Package ‘hyperoverlap’

September 4, 2020

Title Overlap Detection in n-Dimensional Space
Version 1.0
Description
Uses support vector machines to identify a perfectly separating hyperplane (linear or curvilinear) between two entities in high-dimensional space. If this plane exists, the entities do not overlap. Applications include overlap detection in morphological, resource or environmental dimensions. More details can be found in: Brown et al. (2020) <doi:10.1111/2041-210X.13363>.

Depends R (>= 3.4.0)
Imports e1071, matlib, ggplot2, rgl, misc3d, methods, stats, MASS, graphics
License GPL-3
Encoding UTF-8
LazyData true
Suggests knitr, rmarkdown, plotrix, rlang
VignetteBuilder knitr
RoxygenNote 7.1.1
NeedsCompilation no
Author Matilda Brown [aut, cre] (https://orcid.org/0000-0003-2536-8365), Greg Jordan [aut]
Maintainer Matilda Brown <matilda.brown@utas.edu.au>
Repository CRAN
Date/Publication 2020-09-04 07:42:08 UTC

R topics documented:

hyperoverlap .. 2
hyperoverlap-class ... 2
hyperoverlap_detect ... 3
hyperoverlap_Lda ... 4
hyperoverlap_pairs_plot 5
hyperoverlap_plot ... 5
hyperoverlap_set ... 6
Hyperoverlap: Detection and Visualisation of Overlap in n-Dimensional Space

Description

Uses support vector machines to identify a perfectly separating hyperplane (linear or curvilinear) between two entities in high-dimensional space. If this plane exists, the entities do not overlap. Applications include overlap detection in morphological, resource or environmental dimensions.

Details

Author(s)

Matilda Brown <matilda.brown@utas.edu.au>

Description

Storage class for the description of hyperoverlaps

Slots

entity1 A length-one character vector
entity2 A length-one character vector
dimensions A length n character vector containing the variables used to define the space
occurrences A matrix containing the labelled input data
shape shape of the decision boundary; either "linear" or "curvilinear"
polynomial.order a length-one numeric vector showing the polynomial order of the most accurate kernel function. "0" if linear kernel.
result a length-one character vector, either "overlap" or "non-overlap"
accuracy a 2x2 table with the true (y) and predicted (pred) labels
number.of.points.misclassified a length-one numeric vector
model svm model used to plot decision boundary
Hyperoverlap detection is an algorithm that uses support vector machines (SVMs) to determine whether two entities overlap in n-dimensional space. The algorithm trains a support vector machine on a matrix containing the ecological data (x) and labels (y) for two entities. The predicted label of each point is evaluated, and if every point has been classified correctly, the entities can be separated and they do not overlap.

Usage

```r
hyperoverlap_detect(x, y, kernel = "polynomial", kernel.degree = 3, cost = 500, stoppage.threshold = 0.4, verbose = TRUE, set = FALSE)
```

Arguments

- **x**: A matrix or data.frame containing the variables of interest for both entities.
- **y**: A vector of labels.
- **kernel**: Character. Either "linear" or "polynomial" (default = "polynomial").
- **kernel.degree**: Parameter needed for kernel = polynomial (default = 3).
- **cost**: Specifies the SVM margin 'hardness'. Default value is 50, but can be increased for improved accuracy (although this increases runtimes and memory usage).
- **stoppage.threshold**: Numeric. If the number of points misclassified using a linear hyperplane exceeds this proportion of the number of observations, non-linear separation is not attempted. Must be between 0 and 1 (default = 0.2).
- **verbose**: Logical. If TRUE, prints diagnostic messages.
- **set**: Logical. Is this function being called as part of hyperoverlap_set()? Should not need to be changed.

Details

Input data should be preprocessed so that all variables are comparable (e.g. same order of magnitude). Polynomial kernels allow curvilinear decision boundaries to be found between entities (see https://www.cs.cmu.edu/~ggordon/SVMs/new-svms-and-kernels.pdf). Smaller values of kernel.degree permit less complex decision boundaries; biological significance is likely to be lost at values > 5.

Value

A `hyperoverlap-class` object
Examples

```r
data = iris[which(iris$Species!="versicolor"),]
x = hyperoverlap_detect(data[,1:3],data$Species, kernel="linear")
```

hyperoverlap_lda
Hyperoverlap visualisation using linear discriminant analysis (LDA)

Description

Hyperoverlap visualisation using linear discriminant analysis (LDA)

Usage

```r
hyperoverlap_lda(x, return.plot=TRUE, visualise3d=FALSE, showlegend=TRUE)
```

Arguments

- `x`
 An `hyperoverlap-class` object.
- `return.plot`
 Logical. If TRUE, data are plotted using `plot()`.
- `visualise3d`
 Logical. If FALSE, data are projected onto two axes (LDA1, residualPCA1). If TRUE, data are projected onto three axes (LDA1, residualPCA1, residualPCA2)
- `showlegend`
 Logical. Used for 3D plots.

