Package ‘higlasso’

May 25, 2020

Title Hierarchical Integrative Group LASSO
Version 0.9.0
Description Environmental health studies are increasingly measuring multiple pollutants to characterize the joint health effects attributable to exposure mixtures. However, the underlying dose-response relationship between toxicants and health outcomes of interest may be highly nonlinear, with possible nonlinear interaction effects. Hierarchical integrative group least absolute shrinkage and selection operator (HiGLASSO), developed by Boss et al (2020) <arXiv:2003.12844>, is a general framework to identify noteworthy nonlinear main and interaction effects in the presence of group structures among a set of exposures.
License GPL-3
Encoding UTF-8
LazyData true
RoxygenNote 7.1.0
Depends R (>= 3.5.0)
Imports gcdnet, gglasso, purrr, splines, Rcpp
LinkingTo Rcpp, RcppArmadillo
Suggests knitr, rmarkdown, testthat
VignetteBuilder knitr
NeedsCompilation yes
Author Alexander Rix [aut, cre], Jonathan Boss [aut]
Maintainer Alexander Rix <alexrix@umich.edu>
Repository CRAN
Date/Publication 2020-05-25 17:40:03 UTC

R topics documented:
cv.higlasso ... 2
cv.higlasso

Cross Validated Hierarchical Integrative Group LASSO

Description

Does k-fold cross-validation for higlasso, and returns optimal values for \(\lambda_1 \) and \(\lambda_2 \).

Usage

cv.higlasso(
 Y,
 X,
 Z,
 method = c("aenet", "gglasso"),
 lambda1 = NULL,
 lambda2 = NULL,
 nlambda1 = 10,
 nlambda2 = 10,
 lambda.min.ratio = 0.05,
 nfolds = 5,
 foldid = NULL,
 sigma = 1,
 degree = 2,
 maxit = 5000,
 tol = 1e-05
)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Y)</td>
<td>A length n numeric response vector</td>
</tr>
<tr>
<td>(X)</td>
<td>A n x p numeric matrix</td>
</tr>
<tr>
<td>(Z)</td>
<td>A n x m numeric matrix</td>
</tr>
<tr>
<td>method</td>
<td>Type of initialization to use. Possible choices are gglasso for group LASSO and aenet for adaptive elastic net. Default is aenet</td>
</tr>
<tr>
<td>lambda1</td>
<td>A numeric vector of main effect penalties on which to tune. By default, (\lambda_1 = \text{NULL}) and higlasso generates a length n(\lambda_1) sequence of (\lambda_1)s based off of the data and min.(\lambda_1).</td>
</tr>
<tr>
<td>lambda2</td>
<td>A numeric vector of interaction effects penalties on which to tune. By default, (\lambda_2 = \text{NULL}) and generates a sequence (length n(\lambda_2)) of (\lambda_2)s based off of the data and min.(\lambda_2).</td>
</tr>
</tbody>
</table>
cv.higlasso

nlambda1
The number of lambda1 values to generate. Default is 10, minimum is 2. If lambda1 != NULL, this parameter is ignored.

nlambda2
The number of lambda2 values to generate. Default is 10, minimum is 2. If lambda2 != NULL, this parameter is ignored.

lambda.min.ratio
Ratio that calculates min lambda from max lambda. Ignored if 'lambda1' or 'lambda2' is non NULL. Default is 0.05.

nfolds
Number of folds for cross validation. Default is 10. The minimum is 3, and while the maximum is the number of observations (ie leave one out cross validation).

foldid
An optional vector of values between 1 and max(foldid) identifying what fold each observation is in. Default is NULL and cv.higlasso will automatically generate foldid based off of nfolds.

sigma
Scale parameter for integrative weights. Technically a third tuning parameter but defaults to 1 for computational tractability.

degree
Degree of bs basis expansion. Default is 2.

maxit
Maximum number of iterations. Default is 5000.

tol
Tolerance for convergence. Defaults to 1e-5.

Details
There are a few things to keep in mind when using cv.higlasso:

- higlasso uses the strong heredity principle. That is, X_1 and X_2 must included as main effects before the interaction X_1 X_2 can be included.
- While higlasso uses integrative weights to help with estimation, higlasso is more of a selection method. As a result, cv.higlasso does not output coefficient estimates, only which variables are selected.
- Simulation studies suggest that higlasso is a very conservative method when it comes to selecting interactions. That is, higlasso has a low false positive rate and the identification of a nonlinear interaction is a good indicator that further investigation is worthwhile.
- cv.higlasso can be slow, so it may be beneficial to tweak some of its settings (for example, nlambda1, nlambda2, and nfolds) to get a handle on how long the method will take before running the full model.

As a side effect of the conservativeness of the method, we have found that using the 1 standard error rule results in overly sparse models, and that lambda.min generally performs better.

