Package ‘heatmaply’
February 2, 2021

Type Package

Title Interactive Cluster Heat Maps Using 'plotly' and 'ggplot2'

Version 1.2.1

Date 2021-02-02

Description Create interactive cluster 'heatmaps' that can be saved as a stand-alone HTML file, embedded in 'R Markdown' documents or in a 'Shiny' app, and available in the 'RStudio' viewer pane. Hover the mouse pointer over a cell to show details or drag a rectangle to zoom. A 'heatmap' is a popular graphical method for visualizing high-dimensional data, in which a table of numbers are encoded as a grid of colored cells. The rows and columns of the matrix are ordered to highlight patterns and are often accompanied by 'dendrograms'. 'Heatmaps' are used in many fields for visualizing observations, correlations, missing values patterns, and more. Interactive 'heatmaps' allow the inspection of specific value by hovering the mouse over a cell, as well as zooming into a region of the 'heatmap' by dragging a rectangle around the relevant area. This work is based on the 'ggplot2' and 'plotly.js' engine. It produces similar 'heatmaps' to 'heatmap.2' with the advantage of speed ('plotly.js' is able to handle larger size matrix), the ability to zoom from the 'dendrogram' panes, and the placing of factor variables in the sides of the 'heatmap'.

Depends R (>= 3.0.0), plotly (>= 4.7.1), viridis

Imports ggplot2 (>= 2.2.0), dendextend (>= 1.12.0), magrittr (>= 1.0.1), reshape2, scales, seriation, utils, stats, grDevices, methods, colorspace, RColorBrewer, htmlwidgets, webshot, assertthat, egg

Suggests knitr, covr, gplots, tidyselect, rmarkdown, testthat

VignetteBuilder knitr

License GPL-2 | GPL-3

URL https://talgalili.github.io/heatmaply/,
https://cran.r-project.org/package=heatmaply,
https://github.com/talgalili/heatmaply/,
https://www.r-statistics.com/tag/heatmaply/

Description

This function produces a ggplot analogue of heatmaply figures using ggarrange. This function may not always support the same set of features as , and exporting the heatmaply object with, for example, orca or heatmaply(mtcars, file = "foo.png").

Usage

```r
ggheatmap(..., widths = NULL, heights = NULL, row_dend_left = FALSE)
```
ggplot_side_color_plot

Arguments

... Passed to heatmaply
widths, heights Relative widths and heights of plots.
row_dend_left Logical argument controlling whether the row dendrogram is placed on the left of the plot.

Examples

ggheatmap(mtcars)

Description

Important for creating annotation.

Usage

ggplot_side_color_plot(
 df,
 palette = NULL,
 scale_title = paste(type, "side colors"),
 type = c("column", "row"),
 text_angle = if (type == "column") 0 else 90,
 is_colors = FALSE,
 fontsize = 10,
 label_name = NULL
)

Arguments

df A "molten" data.frame as produced by (eg) reshape2::melt
palette A function which can return colors to be used in the sidebar plot
scale_title Title of the color scale. Not currently used.
type Horizontal or vertical plot? Valid values are "column" and "row"
text_angle the angle of the text of the rows/columns.
is_colors Use if the values in df are valid colours and should not be mapped to a color scheme, and instead should be plotted directly.
fontsize Font size (currently unused)
label_name Name for the mouseover label, usually "row" or "column"

Value

A ggplot geom_tile object
Description
An object of class heatmapr includes all the needed information for producing a heatmap. The goal is to separate the pre-processing of the heatmap elements from the graphical rendering of the object, which could be done

(Please submit an issue on github if you have a feature that you wish to have added)

heatmaply_na is a wrapper for ‘heatmaply’ which comes with defaults that are better for exploring missing value (NA) patterns. Specifically, the grid_gap is set to 1, and the colors include two shades of grey. It also calculates the is.na10 automatically.

heatmaply_cor is a wrapper for ‘heatmaply’ which comes with defaults that are better for correlation matrices. Specifically, the limits are set from -1 to 1, and the color palette is RdBu.

Usage

heatmaply(x, ...)

heatmaply_na(x, grid_gap = 1, colors = c("grey80", "grey20"), ...)

heatmaply_cor(x, limits = c(-1, 1), colors = cool_warm, ...)

Default S3 method:
heatmaply(
x,
colors = viridis(n = 256, alpha = 1, begin = 0, end = 1, option = "viridis"),
limits = NULL,
na.value = "grey50",
row_text_angle = 0,
column_text_angle = 45,
subplot_margin = 0,
cellnote = NULL,
draw_cellnote = !is.null(cellnote),
cellnote_color = "auto",
cellnote_textposition = "middle right",
cellnote_size = 12,
Rowv,
Colv,
distfun = dist,
hclustfun = hclust,
dist_method = NULL,
hclust_method = NULL,
distfun_row,
hclustfun_row,
distfun_col,
...
hclustfun_col,
dendrogram = c("both", "row", "column", "none"),
show_dendrogram = c(TRUE, TRUE),
reorderfun = function(d, w) reorder(d, w),
k_row = 1,
k_col = 1,
symm = FALSE,
revC,
scale = c("none", "row", "column"),
na.rm = TRUE,
row_dend_left = FALSE,
margins = c(NA, NA, NA, NA),
...