Details

This function provides a way to visualise overlap (or non-overlap) between classes of high dimensional data. For inspection, it is useful to use the base graphics package (implemented by `return.plot=TRUE`). The transformed coordinates of each point are also returned as a dataframe, which can be plotted with user-defined parameters.

Value

Returns a dataframe with columns "Entity", "LDA1", "residualPCA1", "residualPCA2" (if `visualise3d = TRUE`)

See Also

- `hyperoverlap_detect`

Examples

```r
#using iris dataset reduced to two species
data = iris[which(iris$Species!="versicolor"),]
x = hyperoverlap_detect(data[1:4], data$Species)
hyperoverlap_lda(x)
```
hyperoverlap_pairs_plot

Overlap heatmap plotting for analysis of multiple entities

Description
This function plots a matrix of overlap.

Usage
hyperoverlap_pairs_plot(x, cols = pal)

Arguments
- x: A matrix of the form produced by hyperoverlap_set() (see Details).
- cols: A vector of colours (default: c("red","blue").

Details
Input matrix must contain columns named "entity1", "entity2" and "result"

Value
A ggplot object

Examples
hyperoverlap.iris.set = hyperoverlap_set(iris[1:3],iris$Species, kernel="linear")
hyperoverlap_pairs_plot(hyperoverlap.iris.set)

hyperoverlap_plot
Overlap plotting for low-dimensional spaces

Description
Plot the optimal separating hyperplane found by hyperoverlap_detect() in 3D.

Usage
hyperoverlap_plot(x)

Arguments
- x: An hyperoverlap-class object.
hyperoverlap_set

Pairwise overlap detection in n-dimensional space of multiple entities using support vector machines (SVMs)

Description

This function is a wrapper for `hyperoverlap_detect` for pairwise overlap detection between multiple entities.

Usage

```r
hyperoverlap_set(x, y, kernel = "polynomial", kernel.degree = 3, cost = 1000,
                 stoppage.threshold = 0.2, write.to.file = FALSE,
                 path = NULL,
                 sample.dimensionality.omit = "FALSE")
```

Arguments

- `x` A matrix or data.frame containing the variables of interest for both entities.
- `y` A vector of labels.
- `kernel` Character. Either "linear" or "polynomial" (default = "polynomial").
- `kernel.degree` Parameter needed for `kernel = polynomial` (default = 3).
- `cost` Specifies the SVM margin 'hardness'. Default value is 1000, but can be increased for improved accuracy (although this increases runtimes and memory usage).
- `stoppage.threshold` Numeric. If the number of points misclassified using a linear hyperplane exceeds this proportion of the number of observations, non-linear separation is not attempted. Must be between 0 and 1 (default = 0.2).
- `write.to.file` Logical. If TRUE, each `hyperoverlap-class` object is saved as a .rds file.
- `path` Character. Path to write .rds files to. Ignored if `write.to.file=FALSE`
- `sample.dimensionality.omit` Logical. If TRUE, omits any entity pairs with a combined sample size less than n+1, where n is the number of dimensions (see details).

Examples

```r
data = iris[which(iris$Species!="versicolor"),]
x = hyperoverlap_detect(data[,1:3],data$Species, kernel="linear")
hyperoverlap_plot(x)
```
Details

In n dimensions, any set of points up to n+1 points can be separated using a linear hyperplane. This may produce an artefactual non-overlap result. The sample.dimensionality.omit parameter gives two options for dealing with these pairs when they form part of a larger analysis. If sample.dimensionality.omit = "TRUE", this pair is removed from the analysis (result = NA). If sample.dimensionality.omit = "FALSE", the pair is included, but a warning is printed.

Value

A long-form matrix with the following columns: entity1, entity2, shape, polynomial.order (if kernel="polynomial"), result, number.of.points.misclassified.

If specified, individual Hyperoverlap-class objects are written to file.

Examples

data(iris)
hyperoverlap.iris.set = hyperoverlap_set(iris[1:3],iris$Species, kernel="linear")
Index

hyperoverlap, 2
hyperoverlap-class, 2
hyperoverlap_detect, 3, 4, 6
hyperoverlap_lda, 4, 6
hyperoverlap_pairs_plot, 5
hyperoverlap_plot, 5
hyperoverlap_set, 6