Package ‘healthequal’

May 2, 2024

Title Compute Summary Measures of Health Inequality

Version 1.0.0

Description Compute 21 summary measures of health inequality and its corresponding confidence intervals for ordered and non-ordered dimensions using disaggregated data. Measures for ordered dimensions (e.g., Slope Index of Inequality, Absolute Concentration Index) also accept individual and survey data.

License AGPL (>= 3)

BugReports https://github.com/WHOequity/healthequal/issues

Depends R (>= 3.5.0)

Imports dplyr, emmeans, marginaleffects, rlang, srvyr, survey

Suggests bookdown, knitr, rmarkdown, sandwich, spelling, testthat (>= 3.0.0)

VignetteBuilder knitr

Config/testthat/edition 3

Encoding UTF-8

Language en-US

LazyData true

RoxygenNote 7.3.1

NeedsCompilation no

Author Daniel A. Antiporta [aut] (<https://orcid.org/0000-0002-5143-3776>), Patricia Menéndez [aut] (<https://orcid.org/0000-0003-0701-6315>), Katherine Kirkby [aut, cre] (<https://orcid.org/0000-0002-6881-409X>), Ahmad Hosseinpoor [aut] (<https://orcid.org/0000-0001-7322-672X>), World Health Organization [cph]

Maintainer Katherine Kirkby <kirkbyk@who.int>

Repository CRAN

Date/Publication 2024-05-02 13:22:38 UTC
Description

The absolute concentration index (ACI) is an absolute measure of inequality that indicates the extent to which an indicator is concentrated among disadvantaged or advantaged subgroups, on an absolute scale.

Usage

aci(
est,
 subgroup_order,
 pop = NULL,
 weight = NULL,
 psu = NULL,
strata = NULL,
fpc = NULL,
lmin = NULL,
lmax = NULL,
conf.level = 0.95,
force = FALSE,
...
)

Arguments

est The subgroup estimate. Estimates must be available for all subgroups.
subgroup_order The order of subgroups in an increasing sequence.
pop The number of people within each subgroup. Population size must be available for all subgroups.
weight Individual sampling weight (required if data come from a survey)
psu Primary sampling unit (required if data come from a survey)
strata Strata (required if data come from a survey)
fpc Finite population correction
lmin Minimum limit for bounded indicators.
lmax Maximum limit for bounded indicators.
conf.level confidence level of the interval.
force TRUE/FALSE statement to force calculation with missing indicator estimate values.
... Further arguments passed to or from other methods.

Details

ACI can be calculated using disaggregated data and individual-level data. Subgroups in disaggregated data are weighted according to their population share, while individuals are weighted by sample weight in the case of data from surveys.

The calculation of ACI is based on a ranking of the whole population from the most-disadvantaged subgroup (at rank 0) to the most-advantaged subgroup (at rank 1), which is inferred from the ranking and size of the subgroups. For more information on this inequality measure see Schlotheuber, A., & Hosseinpoor, A. R. (2022) below.

Interpretation: The larger the absolute value of ACI, the higher the level of inequality. For favourable indicators, positive values indicate a concentration of the indicator among the advantaged, while negative values indicate a concentration of the indicator among the disadvantaged. For adverse indicators, it is the reverse: positive values indicate a concentration of the indicator among the disadvantaged, while negative values indicate a concentration of the indicator among the advantaged. ACI is zero if there is no inequality.

Type of summary measure: Complex; absolute; weighted

Applicability: Ordered; more than two subgroups

Warning: The confidence intervals are approximate and might be biased.
Value

The estimated ACI value, corresponding estimated standard error, and confidence interval as a data.frame.

References

Examples

```r
# example code
data(IndividualSample)
head(IndividualSample)
with(IndividualSample,
    aci(est = sba,
        subgroup_order = subgroup_order,
        weight = weight,
        psu = psu,
        strata = strata
    )
)
```

bgsd
Between-group standard deviation (BGSD)

Description

Between-Group Standard Deviation (BGSD) is an absolute measure of inequality that considers all population subgroups. Subgroups are weighted according to their population share.

Usage

```
bgsd(pop, est, se = NULL, scaleval, sim = NULL, seed = 123456, ...)
```

Arguments

- **pop**: The number of people within each subgroup. Population size must be available for all subgroups.
- **est**: The subgroup estimate. Estimates must be available for all subgroups.
- **se**: The standard error of the subgroup estimate. If this is missing, 95% confidence intervals of BGSD cannot be calculated.
- **scaleval**: The scale of the indicator. For example, the scale of an indicator measured as a percentage is 100. The scale of an indicator measured as a rate per 1000 population is 1000.
- **sim**: The number of simulations to estimate 95% confidence intervals
seed The random number generator (RNG) state for the 95% confidence interval simulation

... Further arguments passed to or from other methods.

Details

BGSD is calculated as the square root of the weighted average of squared differences between the subgroup estimates and the setting average. Squared differences are weighted by each subgroup’s population share. For more information on this inequality measure see Schlotheuber, A., & Hosseinpoor, A. R. (2022) below.

95% confidence intervals are calculated using a methodology of simulated estimates. The dataset is simulated a large number of times (e.g., 100) and BGSD is calculated for each of the simulated samples. The 95% confidence intervals are based on the 2.5th and 97.5th percentiles of the BGSD results.

Interpretation: BGSD has only positive values, with larger values indicating higher levels of inequality. BGSD is zero if there is no inequality. It has the same unit as the health indicator.

Type of summary measure: Complex; absolute; weighted

Applicability: Non-ordered; more than two subgroups

Value

The estimated BGSD value, corresponding estimated standard error, and confidence interval as a data.frame.

References

Examples

```r
# example code
data(NonorderedSample)
head(NonorderedSample)
with(NonorderedSample,
   bgsd(pop = population,
        est = estimate,
        se = se,
        scaleval = indicator_scale)
)
```
Between-group variance (BGV)

Description

Between-Group Variance (BGV) is an absolute measure of inequality that considers all population subgroups. Subgroups are weighted according to their population share.

Usage

`bgv(pop, est, se = NULL, conf.level = 0.95, ...)`

Arguments

- `pop` The number of people within each subgroup. Population size must be available for all subgroups.
- `est` The subgroup estimate. Estimates must be available for all subgroups.
- `se` The standard error of the subgroup estimate. If this is missing, 95% confidence intervals of BGV cannot be calculated.
- `conf.level` confidence level of the interval.
- `...` Further arguments passed to or from other methods.

Details

BGV is calculated as the weighted average of squared differences between the subgroup estimates and the setting average. Squared differences are weighted by each subgroup’s population share. For more information on this inequality measure see Schlotheuber, A., & Hosseinpoor, A. R. (2022) below.

Interpretation: BGV has only positive values, with larger values indicating higher levels of inequality. BGV is zero if there is no inequality. BGV is more sensitive to outlier estimates as it gives more weight to the estimates that are further from the setting average. It is reported as the squared unit of the health indicator.

Type of summary measure: Complex; absolute; weighted

Applicability: Non-ordered; more than two subgroups

Warning: The confidence intervals are approximate and might be biased. See Ahn J. et al. (1978) below for further information on the standard error formula.

Value

The estimated BGV value, corresponding estimated standard error, and confidence interval as a data.frame.
covar

Description

The Coefficient of Variation (COV) is a relative measure of inequality that considers all population subgroups. Subgroups are weighted according to their population share.