scale_fill_gradient_fun = NULL,
grid_color = NA,
grid_gap = 0,
srtRow,
srtCol,
xlab = "",
ylab = "",
main = "",
titleX = TRUE,
titleY = TRUE,
hide_colorbar = FALSE,
return_ppxpy = FALSE,
row_side_colors,
row_side_palette = NULL,
col_side_colors,
col_side_palette = NULL,
ColSideColors = NULL,
RowSideColors = NULL,
seriate = c("OLO", "mean", "none", "GW"),
heatmap_layers = NULL,
side_color_layers = NULL,
dendrogram_layers = NULL,
branches_lwd = 0.6,
file,

width = NULL,
height = NULL,
long_data,
plot_method = c("ggplot", "plotly"),
label_names = NULL,

fontsize_row = 10,

fontsize_col = 10,
cexRow,
cexCol,

subplot_widths = NULL,
```r
subplot_heights = NULL,
colorbar_len = 0.3,
colorbar_thickness = 30,
colorbar_xanchor = if (row_dend_left) "right" else "left",
colorbar_yanchor = "bottom",
colorbar_xpos = if (row_dend_left) -0.1 else 1.1,
colorbar_ypos = 0,
showticklabels = c(TRUE, TRUE),
dynamicTicks = FALSE,
grid_size = 0.1,
node_type = "heatmap",
point_size_mat = NULL,
point_size_name = "Point size",
label_format_fun = function(...) format(..., digits = 4),
labRow = NULL,
labCol = NULL,
custom_hovertext = NULL,
col = NULL,
dend_hoverinfo = TRUE,
side_color_colorbar_len = 0.3
)

## S3 method for class 'heatmapr'
heatmaply(
x,
colors = viridis(n = 256, alpha = 1, begin = 0, end = 1, option = "viridis"),
limits = NULL,
na.value = "grey50",
row_text_angle = 0,
column_text_angle = 45,
subplot_margin = 0,
row_dend_left = FALSE,
margins = c(NA, NA, NA, NA),
...,
scale_fill_gradient_fun = scale_fill_gradientn(colors = if (is.function(colors))
  colors(256) else colors, na.value = na.value, limits = limits),
grid_color = NA,
grid_gap = 0,
srtRow,
srtCol,
xlab = "",
ylab = "",
main = "",
titleX = TRUE,
titleY = TRUE,
hide_colorbar = FALSE,
key.title = NULL,
return_ppxpy = FALSE,
```
draw_cellnote = FALSE,
cellnote_color = "auto",
cellnote_textposition = "middle right",
cellnote_size = 12,
row_side_colors = x[['row_side_colors']],
row_side_palette = NULL,
col_side_colors = x[['col_side_colors']],
col_side_palette = NULL,
plot_method = c("ggplot", "plotly"),
ColSideColors = NULL,
RowSideColors = NULL,
heatmap_layers = NULL,
side_color_layers = NULL,
dendrogram_layers = NULL,
branches_lwd = 0.6,
label_names = c("row", "column", "value"),
fontsize_row = 10,
fontsize_col = 10,
subplot_widths = NULL,
subplot_heights = NULL,
colorbar_xanchor = if (row_dend_left) "right" else "left",
colorbar_yanchor = "bottom",
colorbar_xpos = if (row_dend_left) -0.1 else 1.1,
colorbar_ypos = 0,
colorbar_len = 0.3,
colorbar_thickness = 30,
showticklabels = c(TRUE, TRUE),
dynamicTicks = FALSE,
node_type = c("scatter", "heatmap"),
grid_size = 0.1,
point_size_mat = x[['matrix']]$"point_size_mat",
point_size_name = "Point size",
label_format_fun = function(...) format(..., digits = 4),
custom_hovertext = x[['matrix']]$"custom_hovertext",
dend_hoverinfo = TRUE,
side_color_colorbar_len = 0.3

Arguments

x can either be a heatmapr object, or a numeric matrix Defaults to TRUE unless x contains any NAs.

... other parameters passed to heatmapr (currently, various parameters may be ignored.

grid_gap this is a fast alternative to grid_color. The default is 0, but if a larger value is used (for example, 1), then the resulting heatmap will have a white grid which can help identify different cells. This is implemented using style (with xgap and ygap).
colors, col a vector of colors to use for heatmap color. The default uses \texttt{viridis(n=256, alpha = 1, begin = 0, end = 1, option = "viridis")} It is passed to \texttt{scale_fill_gradientn}. If colors is a color function (with the first argument being \texttt{n} = the number of colors), it will be used to create 256 colors from that function. (col is there to stay compatible with heatmap.2)

limits a two dimensional numeric vector specifying the data range for the scale.

na.value color to use for missing values (default is "grey50").

row_text_angle numeric (Default is 0), the angle of the text of the rows. (this is called srtRow in heatmap.2)

column_text_angle numeric (Default is 45), the angle of the text of the columns. (this is called srtCol in heatmap.2)

subplot_margin Currently not well implemented. It is passed to subplot. Default is 0. Either a single value or four values (all between 0 and 1). If four values are provided, the first is used as the left margin, the second is used as the right margin, the third is used as the top margin, and the fourth is used as the bottom margin. If a single value is provided, it will be used as all four margins.

cellnote Values to be shown as annotations atop the heatmap cells.

draw_cellnote Should the cellnote annotations be drawn? Defaults is FALSE, if cellnote is not supplied, TRUE if cellnote is supplied. If TRUE and cellnote is not supplied, \texttt{x} will be used for cellnote.

cellnote_color The color of the cellnote text to be used.

cellnote_textposition The text positioning/centering of the cellnote. Default is "middle right". Options are "top left", "top center", "top right", "middle left", "middle center", "middle right", "bottom left", "bottom center", "bottom right"

cellnote_size The font size (HTML/CSS) of the cellnote. Default is 12.

