Package ‘gtreg’

November 17, 2023

Title Regulatory Tables for Clinical Research
Version 0.3.0
Description Creates tables suitable for regulatory agency submission by leveraging the 'gtsummary' package as the back end. Tables can be exported to HTML, Word, PDF and more. Highly customized outputs are available by utilizing existing styling functions from 'gtsummary' as well as custom options designed for regulatory tables.
License GPL (>= 3)
URL https://github.com/shannonpileggi/gtreg,
 https://shannonpileggi.github.io/gtreg/
BugReports https://github.com/shannonpileggi/gtreg/issues
Depends R (>= 3.4)
Imports broom.helpers (>= 1.13.0), cli (>= 3.6.1), dplyr (>= 1.1.1),forcats (>= 1.0.0), glue (>= 1.6.2), gtsummary (>= 1.7.1),purrr (>= 1.0.1), rlang (>= 1.1.1), stringr (>= 1.5.0), tibble (>= 3.2.1), tidyr (>= 1.2.1)
Suggests covr (>= 3.6.1), gt (>= 0.10.0), knitr (>= 1.43), rmarkdown (>= 2.22), spelling (>= 2.2.1), testthat (>= 3.1.9)
VignetteBuilder knitr
Config/testthat/edition 3
Encoding UTF-8
Language en-US
LazyData true
RoxygenNote 7.2.3
NeedsCompilation no
Author Shannon Pileggi [aut, cre, cph]
 (https://orcid.org/0000-0002-7732-4164),
 Daniel D. Sjoberg [aut] (https://orcid.org/0000-0003-0862-2018)
Maintainer Shannon Pileggi <shannon.pileggi@gmail.com>
Repository CRAN
Date/Publication 2023-11-17 17:10:02 UTC
R topics documented:

- `.complete_ae_data` 2
- `add_overall_tbl_ae` 3
- `df_adverse_events` 5
- `df_patient_characteristics` 6
- `inline_text_tbl_ae` 7
- `selectors` 8
- `style_xxx` 9
- `tbl_ae` 10
- `tbl_ae_count` 12
- `tbl_ae_focus` 13
- `tbl_listing` 15
- `tbl_reg_summary` 17

Index 19

`.complete_ae_data`

Create a complete and expanded data frame for tabulating adverse events

Description

Returns a data frame that has an observation for each patient in the study, with combinations for each ID, SOC, and AE. The returned data frame includes new logical columns "..ae.." and "..soc.." indicating whether that row should be included when tabulating the AE table. When multiple AEs of the same type are observed, the AE with the largest by= value is the observation to be used in the tabulation.

Usage

```r
.complete_ae_data(
  data,
  id,
  ae,
  soc = NULL,
  by = NULL,
  strata = NULL,
  id_df = NULL,
  by_values = NULL,
  missing_text = "Unknown",
  missing_location = "first"
)
```
Arguments

- **data** : Data frame
- **id** : String variable name of the patient ID
- **ae** : String variable name of the adverse event column
- **soc** : Optional string variable name of the system organ class column
- **by** : Optional string variable to split results by, e.g. report AEs by grade or attribution
- **strata** : Optional string variable to stratify results by, e.g. report AEs summaries by treatment group
- **id_df** : Optional data frame of complete id values and strata to achieve correct base n for the situation in which not all subjects experience adverse events
- **by_values** : Optional vector of complete by values, listed in desired order, to achieve correct table structure for the situation in which an adverse event of a certain grade is not observed for a given soc
- **missing_text** : String that will be shown for missing levels of by=. Default is "Unknown"
- **missing_location** : location where the column summarizing values with missing levels by= will be located in the final table. Must be one of c("first", "last", "hide"). Default is "first"

Value

a tibble

Examples

```r
df_adverse_events %>%
  .complete_ae_data(
    id = "patient_id",
    ae = "adverse_event",
    soc = "system_organ_class",
    by = "grade",
    strata = "trt"
  )
```

add_overall_tbl_ae
Tabulate Overall Summary

Description

Tabulate Overall Summary
Usage

```r
## S3 method for class 'tbl_ae'
add_overall(x, across = NULL, ...)

## S3 method for class 'tbl_ae_count'
add_overall(x, across = NULL, ...)

## S3 method for class 'tbl_ae_focus'
add_overall(x, across = NULL, ...)
```

Arguments

- `x`: Object of class "tbl_ae", "tbl_ae_focus", or "tbl_ae_count"
- `across`: Specify the type of overall statistics to include.
 - "both" adds summaries across both the `by=` and `strata=` levels
 - "by" adds summaries across the `by=` levels
 - "strata" adds summaries across the `strata=` levels
 - "overall-only" adds a single overall column Default is all possible overall types.
- `...`: Not used

Value

Summary object of same input class

Notes

If the spanning headers are modified prior to the call of `add_overall()`, the ordering of the columns may not be correct.