Value
An object of type cv.higlasso with 7 elements:

lambda
An nlambda1 x nlambda2 x 2 array containing each pair (lambda1, lambda2) pair.

lambda.min
Lambda pair with the lowest cross validation error.

lambda.1se
cvm
cross validation error at each lambda pair. The error is calculated from the mean square error.
cvse standard error of cvm at each lambda pair.
higlasso.fit higlasso output from fitting the whole data.
call The call that generated the output.

Author(s)
Alexander Rix

References

Examples
library(higlasso)
X <- as.matrix(higlasso.df[, paste0("V", 1:7)])
Y <- higlasso.df$Y
Z <- matrix(1, nrow(X))

This can take a bit of time
fit <- cv.higlasso(Y, X, Z)
print(fit)

higlasso

Hierarchical Integrative Group LASSO

Description
HiGLASSO is a regularization based selection method designed to detect non-linear interactions between variables, particularly exposures in environmental health studies.

Usage
higlasso(
 Y,
 X,
 Z,
 method = c("aenet", "gglasso"),
 lambda1 = NULL,
 lambda2 = NULL,
 nlambda1 = 10,
Arguments

Y
A length n numeric response vector

X
A n x p numeric matrix of covariates to basis expand

Z
A n x m numeric matrix of non basis expanded and non regularized covariates

method
Type of initialization to use. Possible choices are gglasso for group LASSO and aenet for adaptive elastic net. Default is aenet

lambda1
A numeric vector of main effect penalties on which to tune. By default, lambda1 = NULL and higlasso generates a length nlambda1 sequence of lambda1s based off of the data and min.lambda.ratio

lambda2
A numeric vector of interaction effects penalties on which to tune. By default, lambda2 = NULL and generates a sequence (length nlambda2) of lambda2s based off of the data and min.lambda.ratio

nlambda1
The number of lambda1 values to generate. Default is 10, minimum is 2. If lambda1 != NULL, this parameter is ignored

nlambda2
The number of lambda2 values to generate. Default is 10, minimum is 2. If lambda2 != NULL, this parameter is ignored

lambda.min.ratio
Ratio that calculates min lambda from max lambda. Ignored if 'lambda1' or 'lambda2' is non NULL. Default is 0.05

sigma
Scale parameter for integrative weights. Technically a third tuning parameter but defaults to 1 for computational tractability

degree
Degree of bs basis expansion. Default is 2

maxit
Maximum number of iterations. Default is 5000

tol
Tolerance for convergence. Default is 1e-5

Details

There are a few things to keep in mind when using higlasso

- higlasso uses the strong heredity principle. That is, X_1 and X_2 must included as main effects before the interaction X_1 X_2 can be included.
- While higlasso uses integrative weights to help with estimation, higlasso is more of a selection method. As a result, higlasso does not output coefficient estimates, only which variables are selected.
- Simulation studies suggest that higlasso is a very conservative method when it comes to selecting interactions. That is, higlasso has a low false positive rate and the identification of a nonlinear interaction is a good indicator that further investigation is worthwhile.
• higlasso can be slow, so it may be beneficial to tweak some of its settings (for example, nlambda1 and nlambda2) to get a handle on how long the method will take before running the full model.

Value

An object of type "higlasso" with 4 elements:

- lambda An nlambda1 x nlambda2 x 2 array containing each pair (lambda1,lambda2) pair.
- selected An nlambda1 x nlambda2 x ncol(X) array containing higlasso’s selections for each lambda pair.
- df The number of nonzero selections for each lambda pair.
- call The call that generated the output.

Author(s)

Alexander Rix

References

Examples

library(higlasso)

X <- as.matrix(higlasso.df[, paste0("V", 1:7)])
Y <- higlasso.df$Y
Z <- matrix(1, nrow(X))

This can take a bit of time
higlasso.fit <- higlasso(Y, X, Z)

Description

This synthetic data is taken from the linear interaction simulations from the higlasso paper. The data generating model is:

\[
Y = X_1 + X_2 + X_3 + X_4 + X_5 + X_1X_2 + X_1X_3 + X_2X_3 + X_1X_4 + X_2X_4 + X_3X_4 + X_1X_5 + X_2X_5 + X_3X_5 + X_4X_5 + \epsilon
\]
Usage

higlasso.df

Format

A data.frame with 500 observations on 11 variables:

Y Continuous response.
X1-X10 Covariates.

print.cv.higlasso Print CV HiGLASSO Objects

Description

print.cv.higlasso prints a fitted "cv.higlasso" object and returns it invisibly.

Usage

S3 method for class 'cv.higlasso'
print(x, ...)

Arguments

x An object of type "cv.higlasso" to print
... Further arguments passed to or from other methods

Value

The original input, x (invisibly).
Index

*Topic datasets
 higlasso.df, 6

 cv.higlasso, 2

higlasso, 4
higlasso.df, 6

print.cv.higlasso, 7