Rowv determines if and how the row dendrogram should be reordered. By default, it is \texttt{TRUE}, which implies dendrogram is computed and reordered based on row means. If \texttt{NULL} or \texttt{FALSE}, then no dendrogram is computed and no reordering is done. If a \texttt{dendrogram} (or \texttt{hclust}), then it is used "as-is", ie without any reordering. If a vector of integers, then dendrogram is computed and reordered based on the order of the vector.

Colv determines if and how the column dendrogram should be reordered. Has the options as the Rowv argument above and additionally when \texttt{x} is a square matrix, \texttt{Colv = "Rowv"} means that columns should be treated identically to the rows.

distfun function used to compute the distance (dissimilarity) between both rows and columns. Defaults to dist. The options "pearson", "spearman" and "kendall" can be used to use correlation-based clustering, which uses as \texttt{.dist(1 -cor(t(x)))} as the distance metric (using the specified correlation method).

hclustfun function used to compute the hierarchical clustering when Rowv or Colv are not dendrograms. Defaults to hclust.

dist_method default is \texttt{NULL} (which results in "euclidean" to be used). Can accept alternative character strings indicating the method to be passed to distfun. By default distfun. is \texttt{dist} hence this can be one of "euclidean", "maximum", "manhattan", "canberra", "binary" or "minkowski".
heatmaply

- **hclust_method**: default is NULL (which results in "complete" to be used). Can accept alternative character strings indicating the method to be passed to hclustfun. By default hclustfun is hclust hence this can be one of "ward.D", "ward.D2", "single", "complete", "average" (= UPGMA), "mcquitty" (= WPGMA), "median" (= WPGMC) or "centroid" (= UPGMC). Specifying hclust_method=NA causes heatmaply to use find_dend to find the "optimal" dendrogram for the data.

- **distfun_row**: distfun for row dendrogram only.

- **hclustfun_row**: hclustfun for col dendrogram only.

- **distfun_col**: distfun for row dendrogram only.

- **hclustfun_col**: hclustfun for col dendrogram only.

- **dendrogram**: character string indicating whether to compute 'none', 'row', 'column' or 'both' dendrograms. Defaults to 'both'. However, if Rowv (or Colv) is FALSE or NULL and dendrogram is 'both', then a warning is issued and Rowv (or Colv) arguments are honoured. It also accepts TRUE/FALSE as synonyms for "both"/"none".

- **show_dendrogram**: Logical vector of length two, controlling whether the row and/or column dendrograms are displayed. If a logical scalar is provided, it is repeated to become a logical vector of length two.

- **reorderfun**: function(d, w) of dendrogram and weights for reordering the row and column dendrograms. The default uses statsreorder.dendrogram.

- **k_row**: an integer scalar with the desired number of groups by which to color the dendrogram's branches in the rows (uses color_branches) If NA then find_k is used to deduce the optimal number of clusters.

- **k_col**: an integer scalar with the desired number of groups by which to color the dendrogram's branches in the columns (uses color_branches) If NA then find_k is used to deduce the optimal number of clusters.

- **symm**: logical indicating if x should be treated symmetrically; can only be true when x is a square matrix.

- **revC**: logical indicating if the column order should be reversed for plotting. Default (when missing) - is FALSE, unless symm is TRUE. This is useful for cor matrix.

- **scale**: character indicating if the values should be centered and scaled in either the row direction or the column direction, or none. The default is "none".

- **na.rm**: logical (default is TRUE) indicating whether NA's should be removed when scaling (i.e.: when using rowMeans/colMeans). Generally it should always be kept as TRUE, and is included here mainly to stay backward compatible with gplots::heatmap.2. This argument does not effect the presence of NA values in the matrix itself. For removing rows/columns with NAs you should pre-process your matrix using na.omit (or some form of imputation).

- **row_dend_left**: logical (default is FALSE). Should the row dendrogram be plotted on the left side of the heatmap. If false then it will be plotted on the right side.

- **margins**: numeric vector of length 4 (default is c(50,50,NA,0)) containing the margins (see layout) for column, row and main title names, respectively. The top margin is NA by default. If main="" then the top margin will be set to 0, otherwise it will get 30. For a multline title a larger default for the 3rd element should be
heatmaply

set. The right margin is NA by default, meaning it will be zero if row_dend_left
is FALSE, or 100 if row_dend_left is TRUE.

scale_fill_gradient_fun
A function that creates a smooth gradient for the heatmap. The default uses
scale_fill_gradientn with the values of colors, limits, and na.value that are sup-
plied by the user. The user can input a customized function, such as scale_color_gradient() in order to get other results (although the virids default is quite recommended)

grid_color control the color of the heatmap grid. Default is NA. Value passed to geom_tile.
Do not use this parameter on larger matrix sizes, as it can dramatically prolong
the build time of the heatmap. (another parameter, grid_color, will be added in the future - once it is implemented in plotly) In the meantime it is MUCH better
to use the grid_gap argument.