Example Output

Examples

```r
# Example 1
add_overall_ex1 <-
  df_adverse_events %>%
  tbl_ae_count(
    ae = adverse_event,
    soc = system_organ_class,
    by = grade,
    strata = trt
  ) %>%
  add_overall() %>%
  modify_header(all_ae_cols() ~ "**Grade (by)**") %>%
  bold_labels()
```
Example 2 ---
add_overall_ex2 <-
df_adverse_events %>%
tbl_ae(
 id = patient_id,
 ae = adverse_event,
 soc = system_organ_class,
 by = grade
) %>%
add_overall(across = 'by') %>%
modify_header(all_ae_cols() ~ "**Grade {by}**") %>%
bold_labels()

Example 3 ---
add_overall_ex3 <-
df_adverse_events %>%
tbl_ae_focus(
 id = patient_id,
 include = c(any_complication, grade3_complication),
 ae = adverse_event,
 strata = trt
) %>%
add_overall(across = 'strata')

Example 4 ---
add_overall_ex4 <-
df_adverse_events %>%
tbl_ae(
 id = patient_id,
 ae = adverse_event,
 soc = system_organ_class,
 by = grade,
 strata = trt
) %>%
add_overall(across = 'overall-only') %>%
modify_header(all_ae_cols() ~ "**Grade {by}**") %>%
bold_labels()

df_adverse_events
Simulated Adverse Event Database

Description

A data set containing reported AEs from a trial.

Usage

`df_adverse_events`
Format

A data frame with 100 rows–one row per patient per AE

patient_id Patient ID
trt Treatment Group
system_organ_class System Organ Class
adverse_event Adverse Event
grade Grade
drug_attribution Drug Attribution
any_complication Any Grade Complication
grade3_complication Grade 3+ Complication

Description

Simulated Patient Characteristics Database

Usage

df_patient_characteristics

Format

A data frame with 100 rows–one row per patient

patient_id Patient ID
trt Treatment Group
age Patient Age
marker Biological Marker
status Study Status
discontinued Discontinued from Study
off_trt_ae Off Treatment Adverse Event
Report Values from gtreg tables in-line

Description

Function allows users to report formatted and styled results from gtreg tables in-line.

Usage

```r
## S3 method for class '/quotesingle.Var
inline_text(x, row, column = NULL, ...)
## S3 method for class '/quotesingle.Var
inline_text(x, row, column = NULL, ...)
## S3 method for class '/quotesingle.Var
inline_text(x, row, column = NULL, ...)
```  

Arguments

- `x`: an object of class tbl_ae(), tbl_ae_count(), tbl_ae_focus()
- `row`: string indicating the AE or SOC to report
- `column`: column name of cell to report. Use show_header_names(x) to print all column names beside the current header.
- `...`: not used

Value

string

Examples

```r
tbl <-
df_adverse_events %>%
tbl_ae(
  id = patient_id,
  ae = adverse_event,
  soc = system_organ_class,
  by = grade
)
show_header_names(tbl)

inline_text(tbl, "Anaemia", column = stat_5)
```
selectors | Column Selectors

Description

See the Table modifications article for examples.

- all_ae_cols(overall, unknown) selects all columns summarizing AE statistics. By default, unknown and overall columns are not selected.
- all_cols_in_strata(strata) selects all columns from specified stratum.
- all_overall_cols() selects all overall columns
- all_unknown_cols() selects all unknown columns

Usage

all_ae_cols(overall = FALSE, unknown = FALSE)
all_cols_in_strata(strata)
all_overall_cols()
all_unknown_cols()

Arguments

overall logical indicating whether to include the overall columns. Default is FALSE
unknown logical indicating whether to include the unknown or missing columns. Default is FALSE
strata character vector of the selected stratum