Usage

```r
covar(pop, est, se = NULL, scaleval, sim = NULL, seed = 123456, ...)
```

Arguments

- **pop**: The number of people within each subgroup. Population size must be available for all subgroups.
- **est**: The subgroup estimate. Estimates must be available for all subgroups.
- **se**: The standard error of the subgroup estimate. If this is missing, 95% confidence intervals of COV cannot be calculated.
- **scaleval**: The scale of the indicator. For example, the scale of an indicator measured as a percentage is 100. The scale of an indicator measured as a rate per 1000 population is 1000.
- **sim**: The number of simulations to estimate 95% confidence intervals
- **seed**: The random number generator (RNG) state for the 95% confidence interval simulation
- **...**: Further arguments passed to or from other methods.

Examples

```r
# example code
data(NonorderedSample)
head(NonorderedSample)
with(NonorderedSample, 
bgv(pop = population, 
est = estimate, 
se = se
)
)
```
Details

COV is calculated by dividing the between-group standard deviation (BGSD) by the setting average and multiplying the fraction by 100. BGSD is calculated as the square root of the weighted average of squared differences between the subgroup estimates and the setting average. Squared differences are weighted by each subgroup’s population share. For more information on this inequality measure see Schlotheuber, A., & Hosseinpoor, A. R. (2022) below.

95% confidence intervals are calculated using a methodology of simulated estimates. The dataset is simulated a large number of times (e.g., 100) and COV is calculated for each of the simulated samples. The 95% confidence intervals are based on the 2.5th and 97.5th percentiles of the COV results.

Interpretation: COV only has positive values, with larger values indicating higher levels of inequality. COV is zero if there is no inequality.

Type of summary measure: Complex; relative; weighted

Applicability: Non-ordered; more than two subgroups

Value

The estimated COV value, corresponding estimated standard error, and confidence interval as a data.frame.

References

Examples

```
# example code
data(NonorderedSample)
head(NonorderedSample)
with(NonorderedSample,
covar(pop = population,
est = estimate,
se = se,
scaleval = indicator_scale)
)
```

d Difference (D)

Description

The difference (D) is an absolute measure of inequality that shows the difference in a health indicator between two population subgroups. For more information on this inequality measure see Schlotheuber, A., & Hosseinpoor, A. R. (2022) below.
Usage

\[
d(\text{est, se}, \text{favourable_indicator, ordered_dimension = NULL, subgroup_order = NULL, reference_subgroup = NULL, conf.level = 0.95, } \ldots)
\]

Arguments

- **est**: The subgroup estimate. Estimates must be available for all subgroups.
- **se**: The standard error of the subgroup estimate. If this is missing, 95% confidence intervals of MDBU cannot be calculated.
- **favourable_indicator**: Records whether the indicator is favourable (1) or non-favourable (0). Favourable indicators measure desirable health events where the ultimate goal is to achieve a maximum level (such as skilled birth attendance). Non-favourable indicators measure undesirable health events where the ultimate goal is to achieve a minimum level (such as under-five mortality rate).
- **ordered_dimension**: Records whether the dimension is ordered (1) or not (0).
- **subgroup_order**: The order of subgroups in an increasing sequence.
- **reference_subgroup**: Identifies a reference subgroup with the value of 1.
- **conf.level**: Confidence level of the interval.
- **...**: Further arguments passed to or from other methods.

Details

D is calculated as: \(D = y_1 - y_2\), where \(y_1\) and \(y_2\) indicate the estimates for subgroups 1 and 2. The selection of the two subgroups depends on the characteristics of the inequality dimension and the purpose of the analysis. In addition, the direction of the calculation may depend on the indicator type (favourable or adverse).

Interpretation: Greater absolute values indicate higher levels of inequality. D is zero if there is no inequality.

Type of summary measure: Simple; relative; unweighted

Applicability: Any

Warning: The confidence intervals are approximate and might be biased.

Value

The estimated D value, corresponding estimated standard error, and confidence interval as a data.frame.
References

Examples

```r
# example code
data(NonorderedSample)
head(NonorderedSample)
with(NonorderedSample,
    d(est = estimate,
      se = se,
      favourable_indicator = favourable_indicator,
      ordered_dimension = ordered_dimension,
      reference_subgroup = reference_subgroup
    )
)
```

idisu

Index of Disparity (unweighted) (IDISU)

Description

The Index of Disparity (IDIS) is a relative measure of inequality that shows the average difference between each subgroup and the setting average, in relative terms. In the unweighted version (IDISU), all subgroups are weighted equally.

Usage

```r
idisu(
    pop = NULL,
    est,
    se = NULL,
    scaleval,
    setting_average = NULL,
    sim = NULL,
    seed = 123456,
    ...
)
```

Arguments

- **pop** The number of people within each subgroup. Population size must be available for all subgroups.
- **est** The subgroup estimate. Estimates must be available for all subgroups.
se

The standard error of the subgroup estimate. If this is missing, 95% confidence intervals of IDISU cannot be calculated.

scaleval

The scale of the indicator. For example, the scale of an indicator measured as a percentage is 100. The scale of an indicator measured as a rate per 1000 population is 1000.

setting_average

The reported setting average. Setting average must be unique for each setting, year, indicator combination. If population is not specified for all subgroups, the setting average is used.

sim

The number of simulations to estimate 95% confidence intervals.

seed

The random number generator (RNG) state for the 95% confidence interval simulation.

... Further arguments passed to or from other methods.

Details

IDISU is calculated as the average of absolute differences between the subgroup estimates and the setting average, divided by the number of subgroups and the setting average, and multiplied by 100. For more information on this inequality measure see Schlotheuber, A., & Hosseinpoor, A. R. (2022) below.

95% confidence intervals are calculated using a methodology of simulated estimates. The dataset is simulated a large number of times (e.g., 100) and IDISU is calculated for each of the simulated samples. The 95% confidence intervals are based on the 2.5th and 97.5th percentiles of the IDISU results.

Interpretation: IDISU has only positive values, with larger values indicating higher levels of inequality. IDISU is zero if there is no inequality.

Type of summary measure: Complex; relative; non-weighted

Applicability: Non-ordered; more than two subgroups

Value

The estimated IDISU value, corresponding estimated standard error, and confidence interval as a data.frame.

References

Examples

```r
# example code
data(NonorderedSample)
head(NonorderedSample)
with(NonorderedSample,
    idisu(pop = population,
```
The Index of Disparity (IDIS) is a relative measure of inequality that shows the average difference between each subgroup and the setting average, in relative terms. In the weighted version (IDISW), subgroups are weighted according to their population share.

Usage

\[
idisw(pop, est, se = NULL, scaleval, sim = NULL, seed = 123456, ...)\]

Arguments

- `pop` The number of people within each subgroup. Population size must be available for all subgroups.
- `est` The subgroup estimate. Estimates must be available for all subgroups.
- `se` The standard error of the subgroup estimate. If this is missing, 95% confidence intervals of IDISW cannot be calculated.
- `scaleval` The scale of the indicator. For example, the scale of an indicator measured as a percentage is 100. The scale of an indicator measured as a rate per 1000 population is 1000.
- `sim` The number of simulations to estimate 95% confidence intervals
- `seed` The random number generator (RNG) state for the 95% confidence interval simulation
- `...` Further arguments passed to or from other methods.

Details

IDISW is calculated as the weighted average of absolute differences between the subgroup estimates and the setting average, divided by the setting average, and multiplied by 100. Absolute differences are weighted by each subgroup’s population share. For more information on this inequality measure see Schlotheuber, A., & Hosseinpoor, A. R. (2022) below.

95% confidence intervals are calculated using a methodology of simulated estimates. The dataset is simulated a large number of times (e.g., 100) and IDISW is calculated for each of the simulated samples. The 95% confidence intervals are based on the 2.5th and 97.5th centiles of the IDISW results.

Interpretation: IDISW has only positive values, with larger values indicating higher levels of inequality. IDISW is zero if there is no inequality.
Type of summary measure: Complex; relative; weighted

Applicability: Non-ordered; more than two subgroups

Value

The estimated IDISW value, corresponding estimated standard error, and confidence interval as a data.frame.