srtRow if supplied, this overrides row_text_angle (this is to stay compatible with heatmap.2)
srtCol if supplied, this overrides column_text_angle (this is to stay compatible with heatmap.2)
xlab A character title for the x axis.
ylab A character title for the y axis.
main A character title for the heatmap.
titleX logical (TRUE). should x-axis titles be retained? (passed to subplot).
titleY logical (TRUE). should y-axis titles be retained? (passed to subplot).
hide_colorbar logical (FALSE). If TRUE, then the color bar (i.e.: the legend) is hidden.
key.title (character) main title of the color key. If set to NULL (default) no title will be
plotted.
return_ppxy logical (FALSE). If TRUE, then no plotting is done and the p, px and py objects
are returned (before turning into plotly objects). This is a temporary option
which might be removed in the future just to make it easy to create a ggplot
heatmaps.

row_side_colors, col_side_colors
data.frame of factors to produce row/column side colors in the style of heatmap.2/heatmap.3.
When a data.frame is provided, the column names are used as the label names
for each of the newly added row_side_colors. When a vector is provided it is co-
erced into a data.frame and the name of the side color will be just row_side_colors.

row_side_palette, col_side_palette
Color palette functions to be used for row_side_colors and col_side_colors re-
spectively.

ColSideColors, RowSideColors
passed to row_side_colors, col_side_colors in order to keep compatibility with heatmap.2

seriate character indicating the method of matrix sorting (default: "OLO"). Imple-
mented options include: "OLO" (Optimal leaf ordering, optimizes the Hamilton-
ian path length that is restricted by the dendrogram structure - works in O(n^4)
) "mean" (sorts the matrix based on the reorderfun using marginal means of the
matrix. This is the default used by heatmap.2), "none" (the default order pro-
duced by the dendrogram), "GW" (Gruvaeus and Wainer heuristic to optimize
the Hamiltonian path length that is restricted by the dendrogram structure)
heatmaply

heatmap_layers ggplot object(s) (eg, list(theme_bw())) to be added to the heatmap before conversion to a plotly object.

side_color_layers ggplot2 objects to be added to side color plots, similar to heatmap_layers.

dendrogram_layers ggplot2 objects to be added to dendrograms, similar to heatmap_layers and side_color_layers.

branches_lwd numeric (default is 0.6). The width of the dendrograms’ branches. If NULL then it is ignored. If the "lwd" is already defined in Rowv/Colv then this parameter is ignored (it is checked using has_edgePar("lwd")).

file name of the file(s) into which to save the heatmaply output. Should be a character vector of strings ending with ".html" for a dynamic output, or ".png", ".jpeg", ".pdf" for a static output.

For example: heatmaply(x, file = "heatmaply_plot.html") or dir.create("folder"); heatmaply(x, file = "folder/heatmaply_plot.html")

This is based on saveWidget, and webshot for the static files. For more refined control over the static file output, you should save the heatmaply object using export and pass the arguments you want based on the ones in webshot.

Another example: heatmaply(x, file = c("heatmaply_plot.html", "heatmaply_plot.png"))

width, height The width and height of the image saved. Default is which uses 800 x 500 pixels.

long_data Data in long format. Replaces x, so both should not be used. Colnames must be c("name", "variable", "value"). If you do not have a names column you can simply use a sequence of numbers from 1 to the number of "rows" in the data.

plot_method Use "ggplot" or "plotly" to choose which library produces heatmap and dendrogram plots

label_names Names for labels of x, y and value/fill mouseover.

fontsize_row, fontsize_col, cexRow, cexCol Font size for row and column labels.

subplot_widths, subplot_heights The relative widths and heights of each subplot. The length of these vectors will vary depending on the number of plots involved.

colorbar_len The length of the colorbar/color key relative to the total plot height. Only used if plot_method = "plotly"

colorbar_thickness The thickness (width) of the colorbar/color key in pixels. Only used if plot_method = "plotly".

colorbar_xanchor, colorbar_yanchor The x and y anchoring points of the colorbar/color legend. Can be "left", "middle" or "right" for colorbar_xanchor, and "top", "middle" or "bottom" for colorbar_yanchor. See colorbar for more details.

colorbar_xpos, colorbar_ypos The x and y co-ordinates (in proportion of the plot window) of the colorbar/color legend. See colorbar for more details.
showticklabels A logical vector of length two (default is TRUE). If FALSE, then the ticks are removed from the sides of the plot. The first location refers to the x axis and the second to the y axis. If only one value is supplied (TRUE/FALSE) then it is replicated to get to length 2. When using this parameter, it might be worth also adjusting margins. This option should be used when working with medium to large matrix size as it makes the heatmap much faster (and the hover still works).

dynamicTicks (default: FALSE). passed to ggplotly: should plotly.js dynamically generate axis tick labels? Dynamic ticks are useful for updating ticks in response to zoom/pan interactions; however, they can not always reproduce labels as they would appear in the static ggplot2 image.

grid_size When node_type is "scatter", this controls point size. When node_type is "heatmap", this controls the size of the grid between heatmap cells.

node_type For plot_method = "ggplot", should the heatmap be rendered as a x-y scatter plot (node_type = "scatter") or a heatmap (node_type = "heatmap"). Default is node_type = "heatmap".

