_hv_list(path)

End(Not run)

weight_data Abundance weighting and prior of data for hypervolume input

Description

Resamples input data for hypervolume construction, so that some data points can be weighted more strongly than others in kernel density estimation. Also allows a multidimensional normal prior distribution to be placed on each data point to enable simulation of uncertainty or variation within each observed data point.

Note that this algorithm will change the number of data points and may thus lead to changes in the inferred hypervolume if the selected algorithm (e.g. for bandwidth selection) depends on sample size.

A direct weighting approach (which does not artificially change the sample size, and thus the kernel bandwidth estimate) is available for Gaussian hypervolumes within hypervolume_gaussian.

Usage

weight_data(data, weights, jitter.sd = matrix(0, nrow = nrow(data), ncol = ncol(data)))

Arguments

data A data frame or matrix of unweighted data. Must only contain numeric values.

weights A vector of weights with the same length as the number of rows in data. All values must take positive integer values.

jitter.sd A matrix of the same size as data corresponding to the standard deviation of a normal distribution with mean equal to that of the observed data. If a vector of length equal to 1 or the number of columns of data, is repeated for all observations.

Details

Each data point is jittered a single time. To sample many points from a distribution around each observed data point, multiply all weights by a large number.

Value

A data frame with the rows of data repeated by weights, potentially with noise added. The output has the same columns as the input but sum(weights) total rows.

See Also

hypervolume_gaussian
Examples

data(penguins, package='palmerpenguins')
penguins_no_na = as.data.frame(na.omit(penguins))
penguins_adelie = penguins_no_na[penguins_no_na$species=="Adelie",
 c("bill_length_mm","bill_depth_mm","flipper_length_mm")]

weighted_data <- weight_data(penguins_adelie,
 weights=1+rpois(n=nrow(penguins_adelie),lambda=3))
color points by alpha to show overlaps
pairs(weighted_data, col=rgb(1,0,0, alpha=0.15))

weighted_noisy_data <- weight_data(penguins_adelie,
 weights=1+rpois(n=nrow(penguins_adelie),lambda=3), jitter.sd=0.5)
color points by alpha to show overlaps
pairs(weighted_noisy_data, col=rgb(1,0,0, alpha=0.15))
Index

classes
- HypervolumeList-class, 14

datasets
- morphSnodgrassHeller, 55

- copy_param_hypervolume, 4, 43
- estimate_bandwidth, 5, 13–15, 20
- expectation_ball, 6, 13
- expectation_box, 7, 13
- expectation_convex, 8, 13
- expectation_maximal, 9
- get_centroid, 10
- get_centroid_weighted, 11
- get_volume, 12
- get_volume, Hypervolume-method
 - (get_volume), 12
- get_volume, HypervolumeList-method
 - (get_volume), 12
- get_volume, HypervolumeHypervolumeList
 - (get_volume), 12

- hypervolume, 12
- Hypervolume-class, 13
- hypervolume-package, 3
- hypervolume_box, 12, 14
- hypervolume_distance, 15
- hypervolume_estimate_probability, 16, 24, 38, 39, 41
- hypervolume_funnel, 18, 43
- hypervolume_gaussian, 12, 19, 63
- hypervolume_general_model, 21
- hypervolume_holes, 22, 40
- hypervolume_inclusion_test, 17, 24, 24, 38, 39
- hypervolume_join, 25
- hypervolume_n_occupancy, 26, 30
- hypervolume_n_occupancy_permute, 28, 30
- hypervolume_n_occupancy_test, 29, 30
- hypervolume_overlap_confidence, 31, 43
- hypervolume_overlap_statistics, 32, 33, 35
- hypervolume_overlap_test, 34, 37, 43
- hypervolume_permute, 35, 36
- hypervolume_project, 38
- hypervolume_prune, 40
- hypervolume_redundancy, 17, 41
- hypervolume_resample, 32, 35, 41
- hypervolume_save_animated_gif, 44, 49
- hypervolume_segment, 40, 45
- hypervolume_set, 33, 46, 49
- hypervolume_set_n_intersection, 47, 48
- hypervolume_svm, 12, 50
- hypervolume_thin, 45, 51
- hypervolume_threshold, 13, 15, 19–21, 51, 52
- hypervolume_variable_importance, 53
- HypervolumeList-class, 14

- morphSnodgrassHeller, 55

- padded_range, 21, 56

- plot.Hypervolume
 - (plot.HypervolumeList), 57
- plot.HypervolumeList, 57
- print.Hypervolume, 60
- print.HypervolumeList
 - (print.Hypervolume), 60

- quercus, 61

- show.Hypervolume (summary.Hypervolume), 61
- show.HypervolumeList
 - (summary.Hypervolume), 61
- summary.Hypervolume, 61
- summary.HypervolumeList
 - (summary.Hypervolume), 61
to_hv_list, 43, 62

weight_data, 13, 63