References

Examples

```r
# example code
data(NonorderedSample)
head(NonorderedSample)
with(NonorderedSample,
idisw(pop = population,
est = estimate,
se,
scaleval = indicator_scale)
)
```

Description

This dataset contains sample data for computing non-ordered summary measures of health inequality. It contains data from a household survey for two indicators, births attended by skilled health personnel (sba) and Diphtheria tetanus toxoid and pertussis (DTP3) immunization coverage, disaggregated by economic status. Both indicators are binary, (1) for those who had sba or dpt3 or (0) if they had not.

Usage

IndividualSample

Format

IndividualSample:
A data frame with 17,848 rows and 10 columns:
- **id** individual identifier
- **psu** Primary Sample Unit (PSU)
strata sampling strata
weight sampling weight
subgroup subgroup name
subgroup_order subgroup order
sba indicator estimate
dtp3 indicator estimate
favourable_indicator favourable (1) or non-favourable (0) indicator
indicator_scale scale of the indicator

Details

Births attended by skilled health personnel is defined as a birth attended by skilled health personnel divided by the total number of live births to women aged 15-49 years occurring in the period prior to the survey. Skilled health personnel include doctors, nurses, midwives and other medically trained personnel, as defined according to each country. DPT3 is measured among one-year-olds and indicate those who have received three doses of the combined diphtheria, tetanus toxoid and pertussis containing vaccine in a given year. This is in line with the definition used by the Countdown to 2030 Collaboration, Demographic and Health Surveys (DHS), Multiple Indicator Cluster Surveys (MICS) and Reproductive Health Surveys (RHS).

Economic status is determined using a wealth index, which is based on owning selected assets and having access to certain services. The wealth index is divided into five equal subgroups (quintiles) that each account for 20% of the population. Economic status is an ordered dimension (meaning that the subgroups have an inherent ordering).

This dataset can be used to calculate ordered summary measures of health inequality, including: absolute concentration index (ACI), relative concentration index (RCI), slope index of inequality (SII) and relative index of inequality (RII).

Source

WHO Health Inequality Data Repository https://www.who.int/data/inequality-monitor/data

Examples

```r
head(IndividualSample)
summary(IndividualSample)
```

<table>
<thead>
<tr>
<th>mdbu</th>
<th>Mean difference from the best-performing subgroup (unweighted) (MDBU)</th>
</tr>
</thead>
</table>

Description

The Mean Difference from the Best-Performing Subgroup (MDB) is an absolute measure of inequality that shows the mean difference between each population subgroup and the subgroup with the best estimate. For the unweighted version (MDBU), all subgroups are weighted equally.
Usage

\texttt{mdbu(}
\hspace{1em} \texttt{est,}
\hspace{2em} \texttt{se = NULL,}
\hspace{2em} \texttt{favourable_indicator,}
\hspace{2em} \texttt{scaleval,}
\hspace{2em} \texttt{sim = NULL,}
\hspace{2em} \texttt{seed = 123456,}
\hspace{2em} \ldots
\hspace{1em})

Arguments

\begin{itemize}
\item \texttt{est} The subgroup estimate. Estimates must be available for all subgroups.
\item \texttt{se} The standard error of the subgroup estimate. If this is missing, 95\% confidence intervals of MDBU cannot be calculated.
\item \texttt{favourable_indicator} Records whether the indicator is favourable (1) or non-favourable (0). Favourable indicators measure desirable health events where the ultimate goal is to achieve a maximum level (such as skilled birth attendance). Non-favourable indicators measure undesirable health events where the ultimate goal is to achieve a minimum level (such as under-five mortality rate).
\item \texttt{scaleval} The scale of the indicator. For example, the scale of an indicator measured as a percentage is 100. The scale of an indicator measured as a rate per 1000 population is 1000.
\item \texttt{sim} The number of simulations to estimate 95\% confidence intervals
\item \texttt{seed} The random number generator (RNG) state for the 95\% confidence interval simulation
\item \ldots Further arguments passed to or from other methods.
\end{itemize}

Details

The unweighted version (MDBU) is calculated as the average of absolute differences between the subgroup estimates and the estimate for the best-performing subgroup, divided by the number of subgroups. For more information on this inequality measure see Schlotheuber, A., & Hosseinpoor, A. R. (2022) below.

95\% confidence intervals are calculated using a methodology of simulated estimates. The dataset is simulated a large number of times (e.g., 100) and MDBU is calculated for each of the simulated samples. The 95\% confidence intervals are based on the 2.5th and 97.5th percentiles of the MDBU results.

\textbf{Interpretation:} MDBU only has positive values, with larger values indicating higher levels of inequality. MDBU is zero if there is no inequality.

\textbf{Type of summary measure:} Complex; absolute; non-weighted

\textbf{Applicability:} Non-ordered; more than two subgroups
Value

The estimated MDBU value, corresponding estimated standard error, and confidence interval as a data.frame.

References

Examples

```r
# example code
data(NonorderedSample)
head(NonorderedSample)
with(NonorderedSample,
    mdbu(est = estimate,
         se,
         favourable_indicator,
         scaleval = indicator_scale
    )
)
```

mdbw

Mean difference from the best-performing subgroup (weighted)

(MDBW)

Description

The Mean Difference from the Best-Performing Subgroup (MDB) is an absolute measure of inequality that shows the mean difference between each population subgroup and the subgroup with the best estimate. For the weighted version (MDBW), subgroups are weighted according to their population share.

Usage

```r
mdbw(
    pop,
    est,
    se = NULL,
    favourable_indicator,
    scaleval,
    sim = NULL,
    seed = 123456,
    ...
)
```
Arguments

pop The number of people within each subgroup. Population size must be available for all subgroups.
est The subgroup estimate. Estimates must be available for all subgroups.
se The standard error of the subgroup estimate. If this is missing, 95% confidence intervals of MDBW cannot be calculated.
favourable_indicator Records whether the indicator is favourable (1) or non-favourable (0). Favourable indicators measure desirable health events where the ultimate goal is to achieve a maximum level (such as skilled birth attendance). Non-favourable indicators measure undesirable health events where the ultimate goal is to achieve a minimum level (such as under-five mortality rate).
scaleval The scale of the indicator. For example, the scale of an indicator measured as a percentage is 100. The scale of an indicator measured as a rate per 1000 population is 1000.
sim The number of simulations to estimate 95% confidence intervals
seed The random number generator (RNG) state for the 95% confidence interval simulation

... Further arguments passed to or from other methods.

Details

The weighted version (MDBW) is calculated as the weighted average of absolute differences between the subgroup estimates and the estimate for the best-performing subgroup, divided by the number of subgroups. For more information on this inequality measure see Schlotheuber, A., & Hosseinpoor, A. R. (2022) below.

95% confidence intervals are calculated using a methodology of simulated estimates. The dataset is simulated a large number of times (e.g., 100) and MDBW is calculated for each of the simulated samples. The 95% confidence intervals are based on the 2.5th and 97.5th percentiles of the MDBW results.

Interpretation: MDBW only has positive values, with larger values indicating higher levels of inequality. MDBW is zero if there is no inequality.

Type of summary measure: Complex; absolute; weighted

Applicability: Non-ordered; more than two subgroups

Value

The estimated MDBW value, corresponding estimated standard error, and confidence interval as a data.frame.

References

Examples

example code
data(NonorderedSample)
head(NonorderedSample)
with(NonorderedSample,
 mdbw(pop = population,
 est = estimate,
 se,
 scaleval = indicator_scale,
 favourable_indicator
)
)

mdmu

Mean difference from mean (unweighted) (MDMU)

Description

The Mean Difference from Mean (MDM) is an absolute measure of inequality that shows the mean difference between each subgroup and the setting average. For the unweighted version (MDMU), all subgroups are weighted equally.