Value

selected columns

Example Output

See Also

gtsummary::all_stat_cols()
Examples

```r
selectors_ex1 <-
  df_adverse_events %>%
  dplyr::mutate(grade = ifelse(dplyr::row_number() == 1L, NA, grade)) %>%
  tbl_ae(
    id = patient_id,
    ae = adverse_event,
    soc = system_organ_class,
    by = grade
  ) %>%
  add_overall(across = 'by') %>%
  modify_header(
    all_ae_cols() ~ "**Grade {by}**",
    all_overall_cols() ~ "**Total**",
    all_unknown_cols() ~ "**Unknown Grade**"
  )
```

style_xxx

Style numbers as x’s

Description

The purpose of `style_xxx()` is to convert numeric values in summary tables to x’s of consistent length for mock tables. See the **Table shells vignette** for detailed examples.

Usage

```r
style_xxx(x, width = digits + 2, digits = 0)
```

Arguments

- `x` a numeric or character vector
- `width` the width of output field of x’s, including the decimal place
- `digits` the number of digits displayed after the decimal place

Value

a character vector

Examples

```r
style_xxx(7:10, digits = 0)
style_xxx(7:10, digits = 1)
style_xxx(7:10, width = 2, digits = 0)
style_xxx(7:10, width = 5, digits = 2)
```
Description

The function tabulates adverse events. One AE per ID will be counted in the resulting table. If a by= variable is passed and a patient experienced more than one of the same AE, the AE associated with the highest by= level will be included. For example, if a patient has two of the same AE and by = grade, the AE with the highest grade will be included. Similarly, if tabulations within system organ class are requested, the AE within SOC associated with the highest grade will be tabulated.

Usage

```r
tbl_ae(
  data,
  id,
  ae,
  soc = NULL,
  by = NULL,
  strata = NULL,
  id_df = NULL,
  statistic = "{n} ({p})",
  by_values = NULL,
  digits = NULL,
  sort = NULL,
  zero_symbol = "\U2014",
  missing_location = c("first", "last", "hide")
)
```

Arguments

- **data**: Data frame
- **id**: Variable name of the patient ID
- **ae**: Variable name of the adverse event column
- **soc**: Variable name of the system organ class column
- **by**: Variable to split results by, e.g. report AEs by grade
- **strata**: Variable to stratify results by, e.g. report AEs summaries by treatment group
- **id_df**: Optional data frame of complete id values and strata to achieve correct base n for the situation in which not all subjects experience adverse events. See `df_patient_characteristics` for an example id_df that pairs with `df_adverse_events`.
- **statistic**: String indicating the statistics that will be reported. The default is "\{n\} \{p\}"
- **by_values**: Optional vector of complete by values, listed in desired order, to achieve correct table structure for the situation in which an adverse event of a certain grade is not observed for a given soc
digits
Specifies the number of decimal places to round the summary statistics. By default integers are shown to zero decimal places, and percentages are formatted with `style_percent()`. If you would like to modify either of these, pass a vector of integers indicating the number of decimal places to round the statistics. For example, if the statistic being calculated is \(\{n\} \{\text{p}\%}\) and you want the percent rounded to 2 decimal places use `digits = c(0, 2)`. User may also pass a styling function: `digits = style_sigfig`.

sort
Controls order of AEs and SOCs in output table. The default is `NULL`, where AEs and SOCs are sorted alphanumerically (and factors sorted according to their factor level). Use `sort = "ae"` to sort AEs in decreasing frequency order, `sort = "soc"` to sort SOCs in decreasing order, and `sort = c("ae", "soc")` to sort both. AEs are sorted within SOC.

zero_symbol
String used to represent cells with zero counts. Default is the em-dash (\(\U2014\)). Using `zero_symbol = NULL` will print the zero count statistics, e.g. "0 (0)"

missing_location
location where the column summarizing values with missing levels by= will be located in the final table. Must be one of `c("first", "last", "hide")`. Default is "first"

Value

a `tbl_ae` object

Example Output

Examples

```r
# Example 1
---
tbl_ae_ex1 <- df_adverse_events %>%
  tbl_ae(
    id = patient_id,
    ae = adverse_event,
    soc = system_organ_class,
    by = grade,
    strata = trt
  )
modify_header(all_ae_cols() ~ "**Grade \(\text{by}\)**")

# Example 2
---
tbl_ae_ex2 <- df_adverse_events %>%
  tbl_ae(
    id = patient_id,
    ae = adverse_event,
    by = grade
  )
```

modify_header(all_ae_cols() ~ "**Grade (by)**")

tbl_ae_count

Tabulate Raw AE Counts

Description

Create a table counting all AEs.