point_size_mat Matrix to map to point size

point_size_name Name of point size mapping (for hovertext/legend)

label_format_fun Function to format hovertext (eg, function(...) round(...,digits=3) or function(...,format(...,digits=3))

labRow, labCol character vectors with row and column labels to use; these default to rownames(x) or colnames(x), respectively. if set to NA, they change the value in showticklabels to be FALSE. This is mainly to keep backward compatibility with gplots::heatmap2.

custom_hovertext Custom hovertext matrix (the same dimensions as the input). If plot_method is "plotly" then just this text is displayed; if plot_method if "ggplot" then it is appended to the existing text.

dend_hoverinfo Boolean value which controls whether mouseover text is shown for the row and column dendrograms.

side_color_colorbar_len As with colorbar_len, this controls the length of the colorbar/color key relative to the total plot height. This argument controls the colorbar_len of the side colour plots. Only used if plot_method = "plotly".

Examples

```r
## Not run:
# mtcars
# x <- heatmapr(mtcars)
library(heatmaply)
heatmaply(iris[,-5], k_row = 3, k_col = 2)
heatmaply(cor(iris[,-5]))
heatmaply(cor(iris[,-5]), limits = c(-1,1))
```
heatmaply

heatmaply(mtcars, k_row = 3, k_col = 2)
heatmaply(mtcars, k_row = 3, k_col = 2, grid_color = "white")
heatmaply(mtcars, k_row = 3, k_col = 2, grid_gap = 1)

make sure there is enough room for the labels:
heatmaply(mtcars, margins = c(40, 130))
this is the same as using:
heatmaply(mtcars) %>% layout(margin = list(l = 130, b = 40))

control text angle
heatmaply(mtcars, column_text_angle = 90, margins = c(40, 130))
the same as using srtCol:
heatmaply(mtcars, srtCol = 90) %>% layout(margin = list(l = 130, b = 40))

x <- mtcars
different colors
heatmaply(x, colors = heat.colors(200))
using special scale_fill_gradient_fun colors
heatmaply(x, scale_fill_gradient_fun = scale_color_gradient())

We can join two heatmaps together:
library(heatmaply)
hm1 <- heatmaply(mtcars, margins = c(40, 130))
hm2 <- heatmaply(mtcars, scale = "col", margins = c(40, 130))
subplot(hm1, hm2, margin = .2)

If we want to share the Y axis, then it is risky to keep any of the dendrograms:
library(heatmaply)
hm1 <- heatmaply(mtcars, Colv = FALSE, Rowv = FALSE, margins = c(40, 130))
hm2 <- heatmaply(mtcars, scale = "col", Colv = FALSE, Rowv = FALSE, margins = c(40, 130))
subplot(hm1, hm2, margin = .02, shareY = TRUE)

We can save heatmaply as an HTML file by using:
heatmaply(iris[, -5], file = "heatmaply_iris.html")
or a png/pdf/jpeg file using:
heatmaply(iris[, -5], file = "heatmaply_iris.png")
or just doing it in one go:
heatmaply(iris[, -5], file = c("heatmaply_iris.html", "heatmaply_iris.png"))

If we don’t want the HTML to be selfcontained, we can use the following:
library(heatmaply)
library(htmlwidgets)
heatmaply(iris[, -5]) %>%
 saveWidget(file = "heatmaply_iris.html", selfcontained = FALSE)
Example for using RowSideColors

```r
x <- as.matrix(datasets::mtcars)
rc <- colorspace::rainbow_hcl(nrow(x))

library(gplots)
library(viridis)
heatmap.2(x, trace = "none", col = viridis(100),
          RowSideColors=rc)
heatmaply(x, seriate = "mean",
          RowSideColors=rc)

heatmaply(x[,-c(8,9)], seriate = "mean",
          col_side_colors = c(rep(0,5), rep(1,4)),
          row_side_colors = x[,8:9])
```

Example of using Rowv And Colv for customized dendrograms.

```r
x <- as.matrix(datasets::mtcars)
# now let's spice up the dendrograms a bit:
library(dendextend)
row_dend <- x %>% dist %>% hclust %>% as.dendrogram %>%
  set("branches_k_color", k = 3) %>% set("branches_lwd", 4) %>%
  ladderize
# rotate_DendSer(ser_weight = dist(x))
col_dend <- x %>% t %>% dist %>% hclust %>% as.dendrogram %>%
  set("branches_k_color", k = 2) %>% set("branches_lwd", 4) %>%
  ladderize
# rotate_DendSer(ser_weight = dist(t(x)))
heatmaply(x, Rowv = row_dend, Colv = col_dend)
```

```r
heatmaply(is.na(airquality))
heatmaply(is.na(airquality), grid_gap = 1)
```

grid_gap can handle quite large data matrix
```r
heatmaply(matrix(1:10000,100,100), k_row = 3, k_col = 3, grid_gap = 1)
```

Examples of playing with font size:
```r
heatmaply(mtcars, fontsize_col = 20, fontsize_row = 5, margin = c(100,90))
```
Example for using subplot_width/subplot_height

heatmaply(percentize(mtcars),
 subplot_widths=c(0.6, 0.4),
 subplot_heights=c(0.05, 0.95))

Example of removing labels and thus making the plot faster
heatmaply(iris, showticklabels = c(T,F), margins = c(80,10))

this is what allows for a much larger matrix to be printed:
set.seed(2017-05-18)
large_x <- matrix(rnorm(19), 1000,100)
heatmaply(large_x, dendrogram = F, showticklabels = F, margins = c(1,1))

End(Not run)
Not run:
heatmaply_na(airquality)

End(Not run)
Not run:
heatmaply_cor(cor(mtcars))

End(Not run)

heatmapr

Creates a heatmapr object

Description

An object of class heatmapr includes all the needed information for producing a heatmap. The goal is to separate the pre-processing of the heatmap elements from the graphical rendering of the object, which could be done using plotly (but potentially also with other graphical devices).