Usage

mdmu(
 pop = NULL,
 est,
 se = NULL,
 scaleval,
 setting_average = NULL,
 sim = NULL,
 seed = 123456,
 ...
)

Arguments

pop The number of people within each subgroup. Population size must be available for all subgroups.

est The subgroup estimate. Estimates must be available for all subgroups.

se The standard error of the subgroup estimate. If this is missing, 95% confidence intervals of MDMU cannot be calculated.

scaleval The scale of the indicator. For example, the scale of an indicator measured as a percentage is 100. The scale of an indicator measured as a rate per 1000 population is 1000.
setting_average

The reported setting average. Setting average must be unique for each setting, year, indicator combination. If population is not specified for all subgroups, the setting average is used.

sim

The number of simulations to estimate 95% confidence intervals

seed

The random number generator (RNG) state for the 95% confidence interval simulation

... Further arguments passed to or from other methods.

Details

The unweighted version (MDMU) is calculated as the sum of the absolute differences between the subgroup estimates and the setting average, divided by the number of subgroups. For more information on this inequality measure see Schlotheuber, A., & Hosseinpoor, A. R. (2022) below.

95% confidence intervals are calculated using a methodology of simulated estimates. The dataset is simulated a large number of times (e.g., 100) and MDMU is calculated for each of the simulated samples. The 95% confidence intervals are based on the 2.5th and 97.5th percentiles of the MDMU results.

Interpretation: MDMU only has positive values, with larger values indicating higher levels of inequality. MDMU is zero if there is no inequality.

Type of summary measure: Complex; absolute; non-weighted

Applicability: Non-ordered; more than two subgroups

Value

The estimated MDMU value, corresponding estimated standard error, and confidence interval as a data.frame.

References

Examples

```r
# example code
data(NonorderedSample)
head(NonorderedSample)
with(NonorderedSample,
    mdu(pop = population,
     est = estimate,
     se = se,
     scaleval = indicator_scale,
     setting_average
    )
)
)```
Mean difference from mean (weighted) (MDMW)

Description

The Mean Difference from Mean (MDM) is an absolute measure of inequality that shows the mean difference between each subgroup and the setting average. For the weighted version (MDMW), subgroups are weighted according to their population share.

Usage

mdmw(pop, est, se = NULL, scaleval, sim = NULL, seed = 123456, ...)

Arguments

- **pop**: The number of people within each subgroup. Population size must be available for all subgroups.
- **est**: The subgroup estimate. Estimates must be available for all subgroups.
- **se**: The standard error of the subgroup estimate. If this is missing, 95% confidence intervals of MDMW cannot be calculated.
- **scaleval**: The scale of the indicator. For example, the scale of an indicator measured as a percentage is 100. The scale of an indicator measured as a rate per 1000 population is 1000.
- **sim**: The number of simulations to estimate 95% confidence intervals
- **seed**: The random number generator (RNG) state for the 95% confidence interval simulation
- **...**: Further arguments passed to or from other methods.

Details

The weighted version (MDMW) is calculated as the weighted average of absolute differences between the subgroup estimates and the setting average. Absolute differences are weighted by each subgroup’s population share. For more information on this inequality measure see Schlotheuber, A., & Hosseinpoor, A. R. (2022) below.

95% confidence intervals are calculated using a methodology of simulated estimates. The dataset is simulated a large number of times (e.g., 100) and MDMW is calculated for each of the simulated samples. The 95% confidence intervals are based on the 2.5th and 97.5th percentiles of the MDMW results.

**Interpretation:** MDMW only has positive values, with larger values indicating higher levels of inequality. MDMW is zero if there is no inequality.

**Type of summary measure:** Complex; absolute; weighted

**Applicability:** Non-ordered; more than two subgroups
Value

The estimated MDMW value, corresponding estimated standard error, and confidence interval as a data.frame.

References


Examples

# example code
data(NonorderedSample)
head(NonorderedSample)
with(NonorderedSample,
    mdrw(pop = population,
        est = estimate,
        se = se,
        scaleval = indicator_scale
    )
)

mdru

Mean difference from a reference subgroup (unweighted) (MDRU)

Description

The Mean Difference from a Reference Subgroup (MDR) is an absolute measure of inequality that shows the mean difference between each population subgroup and a reference subgroup. For the unweighted version (MDRU), all subgroups are weighted equally.

Usage

mdru(
est,
    se = NULL,
    scaleval,
    reference_subgroup,
    sim = NULL,
    seed = 123456,
    ...
)
Arguments

**est**
The subgroup estimate. Estimates must be available for all subgroups.

**se**
The standard error of the subgroup estimate. If this is missing, 95% confidence intervals of MDRU cannot be calculated.

**scaleval**
The scale of the indicator. For example, the scale of an indicator measured as a percentage is 100. The scale of an indicator measured as a rate per 1000 population is 1000.

**reference_subgroup**
Identifies a reference subgroup with the value of 1.

**sim**
The number of simulations to estimate 95% confidence intervals

**seed**
The random number generator (RNG) state for the 95% confidence interval simulation

... Further arguments passed to or from other methods.

Details

The unweighted version (MDRU) is calculated as the average of absolute differences between the subgroup estimates and the estimate for the reference subgroup, divided by the number of subgroups. For more information on this inequality measure see Schlotheuber, A., & Hosseinpoor, A. R. (2022) below.

95% confidence intervals are calculated using a methodology of simulated estimates. The dataset is simulated a large number of times (e.g., 100) and MDRU is calculated for each of the simulated samples. The 95% confidence intervals are based on the 2.5th and 97.5th percentiles of the MDRU results.

**Interpretation:** MDRU only has positive values, with larger values indicating higher levels of inequality. MDRU is zero if there is no inequality.

**Type of summary measure:** Complex; absolute; non-weighted

**Applicability:** Non-ordered; more than two subgroups

Value

The estimated MDRU value, corresponding estimated standard error, and confidence interval as a data.frame.

References


Examples

```r
example code
data(NonorderedSample)
head(NonorderedSample)
with(NonorderedSample,
```
### mdru

```r
mdru(est = estimate, se = se, scaleval = indicator_scale, reference_subgroup)
```

### Description

An absolute measure of inequality that shows the mean difference between each population subgroup and a reference subgroup. In the weighted version (MDRW), subgroups are weighted according to their population share.

### Usage

```r
mdrw(
pop, est, se = NULL, scaleval, reference_subgroup, sim = NULL, seed = 123456,
...)
```

### Arguments

- **pop**
  - The number of people within each subgroup. Population size must be available for all subgroups.
- **est**
  - The subgroup estimate. Estimates must be available for all subgroups.
- **se**
  - The standard error of the subgroup estimate. If this is missing, 95% confidence intervals of MDRW cannot be calculated.
- **scaleval**
  - The scale of the indicator. For example, the scale of an indicator measured as a percentage is 100. The scale of an indicator measured as a rate per 1000 population is 1000.
- **reference_subgroup**
  - Identifies a reference subgroup with the value of 1.
- **sim**
  - The number of simulations to estimate 95% confidence intervals
- **seed**
  - The random number generator (RNG) state for the 95% confidence interval simulation
- **...**
  - Further arguments passed to or from other methods.
Details

The weighted version (MDRW) is calculated as the weighted average of absolute differences between the subgroup estimates and the estimate for the reference subgroup. Absolute differences are weighted by each subgroup’s population share. For more information on this inequality measure see Schlotheuber, A., & Hosseinpoor, A. R. (2022) below.

95% confidence intervals are calculated using a methodology of simulated estimates. The dataset is simulated a large number of times (e.g., 100) and MDRW is calculated for each of the simulated samples. The 95% confidence intervals are based on the 2.5th and 97.5th percentiles of the MDRW results.

**Interpretation:** MDRW only has positive values, with larger values indicating higher levels of inequality. MDRW is zero if there is no inequality.

**Type of summary measure:** Complex; absolute; weighted

**Applicability:** Non-ordered; more than two subgroups

Value

The estimated MDRW value, corresponding estimated standard error, and confidence interval as a data.frame.

References


Examples