Usage

```r
tbl_ae_count(
  data,
  ae,
  soc = NULL,
  by = NULL,
  strata = NULL,
  by_values = NULL,
  digits = NULL,
  sort = NULL,
  zero_symbol = "\U2014",
  missing_location = c("first", "last", "hide")
)
```

Arguments

- `data`
 Data frame

- `ae`
 Variable name of the adverse event column

- `soc`
 Variable name of the system organ class column

- `by`
 Variable to split results by, e.g. report AEs by grade

- `strata`
 Variable to stratify results by, e.g. report AEs summaries by treatment group

- `by_values`
 Optional vector of complete by values, listed in desired order, to achieve correct table structure for the situation in which an adverse event of a certain grade is not observed for a given soc

- `digits`
 Specifies the number of decimal places to round the summary statistics. By default integers are shown to zero decimal places, and percentages are formatted with `style_percent()`. If you would like to modify either of these, pass a vector of integers indicating the number of decimal places to round the statistics. For example, if the statistic being calculated is "\{n\} (\{p\}%)" and you want the percent rounded to 2 decimal places use `digits = c(0, 2)`. User may also pass a styling function: `digits = style_sigfig`

- `sort`
 Controls order of AEs and SOCs in output table. The default is `NULL`, where AEs and SOCs are sorted alphanumerically (and factors sorted according to their factor level). Use `sort = "ae"` to sort AEs in decreasing frequency order, `sort = "soc"` to sort SOCs in decreasing order, and `sort = c("ae", "soc")` to sort both. AEs are sorted within SOC.
Zero symbol
String used to represent cells with zero counts. Default is the em-dash ("\u2014"). Using `zero_symbol = NULL` will print the zero count statistics, e.g. "0 (0)

Missing location
Location where the column summarizing values with missing levels by= will be located in the final table. Must be one of c("first", "last", "hide"). Default is "first"

Details
`tbl_ae_count` counts all AEs (whereas `tbl_ae` counts by maximum grade). Thus, `tbl_ae_count` does not provide percentages as multiple AEs can be counted per subject.

Value
A 'tbl_ae_count' object

Example Output

See Also

`tibl_ae`

Examples

```r
# Example 1 -----------------------------------------------------------------
tbl_ae_count_ex1 <-
tbl_ae_count(
data = df_adverse_events,
ae = adverse_event,
soc = system_organ_class,
strata = trt,
by = grade
) %>%
modify_header(all_ae_cols() ~ "**Grade (by)**")
```

tbl_ae_focus
Tabulate AE Focused (Dichotomous) Summaries

Description

Summarize dichotomous AE data. For example, report the rate of patients that have an AE of Grade 3 or higher.
Usage

tbl_ae_focus(
data,
include,
id,
ae,
soc = NULL,
strata = NULL,
label = NULL,
id_df = NULL,
statistic = "{n} {{p}}",
digits = NULL,
sort = NULL,
zero_symbol = "\U2014"
)

Arguments

data Data frame
include Vector of column names to summarize. Column names may be quoted or un-
 quoted. All columns must be class 'logical'.
id Variable name of the patient ID
ae Variable name of the adverse event column
soc Variable name of the system organ class column
strata Variable to stratify results by, e.g. report AEs summaries by treatment group
label A named list of labels that will be applied in the resulting table. Names must be
 those passed in include=. Default is NULL, and either the label attribute or the
 column name will be used.
id_df Optional data frame of complete id values and strata to achieve correct base
 n for the situation in which not all subjects experience adverse events. See
 df_patient_characteristics for an example id_df that pairs with df_adverse_events.
statistic String indicating the statistics that will be reported. The default is "{n} {{p}}"
digits Specifies the number of decimal places to round the summary statistics. By
 default integers are shown to zero decimal places, and percentages are formatted
 with style_percent(). If you would like to modify either of these, pass a
 vector of integers indicating the number of decimal places to round the statistics.
 For example, if the statistic being calculated is "{n} {{p}%}" and you want the
 percent rounded to 2 decimal places use digits = c(0, 2). User may also pass
 a styling function: digits = style_sigfig
sort Controls order of AEs and SOCs in output table. The default is NULL, where
 AEs and SOCs are sorted alphanumerically (and factors sorted according to their
 factor level). Use sort = "ae" to sort AEs in decreasing frequency order, sort = "soc"
 to sort SOCs in decreasing order, and sort = c("ae", "soc") to sort both.
 AEs are sorted within SOC.
zero_symbol String used to represent cells with zero counts. Default is the em-dash ("\U2014").
 Using zero_symbol = NULL will print the zero count statistics, e.g. "0 (0)"
Function creates a gtsummary-class listing of data. Column labels are used as column headers, when present. The listing prints observations in the order of the input data.