Usage

`heatmapr(`

 `x,`
 `Rowv,`
 `Colv,`
 `distfun = dist,`
 `hclustfun = hclust,`
 `dist_method = NULL,`
 `hclust_method = NULL,`
 `distfun_row,`
 `hclustfun_row,`
Arguments

\textbf{x} \hspace{1cm} A numeric matrix Defaults to TRUE unless x contains any NAs.

\textbf{Rowv} \hspace{1cm} determines if and how the row dendrogram should be reordered. By default, it is TRUE, which implies dendrogram is computed and reordered based on row means. If NULL or FALSE, then no dendrogram is computed and no reordering is done. If a \texttt{dendrogram} (or \texttt{hclust}), then it is used “as-is”, ie without any reordering. If a vector of integers, then dendrogram is computed and reordered based on the order of the vector.

\textbf{Colv} \hspace{1cm} determines if and how the column dendrogram should be reordered. Has the options as the Rowv argument above and additionally when x is a square matrix, Colv = "Rowv" means that columns should be treated identically to the rows.
distfun function used to compute the distance (dissimilarity) between both rows and columns. Defaults to dist.

hclustfun function used to compute the hierarchical clustering when Rowv or Colv are not dendrograms. Defaults to hclust.

dist_method default is NULL (which results in "euclidean" to be used). Can accept alternative character strings indicating the method to be passed to distfun. By default distfun. is dist hence this can be one of "euclidean", "maximum", "manhattan", "canberra", “binary” or “minkowski”.

hclust_method default is NULL (which results in "complete" to be used). Can accept alternative character strings indicating the method to be passed to hclustfun. By default hclustfun is hclust hence this can be one of "ward.D", "ward.D2", "single", "complete", "average" (= UPGMA), "mcquitty" (= WPGMA), "median" (= WPGMC) or "centroid" (= UPGMC).

distfun_row distfun for row dendrogram only.

hclustfun_row hclustfun for col dendrogram only.

distfun_col distfun for row dendrogram only.

hclustfun_col hclustfun for col dendrogram only.

dendrogram character string indicating whether to compute 'none', 'row', 'column' or 'both' dendrograms. Defaults to 'both'. However, if Rowv (or Colv) is FALSE or NULL and dendrogram is 'both', then a warning is issued and Rowv (or Colv) arguments are honoured.

show_dendrogram Logical vector of length controlling whether the row and column dendrograms are displayed. If a logical scalar is provided, it is repeated to become a logical vector of length two.

reorderfun function(d, w) of dendrogram and weights for reordering the row and column dendrograms. The default uses statsreorder.dendrogram.

k_row an integer scalar with the desired number of groups by which to color the dendrogram’s branches in the rows (uses color_branches) If NA then find_k is used to deduce the optimal number of clusters.

k_col an integer scalar with the desired number of groups by which to color the dendrogram’s branches in the columns (uses color_branches) If NA then find_k is used to deduce the optimal number of clusters.

symm logical indicating if x should be treated symmetrically; can only be true when x is a square matrix.

revC logical indicating if the column order should be reversed for plotting. Default (when missing) is FALSE, unless symm is TRUE. This is useful for cor matrix.

scale character indicating if the values should be centered and scaled in either the row direction or the column direction, or none. The default is "none".

na.rm logical indicating whether NA’s should be removed.

labRow character vectors with row labels to use (from top to bottom); default to rownames(x).

labCol character vectors with column labels to use (from left to right); default to colnames(x).
cexRow positive numbers. If not missing, it will override xaxis_font_size and will give it a value cexRow*14

cexCol positive numbers. If not missing, it will override yaxis_font_size and will give it a value cexCol*14

digits integer indicating the number of decimal places to be used by round for 'label'.
cellnote (optional) matrix of the same dimensions as x that has the human-readable version of each value, for displaying on top of the heatmap cells.
theme A custom CSS theme to use. Currently the only valid values are "" and "dark". "dark" is primarily intended for standalone visualizations, not R Markdown or Shiny.

colors Either a colorbrewer2.org palette name (e.g. "YlOrRd" or "Blues"), or a vector of colors to interpolate in hexadecimal "#RRGGBB" format, or a color interpolation function like colorRamp.