```r
example code
data(NonorderedSample)
head(NonorderedSample)
with(NonorderedSample,
 mdrw(pop = population,
 est = estimate,
 se = se,
 scaleval = indicator_scale,
 reference_subgroup)
)
```

---

**mld**  
*Mean log deviation (MLD)*

Description

The Mean Log Deviation (MLD) is a relative measure of inequality that considers all population subgroups. Subgroups are weighted according to their population share.
Usage

\texttt{mld(pop, est, se = NULL, conf.level = 0.95, \ldots )}

Arguments

\begin{itemize}
  \item \texttt{pop} \hspace{1cm} The number of people within each subgroup. Population size must be available for all subgroups.
  \item \texttt{est} \hspace{1cm} The subgroup estimate. Estimates must be available for all subgroups.
  \item \texttt{se} \hspace{1cm} The standard error of the subgroup estimate. If this is missing, 95\% confidence intervals of MLD cannot be calculated.
  \item \texttt{conf.level} \hspace{1cm} confidence level of the interval.
  \item \ldots \hspace{1cm} Further arguments passed to or from other methods.
\end{itemize}

Details

MLD is calculated as the sum of products between the negative natural logarithm of the share of the indicator of each subgroup and the population share of each subgroup. MLD may be more easily readable when multiplied by 1000. For more information on this inequality measure see Schlotheuber, A., & Hosseinpoor, A. R. (2022) below.

\textbf{Interpretation:} MLD is zero if there is no inequality. Greater absolute values indicate higher levels of inequality. MLD is more sensitive to differences further from the setting average (by the use of the logarithm).

\textbf{Type of summary measure:} Complex; relative; weighted

\textbf{Applicability:} Non-ordered; more than two subgroups

\textbf{Warning:} The confidence intervals are approximate and might be biased. See Ahn J. et al. (1978) below for further information on the standard error formula.

Value

The estimated MLD value, corresponding estimated standard error, and confidence interval as a \texttt{data.frame}.

References


Examples

\begin{verbatim}
# example code
data(NonorderedSample)
head(NonorderedSample)
with(NonorderedSample,
mld(pop = population,
\end{verbatim}
NonorderedSample

est = estimate,
se = se

NonorderedSample

World Health Organization (WHO)

Description

This dataset contains sample data for computing non-ordered summary measures of health inequality. It contains data from a household survey for the proportion of births attended by skilled health personnel disaggregated by subnational region.

Usage

NonorderedSample

Format

NonorderedSample:
A data frame with 34 rows and 11 columns:

indicator indicator name
dimension dimension of inequality
subgroup population subgroup within a given dimension of inequality
estimate subgroup estimate
se standard error of the subgroup estimate
population number of people within each subgroup
setting_average indicator average for the setting
favourable_indicator favourable (1) or non-favourable (0) indicator
ordered_dimension ordered (1) or non-ordered (0) dimension
indicator_scale scale of the indicator
reference_subgroup reference subgroup

Details

The proportion of births attended by skilled health personnel is calculated as the number of births attended by skilled health personnel divided by the total number of live births to women aged 15-49 years occurring in the period prior to the survey.

Skilled health personnel include doctors, nurses, midwives and other medically trained personnel, as defined according to each country. This is in line with the definition used by the Countdown to 2030 Collaboration, Demographic and Health Surveys (DHS), Multiple Indicator Cluster Surveys (MICS) and Reproductive Health Surveys (RHS).

Subnational regions are defined using country-specific criteria. Subnational region is a non-ordered dimension (meaning that the subgroups do not have an inherent ordering).
This dataset can be used to calculate non-ordered summary measures of health inequality, including: between-group variance (BGV), between-group standard deviation (BGSD), coefficient of variation (COV), mean difference from mean (MDM), index of disparity (IDIS), Theil index (TI) and mean log deviation (MLD). It can also be used to calculate the impact measures population attributable risk (PAR) and population attributable fraction (PAF).

Source

WHO Health Inequality Data Repository [https://www.who.int/data/inequality-monitor/data](https://www.who.int/data/inequality-monitor/data)

Examples

```r
head(NonorderedSample)
summary(NonorderedSample)
```

---

**NonorderedSampleMultipleInd**

*World Health Organization (WHO)*

**Description**

This dataset contains sample data for computing non-ordered summary measures of health inequality. It contains data from a household survey for two indicators, the proportion of births attended by skilled health personnel and under-five mortality rate, disaggregated by subnational region.

**Usage**

NonorderedSampleMultipleInd

**Format**

NonorderedSampleMultipleInd:

A data frame with 71 rows and 11 columns:

- **indicator** indicator name
- **dimension** dimension of inequality
- **subgroup** population subgroup within a given dimension of inequality
- **estimate** subgroup estimate
- **se** standard error of the subgroup estimate
- **population** number of people within each subgroup
- **setting_average** indicator average for the setting
- **favourable_indicator** favourable (1) or non-favourable (0) indicator
- **ordered_dimension** ordered (1) or non-ordered (0) dimension
- **indicator_scale** scale of the indicator
- **reference_subgroup** reference subgroup
Details

The proportion of births attended by skilled health personnel is calculated as the number of births attended by skilled health personnel divided by the total number of live births to women aged 15-49 years occurring in the period prior to the survey.

Skilled health personnel include doctors, nurses, midwives and other medically trained personnel, as defined according to each country. This is in line with the definition used by the Countdown to 2030 Collaboration, Demographic and Health Surveys (DHS), Multiple Indicator Cluster Surveys (MICS) and Reproductive Health Surveys (RHS).

The under-five mortality rate is the probability (expressed as a rate per 1000 live births) of a child born in a specific year or period dying before reaching the age of five years. It is calculated as the number of deaths at age 0-5 years divided by the number of surviving children at the beginning of the specified age range during the 10 years prior to the survey.

Subnational regions are defined using country-specific criteria. Subnational region is a non-ordered dimension (meaning that the subgroups do not have an inherent ordering).

This dataset can be used to calculate non-ordered summary measures of health inequality, including: between-group variance (BGV), between-group standard deviation (BGSD), coefficient of variation (COV), mean difference from mean (MDM), index of disparity (IDIS), Theil index (TI) and mean log deviation (MLD). It can also be used to calculate the impact measures population attributable risk (PAR) and population attributable fraction (PAF).

Source

WHO Health Inequality Data Repository
https://www.who.int/data/inequality-monitor/data

Head(NonorderedSampleMultipleind) summary(NonorderedSampleMultipleind)

| OrderedSample | World Health Organization (WHO) |

Description

This dataset contains sample data for computing ordered summary measures of health inequality. It contains data from a household survey for the proportion of births attended by skilled health personnel disaggregated by economic status, measured by wealth quintiles.

Usage

OrderedSample

Format

OrderedSample: A data frame with 5 rows and 11 columns.

indicator indicator name
dimension dimension of inequality
subgroup population subgroup within a given dimension of inequality
**subgroup_order** the order of subgroups in an increasing sequence

**estimate** subgroup estimate

**se** standard error of the subgroup estimate

**population** number of people within each subgroup

**setting_average** indicator average for the setting

**favourable_indicator** favourable (1) or non-favourable (0) indicator

**ordered_dimension** ordered (1) or non-ordered (0) dimension

**indicator_scale** scale of the indicator

---

**Details**

The proportion of births attended by skilled health personnel is calculated as the number of births attended by skilled health personnel divided by the total number of live births to women aged 15-49 years occurring in the period prior to the survey.

Skilled health personnel include doctors, nurses, midwives and other medically trained personnel, as defined according to each country. This is in line with the definition used by the Countdown to 2030 Collaboration, Demographic and Health Surveys (DHS), Multiple Indicator Cluster Surveys (MICS) and Reproductive Health Surveys (RHS).

Economic status is determined using a wealth index, which is based on owning selected assets and having access to certain services. The wealth index is divided into five equal subgroups (quintiles) that each account for 20% of the population. Economic status is an ordered dimension (meaning that the subgroups have an inherent ordering).

This dataset can be used to calculate ordered summary measures of health inequality, including: absolute concentration index (ACI), relative concentration index (RCI), slope index of inequality (SII) and relative index of inequality (RII). It can also be used to calculate the impact measures population attributable risk (PAR) and population attributable fraction (PAF).

**Source**

WHO Health Inequality Data Repository [https://www.who.int/data/inequality-monitor/data](https://www.who.int/data/inequality-monitor/data)

**Examples**

```r
head(OrderedSample)
summary(OrderedSample)
```

---

**Description**

This dataset contains sample data for computing ordered summary measures of health inequality. It contains data from a household survey for two indicators, the proportion of births attended by skilled health personnel and under-five mortality rate, disaggregated by economic status.
Usage

OrderedSampleMultipleind

Format

OrderedSampleMultipleind:
A data frame with 10 rows and 11 columns:

- **indicator**: indicator name
- **dimension**: dimension of inequality
- **subgroup**: population subgroup within a given dimension of inequality
- **subgroup_order**: the order of subgroups in an increasing sequence
- **estimate**: subgroup estimate
- **se**: standard error of the subgroup estimate
- **population**: number of people within each subgroup
- **setting_average**: indicator average for the setting
- **favourable_indicator**: favourable (1) or non-favourable (0) indicator
- **ordered_dimension**: ordered (1) or non-ordered (0) dimension
- **indicator_scale**: scale of the indicator

Details

The proportion of births attended by skilled health personnel is calculated as the number of births attended by skilled health personnel divided by the total number of live births to women aged 15-49 years occurring in the period prior to the survey.

Skilled health personnel include doctors, nurses, midwives and other medically trained personnel, as defined according to each country. This is in line with the definition used by the Countdown to 2030 Collaboration, Demographic and Health Surveys (DHS), Multiple Indicator Cluster Surveys (MICS) and Reproductive Health Surveys (RHS).

The under-five mortality rate is the probability (expressed as a rate per 1000 live births) of a child born in a specific year or period dying before reaching the age of five years. It is calculated as the number of deaths at age 0-5 years divided by the number of surviving children at the beginning of the specified age range during the 10 years prior to the survey.

Economic status is determined using a wealth index, which is based on owning selected assets and having access to certain services. The wealth index is divided into five equal subgroups (quintiles) that each account for 20% of the population. Economic status is an ordered dimension (meaning that the subgroups have an inherent ordering).

This dataset can be used to calculate ordered summary measures of health inequality, including: absolute concentration index (ACI), relative concentration index (RCI), slope index of inequality (SII) and relative index of inequality (RII). It can also be used to calculate the impact measures population attributable risk (PAR) and population attributable fraction (PAF).

Source

WHO Health Inequality Data Repository [https://www.who.int/data/inequality-monitor/data](https://www.who.int/data/inequality-monitor/data)
Examples

```r
head(OrderedSampleMultipleind)
summary(OrderedSampleMultipleind)
```

---

**paf**  
*Population attributable fraction (PAF)*

**Description**

The population attributable fraction (PAF) is a relative measure of inequality that shows the potential improvement in the average of an indicator, in relative terms, that could be achieved if all population subgroups had the same level of the indicator as a reference group.

**Usage**

```r
paf(
 pop = NULL,
 est,
 ordered_dimension,
 subgroup_order = NULL,
 setting_average = NULL,
 favourable_indicator,
 scaleval,
 conf.level = 0.95,
 ...
)
```

**Arguments**

- `pop` The number of people within each subgroup. Population size must be available for all subgroups.
- `est` The subgroup estimate. Estimates must be available for all subgroups.
- `ordered_dimension` Records whether the dimension is ordered (1) or not (0).
- `subgroup_order` The order of subgroups in an increasing sequence, if the dimension is ordered.
- `setting_average` The reported setting average. Setting average must be unique for each setting, year, indicator combination. If population is not specified for all subgroups, the setting average is used.
- `favourable_indicator` Records whether the indicator is favourable (1) or non-favourable (0). Favourable indicators measure desirable health events where the ultimate goal is to achieve a maximum level (such as skilled birth attendance). Non-favourable indicators measure undesirable health events where the ultimate goal is to achieve a minimum level (such as under-five mortality rate).
The scale of the indicator. For example, the scale of an indicator measured as a percentage is 100. The scale of an indicator measured as a rate per 1000 population is 1000.

conf.level

... Further arguments passed to or from other methods.

Details

PAF is calculated as the difference between the estimate for the reference subgroup and the setting average, divided by the setting average and multiplied by 100. For more information on this inequality measure see Schlotheuber, A., & Hosseinpoor, A. R. (2022) below.

If the indicator is favourable and PAF < 0, then PAF is replaced with 0. If the indicator is adverse and PAF > 0, then PAF is replaced with 0. The selection of the reference subgroup depends on the characteristics of the inequality dimension and the indicator type. It is the most-advantaged subgroup for ordered dimensions. For non-ordered dimensions, it is the subgroup with the highest estimate for favourable indicators and is the subgroup with the lowest estimate for adverse indicators.

Interpretation: PAF assumes positive values for favourable indicators and negative values for non-favourable (adverse) indicators. The larger the absolute value of PAF, the higher the level of inequality. PAF is zero if no further improvement can be achieved (i.e., if all subgroups have reached the same level of the indicator as the reference subgroup or surpassed that level).

Type of summary measure: Complex; relative; weighted

Applicability: Any

Warning: The confidence intervals are approximate and might be biased. See Walter S.D. (1978) below for further information on the standard error formula.

Value

The estimated PAF value, corresponding estimated standard error, and confidence interval as a data.frame.

References


Examples

# example code
data(OrderedSample)
head(OrderedSample)
with(OrderedSample, 
    paf(pop = population, 
        est = estimate, 
        ordered_dimension = ordered_dimension, 
        conf.level = ...)
Population attributable risk (PAR)

Description

Population Attributable Risk (PAR) is an absolute measure of inequality that shows the potential improvement in the average of an indicator, in absolute terms, that could be achieved if all population subgroups had the same level of the indicator as a reference group.

Usage