width Width in pixels (optional, defaults to automatic sizing).
height Height in pixels (optional, defaults to automatic sizing).
xaxis_height Size of axes, in pixels.
yaxis_width Size of axes, in pixels.
xaxis_font_size Font size of axis labels, as a CSS size (e.g. "14px" or "12pt").
yaxis_font_size Font size of axis labels, as a CSS size (e.g. "14px" or "12pt").
brush_color The base color to be used for the brush. The brush will be filled with a low-opacity version of this color. "#RRGGBB" format expected.
show_grid TRUE to show gridlines, FALSE to hide them, or a numeric value to specify the gridline thickness in pixels (can be a non-integer).
anim_duration Number of milliseconds to animate zooming in and out. For large x it may help performance to set this value to 0.
row_side_colors, col_side_colors data.frame of factors to produce row/column side colors in the style of heatmap.2/heatmap.3. col_side_colors should be "wide", ie be the same dimensions as the column side colors it will produce.
seriate character indicating the method of matrix sorting (default: "OLO"). Implemented options include: "OLO" (Optimal leaf ordering, optimizes the Hamiltonian path length that is restricted by the dendrogram structure - works in O(n^4)) "mean" (sorts the matrix based on the reorderfun using marginal means of the matrix. This is the default used by heatmap.2), "none" (the default order produced by the dendrogram), "GW" (Gruvaeus and Wainer heuristic to optimize the Hamiltonian path length that is restricted by the dendrogram structure)
point_size_mat A matrix of values which can be mapped to point size

custom_hovertext Custom hovertext matrix (the same dimensions as the input).
... currently ignored
is.heatmapr

Source

The interface was designed based on heatmap, heatmap.2, and (the also d3heatmap).

See Also

heatmap, heatmap.2

Examples

Not run:
library(heatmaply)
hm <- heatmapr(mtcars, scale = "column", colors = "Blues")
heatmaply(hm)
End(Not run)

is.heatmapr Is the object of class heatmapr

Description

Is the object of class heatmap.

Usage

is.heatmapr(x)

Arguments

x an object.

Value

logical - is the object of class heatmap.
is.na10
Indicates which elements are missing (either 1 and 0)

Description

is.na10 is a helper function for creating heatmaps to diagnose missing value patterns. It is similar to is.na but instead of returning a logical TRUE/FALSE vector (or matrix) it returns a numeric 1/0 output. This enables the heatmaply function to be used on the data.

Usage

is.na10(x, ...)

Arguments

x
a vector, matrix or data.frame.

...
not used.

Value

Returns a numeric (instead of a logical) variable/matrix of 1 (missing) or 0 (not missing) values (hence the name is.na10) while still preserving the attributes resulted from running is.na.

These are useful for funnelling into a heatmap (see the examples).

See Also

is.na, the grid_gap parameter in heatmaply.

Examples

```r
## Not run:
x <- mtcars
x <- data.frame(x)
x$am <- factor(x$am)
x$vs <- factor(x$vs)
set.seed(2017-01-19)
x[sample(nrow(x))[1:6],sample(ncol(x))[1:6]] <- NA

# nice grey colors from here: https://github.com/njtierney/visdat/blob/master/R/vis_miss_ly.R
x %>% is.na10 %>% heatmaply(colors = c("grey80", "grey20"), dendrogram = "none")
x %>% is.na10 %>% heatmaply(colors = c("grey80", "grey20"), k_col = 2, k_row = 2)

heatmaply(is.na10(airquality), grid_gap = 1,
          colors = c("grey80", "grey20"), k_col = 2, k_row = 2)

## End(Not run)
```
is.plotly

Checks if an object is of class plotly or not.

Description
Helpful for the plot_method in linkheatmaply.

Usage

is.plotly(x)

Arguments

x an object to check

Value
TRUE if the object inherits "plotly" as a class.

normalize

Normalization transformation (0-1)

Description
An Empirical Normalization Transformation brings data to the 0 to 1 scale by subtracting the minimum and dividing by the maximum of all observations. This is similar to percentize in that it allows to compare variables of different scales, but it also keeps the shape of the distribution.

Usage

normalize(x, ...)

Arguments

x a vector or a data.frame.

... Currently ignored.

Value
A vector (or data.frame) after normalizing the numeric variables.

See Also
percentize
Examples

```r
## Not run:
x <- mtcars
x <- data.frame(x)
x$am <- factor(x$am)
x$vs <- factor(x$vs)
heatmaply(percentize(x))
heatmaply(normalize(x))

x <- data.frame(a = 1:10, b = 11:20)
x[4:6, 1:2] <- NA
normalize(x)
normalize(x[,1])

## End(Not run)
```

percentize
Empirical Percentile Transformation

Description

An Empirical Percentile Transformation (percentize) is similar to taking the rank of a variable. The difference is that it is simpler to compare and interpret the transformed variables.

This is helpful for comparing several variables in a heatmap (e.g.: `heatmaply`).

Usage

```r
percentize(x, ...)
```

Arguments

- `x`
a vector or a data.frame.
- `...`
Currently ignored.

Value

A vector (or data.frame) after `ecdf` was used on that vector. If `x` is a data.frame then only the numeric variables are transformed.

See Also

`normalize`
Examples

```r
## Not run:
x <- mtcars
x <- data.frame(x)
x$am <- factor(x$am)
x$vs <- factor(x$vs)
heatmaply(percentize(x))

x <- data.frame(a = 1:10, b = 11:20)
x[4:6, 1:2] <- NA
percentize(x)
percentize(x[,1])

## End(Not run)
```

RColorBrewer_colors
 RColorBrewer color Ramp Palette

Description

Functions for getting the colors of RColorBrewer (i.e.: `brewer.pal`) without the limitation of only 9/11 color values, based on `colorRampPalette`.