```
parisk(
 pop = NULL,
 est,
 ordered_dimension,
 subgroup_order = NULL,
 setting_average = NULL,
 favourable_indicator,
 scaleval,
 conf.level = 0.95,
 ...
)
```

Arguments

- **pop** The number of people within each subgroup. Population size must be available for all subgroups.
- **est** The subgroup estimate. Estimates must be available for all subgroups.
- **ordered_dimension** Records whether the dimension is ordered (1) or not (0).
- **subgroup_order** The order of subgroups in an increasing sequence, if the dimension is ordered.
- **setting_average** The reported setting average. Setting average must be unique for each setting, year, indicator combination. If population is not specified for all subgroups, the setting average is used.
- **favourable_indicator** Records whether the indicator is favourable (1) or non-favourable (0). Favourable indicators measure desirable health events where the ultimate goal is to achieve a maximum level (such as skilled birth attendance). Non-favourable indicators measure undesirable health events where the ultimate goal is to achieve a minimum level (such as under-five mortality rate).
The scale of the indicator. For example, the scale of an indicator measured as a percentage is 100. The scale of an indicator measured as a rate per 1000 population is 1000.

conf.level confidence level of the interval.

... Further arguments passed to or from other methods.

Details

PAR is calculated as the difference between the estimate for the reference subgroup and the setting average. For more information on this inequality measure see Schlotheuber, A., & Hosseinpoor, A. R. (2022) below.

If the indicator is favourable and PAR < 0, then PAR is replaced with 0. If the indicator is adverse and PAR > 0, then PAR is replaced with 0. The selection of the reference subgroup depends on the characteristics of the inequality dimension and the indicator type. It is the most-advantaged subgroup for ordered dimensions. For non-ordered dimensions, it is the subgroup with the highest estimate for favourable indicators and is the subgroup with the lowest estimate for adverse indicators.

Interpretation: PAR assumes positive values for favourable indicators and negative values for non-favourable (adverse) indicators. The larger the absolute value of PAR, the higher the level of inequality. PAR is zero if no further improvement can be achieved (i.e., if all subgroups have reached the same level of the indicator as the reference subgroup or surpassed that level).

Type of summary measure: Complex; absolute; weighted

Applicability: Any

Warning: The confidence intervals are approximate and might be biased. See Walter S.D. (1978) below for further information on the standard error formula.

Value

The estimated PAR value, corresponding estimated standard error, and confidence interval as a data.frame.

References


Examples

# example code
data(OrderedSample)
head(OrderedSample)
with(OrderedSample,  
  parisk(pop = population,  
  est = estimate,  
)
Ratio (R)

Description

The ratio (R) is a relative measure of inequality that shows the ratio of a health indicator between two population subgroups. For more information on this inequality measure see Schlotheuber, A., & Hosseinpoor, A. R. (2022) below.

Usage

```r
r(
est,
 se = NULL,
 favourable_indicator,
 ordered_dimension = NULL,
 subgroup_order = NULL,
 reference_subgroup = NULL,
 conf.level = 0.95,
 ...
)
```

Arguments

- `est`: The subgroup estimate. Estimates must be available for all subgroups.
- `se`: The standard error of the subgroup estimate. If this is missing, 95% confidence intervals of MDBU cannot be calculated.
- `favourable_indicator`: Records whether the indicator is favourable (1) or non-favourable (0). Favourable indicators measure desirable health events where the ultimate goal is to achieve a maximum level (such as skilled birth attendance). Non-favourable indicators measure undesirable health events where the ultimate goal is to achieve a minimum level (such as under-five mortality rate).
- `ordered_dimension`: Records whether the dimension is ordered (1) or not (0).
- `subgroup_order`: The order of subgroups in an increasing sequence.
- `reference_subgroup`: Identifies a reference subgroup with the value of 1.
- `conf.level`: Confidence level of the interval.
- `...`: Further arguments passed to or from other methods.
Details

R is calculated as: \( R = \frac{y_1}{y_2} \) where \( y_1 \) and \( y_2 \) indicate the estimates for subgroups 1 and 2. The selection of the two subgroups depends on the characteristics of the inequality dimension and the purpose of the analysis. In addition, the direction of the calculation may depend on the indicator type (favourable or adverse). Below are some examples of how \( y_1 \) and \( y_2 \) may be identified.

**Interpretation:** The index R only assumes positive values. The further the value of R from one, the higher the level of inequality. R is one if there is no inequality.

**Type of summary measure:** Simple; relative; unweighted.

**Applicability:** Any

**Warning:** The confidence intervals are approximate and might be biased. See Ahn J. et al. (1978) below for further information on the standard error formula.

Value

The estimated D value, corresponding estimated standard error, and confidence interval as a data.frame.

References


Examples

```r
example code
data(NonorderedSample)
head(NonorderedSample)
with(NonorderedSample,
 r(est = estimate,
 se = se,
 favourable_indicator,
 ordered_dimension = ordered_dimension,
 reference_subgroup = reference_subgroup
)
)
```

---

rci  
*Relative concentration index (RCI)*
Description

The relative concentration index (RCI) is a relative measure of inequality that shows the gradient across population subgroups. It indicates the extent to which an indicator is concentrated among disadvantaged or advantaged subgroups, on a relative scale. RCI can be calculated using disaggregated data and individual-level data. Subgroups in disaggregated data are weighted according to their population share, while individuals are weighted by sample weight in the case of data from surveys.

Usage

```r
rci(
 est,
 subgroup_order,
 scaleval = NULL,
 pop = NULL,
 weight = NULL,
 psu = NULL,
 strata = NULL,
 fpc = NULL,
 method = NULL,
 lmin = NULL,
 lmax = NULL,
 conf.level = 0.95,
 force = FALSE,
 ...
)
```

Arguments

- **est**: The subgroup estimate. Estimates must be available for all subgroups.
- **subgroup_order**: The order of subgroups in an increasing sequence.
- **scaleval**: The scale of the indicator. For example, the scale of an indicator measured as a percentage is 100. The scale of an indicator measured as a rate per 1000 population is 1000.
- **pop**: The number of people within each subgroup. Population size must be available for all subgroups.
- **weight**: Individual sampling weight (required if data come from a survey)
- **psu**: Primary sampling unit (required if data come from a survey)
- **strata**: Strata (required if data come from a survey)
- **fpc**: Finite population correction
- **method**: Normalisation method for bounded indicators. Options available Wagstaff \(\text{wagstaff}\) or Erreygers \(\text{erreysers}\) correction.
- **lmin**: Theoretical minimum for bounded indicators.
- **lmax**: Theoretical maximum for bounded indicators.
- **conf.level**: confidence level of the interval.
force    TRUE/FALSE statement to force calculation with missing indicator estimate values.

...    Further arguments passed to or from other methods.

Details

RCI is calculated by dividing the absolute concentration index (ACI) by the setting average. RCI may be more easily interpreted when multiplied by 100. The calculation of ACI is based on a ranking of the whole population from the most-disadvantaged subgroup (at rank 0) to the most-advantaged subgroup (at rank 1), which is inferred from the ranking and size of the subgroups. For more information on this inequality measure see Schlotheuber, A., & Hosseinpoor, A. R. (2022) below.

**Interpretation:** RCI is bounded between -1 and +1 (or between -100 and +100, when multiplied by 100). The larger the absolute value of RCI, the higher the level of inequality. For favourable indicators, positive values indicate a concentration of the indicator among the advantaged, while negative values indicate a concentration of the indicator among the disadvantaged. For adverse indicators, it is the reverse: positive values indicate a concentration of the indicator among the disadvantaged, while negative values indicate a concentration of the indicator among the advantaged. RCI is zero if there is no inequality.

**Type of summary measure:** Complex; relative; weighted

**Applicability:** Ordered; more than two subgroups

**Warning:** The confidence intervals are approximate and might be biased.

Value

The estimated RCI value, corresponding estimated standard error, and confidence interval as a data.frame.

References


Examples

```r
example code
data(IndividualSample)
head(IndividualSample)
with(IndividualSample,
rci(est = sba,
 subgroup_order = subgroup_order,
 weight = weight,
 psu = psu,
 strata = strata
)
)
```
Relative index of inequality (RII)

Description

The relative index of inequality (RII) is a relative measure of inequality that represents the ratio of estimated indicator values between the most-advantaged and most-disadvantaged, while taking into consideration the situation in all other subgroups/individuals – using an appropriate regression model. RII can be calculated using disaggregated data and individual-level data. Subgroups in disaggregated data are weighted according to their population share, while individuals are weighted by sample weight in the case of data from surveys.

Usage

```r
rii(
 est,
 subgroup_order,
 pop = NULL,
 scaleval = NULL,
 weight = NULL,
 psu = NULL,
 fpc = NULL,
 strata = NULL,
 conf.level = 0.95,
 linear = FALSE,
 force = FALSE,
 ...
)
```

Arguments

- `est`: The subgroup estimate. Estimates must be available for all subgroups.
- `subgroup_order`: The order of subgroups in an increasing sequence.
- `pop`: The number of people within each subgroup. Population size must be available for all subgroups.
- `scaleval`: The scale of the indicator. For example, the scale of an indicator measured as a percentage is 100. The scale of an indicator measured as a rate per 1000 population is 1000.
- `weight`: Individual sampling weight (required if data come from a survey)
- `psu`: Primary sampling unit (required if data come from a survey)
- `fpc`: Finite population correction
- `strata`: Strata (required if data come from a survey)
- `conf.level`: Confidence level of the interval.
- `linear`: TRUE/FALSE statement to specify the use of a linear regression model for RII estimation (default is logistic regression)
force

TRUE/FALSE statement to force calculation with missing indicator estimate values.

... Further arguments passed to or from other methods.

Details

To calculate RII, a weighted sample of the whole population is ranked from the most-disadvantaged subgroup (at rank 0) to the most-advantaged subgroup (at rank 1). This ranking is weighted, accounting for the proportional distribution of the population within each subgroup. The population of each subgroup is then considered in terms of its range in the cumulative population distribution, and the midpoint of this range. The indicator of interest is then regressed against this midpoint value using an appropriate regression model (e.g., a generalized linear model with logit link), and the predicted values of the indicator are calculated for the two extremes (rank 1 and rank 0). The ratio between the estimated values at rank 1 and rank 0 (covering the entire distribution) generates the RII value. For more information on this inequality measure see Schlotheuber, A., & Hosseinpoor, A. R. (2022) below.

Interpretation: RII has the value of one if there is no inequality. RII has only positive values. Greater absolute values indicate higher levels of inequality. The further the value of RII from one, the higher the level of inequality. For favourable indicators, values larger than one indicate a concentration of the indicator among the advantaged and values smaller than one indicate a concentration of the indicator among the disadvantaged. For adverse indicators, values larger than one indicate a concentration of the indicator among the disadvantaged and values smaller than one indicate a concentration of the indicator among the advantaged. RII is a multiplicative measure and has to be displayed on a logarithmic scale (values larger than one are equivalent in magnitude to their reciprocal values smaller than one, e.g., a value of 2 is equivalent in magnitude to a value of 0.5).

Type of summary measure: Complex; relative; weighted

Applicability: Ordered; more than two subgroups

Warning: The confidence intervals are approximate and might be biased.

Value

The estimated RII value, corresponding estimated standard error, and confidence interval as a data.frame.

References


Examples

# example code
data(IndividualSample)
head(IndividualSample)
with(IndividualSample, 
  rii(est = sba, 
    subgroup_order = subgroup_order,
  )
)
Description

The slope index of inequality (SII) is an absolute measure of inequality that represents the difference in estimated indicator values between the most-advantaged and most-disadvantaged, while taking into consideration the situation in all other subgroups/individuals – using an appropriate regression model. SII can be calculated using both disaggregated data and individual-level data. Subgroups in disaggregated data are weighted according to their population share, while individuals are weighted by sample weight in the case of data from surveys.

Usage

```r
sii(
 est,
 subgroup_order,
 pop = NULL,
 scaleval = NULL,
 weight = NULL,
 psu = NULL,
 strata = NULL,
 fpc = NULL,
 conf.level = 0.95,
 linear = FALSE,
 force = FALSE,
 ...
)
```

Arguments

- **est**: The subgroup estimate. Estimates must be available for all subgroups.
- **subgroup_order**: The order of subgroups in an increasing sequence.
- **pop**: The number of people within each subgroup. Population size must be available for all subgroups.
- **scaleval**: The scale of the indicator. For example, the scale of an indicator measured as a percentage is 100. The scale of an indicator measured as a rate per 1000 population is 1000.
- **weight**: Individual sampling weight (required if data come from a survey)
- **psu**: Primary sampling unit (required if data come from a survey)
Details

To calculate SII, a weighted sample of the whole population is ranked from the most-disadvantaged subgroup (at rank 0) to the most-advantaged subgroup (at rank 1). This ranking is weighted, accounting for the proportional distribution of the population within each subgroup. The indicator of interest is then regressed against this relative rank using an appropriate regression model (e.g., a generalized linear model with logit link), and the predicted values of the indicator are calculated for the two extremes (rank 1 and rank 0). The difference between the predicted values at rank 1 and rank 0 (covering the entire distribution) generates the SII value. For more information on this inequality measure see Schlotheuber, A., & Hosseinpoor, A. R. (2022) below.

Interpretation: SII is zero if there is no inequality. Greater absolute values indicate higher levels of inequality. For favourable indicators, positive values indicate a concentration of the indicator among the advantaged, while negative values indicate a concentration of the indicator among the disadvantaged. For adverse indicators, it is the reverse: positive values indicate a concentration of the indicator among the disadvantaged, while negative values indicate a concentration of the indicator among the advantaged.

Type of summary measure: Complex; absolute; weighted

Applicability: Ordered; more than two subgroups

Warning: The confidence intervals are approximate and might be biased.

Value

The estimated SII value, corresponding estimated standard error, and confidence interval as a data.frame.

References


Examples

# example code
data(IndividualSample)
head(IndividualSample)
with(IndividualSample, 
sii(est = sba,
Theil Index (TI)

Description
The Theil Index (TI) is a relative measure of inequality that considers all population subgroups. Subgroups are weighted according to their population share.

Usage
```
ti(pop, est, se = NULL, conf.level = 0.95, ...)
```

Arguments
- `pop` The number of people within each subgroup. Population size must be available for all subgroups.
- `est` The subgroup estimate. Estimates must be available for all subgroups.
- `se` The standard error of the subgroup estimate. If this is missing, 95% confidence intervals of TI cannot be calculated.
- `conf.level` confidence level of the interval.
- `...` Further arguments passed to or from other methods.

Details
TI is calculated as the sum of products of the natural logarithm of the share of the indicator of each subgroup, the share of the indicator of each subgroup and the population share of each subgroup. TI may be easily interpreted when multiplied by 1000. For more information on this inequality measure see Schlotheuber, A., & Hosseinpoor, A. R. (2022) below.

Interpretation: Greater absolute values indicate higher levels of inequality. TI is zero if there is no inequality. TI is more sensitive to differences further from the setting average (by the use of the logarithm).

Type of summary measure: Complex; relative; weighted

Applicability: Non-ordered; more than two subgroups

Warning: The confidence intervals are approximate and might be biased.

Value
The estimated TI value, corresponding estimated standard error, and confidence interval as a data.frame.
References


Examples

```r
example code
data(NonorderedSample)
head(NonorderedSample)
with(NonorderedSample,
 ti(pop = population,
 est = estimate,
 se = se
)
)
```
Index

* datasets
  IndividualSample, 13
  NonorderedSample, 26
  NonorderedSampleMultipleind, 27
  OrderedSample, 28
  OrderedSampleMultipleind, 29

aci, 2
bgsd, 4
bgv, 6
covar, 7
d, 8
idisu, 10
idisw, 12
IndividualSample, 13
mdbu, 14
mdbw, 16
mdmu, 18
mdmw, 20
mdru, 21
mdrw, 23
mld, 24
NonorderedSample, 26
NonorderedSampleMultipleind, 27
OrderedSample, 28
OrderedSampleMultipleind, 29
paf, 31
parisk, 33
r, 35
rci, 36
rii, 39
sii, 41
ti, 43