For sequential palettes this is not essential since we have `viridis`. But for diverging palettes this is quite essential.

The sequential palettes names are Blues BuGn BuPu GnBu Greens Greys OrRd PuBu PuBuGn PuRd Purples RdPu Reds YlGn YlGnBu YlOrBr YlOrRd

The diverging palettes are BrBG PiYG PRGn PuOr RdBu RdGy RdYlBu RdYlGn Spectral And also cool_warm. The cool_warm palette is based on Kenneth Moreland’s proposal (see ref). It goes from blue (cool) to ref (warm), based on well thought-out design elements.

Usage

- `BrBG(n)`
- `PiYG(n)`
- `PRGn(n)`
- `PuOr(n)`
- `RdBu(n)`
- `RdGy(n)`
- `RdYlBu(n)`
RdYlGn(n)
Spectral(n)
Blues(n)
BuGn(n)
BuPu(n)
GnBu(n)
Greens(n)
Greys(n)
Oranges(n)
OrRd(n)
PuBu(n)
PuBuGn(n)
PuRd(n)
Purples(n)
RdPu(n)
Reds(n)
Y1Gn(n)
Y1GnBu(n)
Y1OrBr(n)
Y1OrRd(n)
cool_warm(n)

Arguments

n the number of colors (>= 1) to be in the palette.
Value

A character vector of color names.

References

* Moreland, Kenneth. "Diverging color maps for scientific visualization." Advances in Visual Computing (2009): 92-103. url: http://www.kennethmoreland.com/color-maps/ The code was provided here: http://stackoverflow.com/a/44073011/256662 Thanks to the user YAK, who relied on the code from the Rgnuplot package (which is duplicated here, in order to save the need to import the entire package)

Examples

```r
## Not run:
library(RColorBrewer)
display.brewer.all(n=11,type="div"); title(main = "Divergent color palette")
display.brewer.all(n=9,type=c("seq"); title(main = "Sequential color palette")

img <- function(obj, nam) {
  image(1:length(obj), 1, as.matrix(1:length(obj)), col=obj,
       main = nam, ylab = "", xaxt = "n", yaxt = "n", bty = "n")
}
par(mfrow = c(10,1))
img(rev(cool_warm(500)), "cool_warm, (Moreland 2009)")
img(RdBu(500), "RdBu")
img(BrBG(500), "BrBG")
img(PiYG(500), "PiYG")
img(PRGn(500), "PRGn")
img(PuOr(500), "PuOr")
img(RdGy(500), "RdGy")
img(RdYlBu(500), "RdYlBu")
img(RdYlGn(500), "RdYlGn")
img(Spectral(500), "Spectral")

library(heatmaply)
heatmaply(cor(mtcars), colors = PiYG, limits = c(-1,1))
heatmaply(cor(mtcars), colors = RdBu, limits = c(-1,1))

## End(Not run)
```
Index

Blues (RColorBrewer_colors), 23
BrBG (RColorBrewer_colors), 23
brewer_pal, 23
BuGn (RColorBrewer_colors), 23
BuPu (RColorBrewer_colors), 23
color_branches, 9, 17
colorbar, 11
colorRamp, 18
colorRampPalette, 23
cool_warm (RColorBrewer_colors), 23
data.frame, 22
dendrogram, 8, 16
dist, 8, 17
ecdf, 22
export, 11
find_dend, 9
find_k, 9, 17
gem_tile, 10
ggarrange, 2
ggheatmap, 2
ggplot_side_color_plot, 3
ggplotly, 12
GnBu (RColorBrewer_colors), 23
Greens (RColorBrewer_colors), 23
Greys (RColorBrewer_colors), 23
has_edgePar, 11
hclust, 8, 9, 16, 17
heatmap, 19
heatmap.2, 8, 10, 18, 19
heatmap, 3, 4, 20, 22
heatmaply_cor (heatmaply), 4
heatmaply_na (heatmaply), 4
heatmap, 7, 15
is heatmapr, 19
is.na, 20
is.na10, 4, 20
is.plotly, 21
layout, 9
normalize, 21, 22
Oranges (RColorBrewer_colors), 23
orca, 2
OrRd (RColorBrewer_colors), 23
percentize, 21, 22
PiYG (RColorBrewer_colors), 23
PRGn (RColorBrewer_colors), 23
PuBu (RColorBrewer_colors), 23
PuBuGn (RColorBrewer_colors), 23
PuOr (RColorBrewer_colors), 23
PuRd (RColorBrewer_colors), 23
Purples (RColorBrewer_colors), 23
RColorBrewer_colors, 23
RdBu, 4
RdBu (RColorBrewer_colors), 23
RdGy (RColorBrewer_colors), 23
RdPu (RColorBrewer_colors), 23
RdY1Bu (RColorBrewer_colors), 23
RdY1Gn (RColorBrewer_colors), 23
Reds (RColorBrewer_colors), 23
round, 18
saveWidget, 11
scale_color_gradient, 10
scale_fill_gradientn, 8, 10
Spectral (RColorBrewer_colors), 23
style, 7
subplot, 8, 10
viridis, 8, 23
webshot, 11
YlGn (RColorBrewer_colors), 23
YlGnBu (RColorBrewer_colors), 23
YlOrBr (RColorBrewer_colors), 23
YlOrRd (RColorBrewer_colors), 23