Usage

```r
tbl_listing(data, group_by = NULL, bold_headers = TRUE)
```

Arguments

- `data`: a data frame
- `group_by`: Single variable name indicating a grouping variable. Default is NULL for no grouping variable. When specified, a grouping row will be added to the first column. See details below.
- `bold_headers`: logical indicating whether to bold column headers. Default is TRUE

Value

gtsummary data listing
group_by

The grouping column and the first column in the table will be combined and the type/class may be converted to common type/class for both columns. However, if either the group_by= column or the first column are factors, the factor column(s) will first be converted to character.

The groups are ordered according to the grouping variable’s type (i.e., character, numeric, or factor).

Details

The purpose of `tbl_listing()` is to add support for printing data frames, while taking advantage of the `{gtsummary}` defaults, e.g., ability to print to most output formats, using print themes to have a common style to all tables in a document, etc.

While the output of `tbl_listing()` is class ’gtsummary’, these tables are not meant to be merged with other ’gtsummary’ tables with `tbl_merge()`, or reporting table contents with `inline_text()`.

The reason is that a proper ’gtsummary’ contains additional, hidden structure not present in the result of `tbl_listing()`. If you do need to report the results of `tbl_listing()` in-line, it’s recommended to convert the table to a data frame, then extract the needed cell, e.g.

```r
tbl_listing() |>  
as_tibble(col_names = FALSE) |>  
dplyr::slice(1) |>  
dplyr::pull(colname)
```

Example Output

Examples

```r
library(dplyr, warn.conflicts = FALSE)

tbl_listing_ex1 <-  
  head(df_adverse_events, n = 10) %>%  
  select(system_organ_class, adverse_event, grade, drug_attribution, patient_id) %>%  
  arrange(adverse_event, desc(grade)) %>%  
  tbl_listing(group_by = system_organ_class) %>%  
  bold_labels()

set.seed(11234)

tbl_listing_ex2 <-  
  df_patient_characteristics %>%  
  dplyr::slice_sample(n = 10) %>%  
  select(patient_id, status, discontinued, off_trt_ae) %>%  
  tbl_listing() %>%  
  as_gt() %>%  
  gt::opt_row_striping()
```
Description

Function wraps `gtsummary::tbl_summary()` to create a data summary table often seen in regulatory submissions. Continuous variable summaries are shown on multiple lines with additional summary statistics and percentages are shown for categorical variables; precision levels estimated based on values observed.

Usage

```r
tbl_reg_summary(
  data,
  by = NULL,
  label = NULL,
  statistic = NULL,
  digits = NULL,
  type = NULL,
  value = NULL,
  missing = c("no", "yes", "ifany"),
  missing_text = NULL,
  sort = NULL,
  percent = NULL,
  include = everything()
)
```

Arguments

data A data frame

by A column name (quoted or unquoted) in data. Summary statistics will be calculated separately for each level of the by variable (e.g. by = trt). If NULL, summary statistics are calculated using all observations.

label List of formulas specifying variables labels, e.g. `list(age ~ "Age", stage ~ "Path T Stage")`. If a variable’s label is not specified here, the label attribute `attr(data$age, "label")` is used. If attribute label is NULL, the variable name will be used.

statistic List of formulas specifying types of summary statistics to display for each variable.

digits List of formulas specifying the number of decimal places to round summary statistics. If not specified, `tbl_summary` guesses an appropriate number of decimals to round statistics. When multiple statistics are displayed for a single variable, supply a vector rather than an integer. For example, if the statistic being calculated is `

(mean) (\{sd\})` and you want the mean rounded to 1 decimal place, and the SD to 2 use `digits = list(age ~ c(1, 2))`. User may also pass a styling function: `digits = age ~ style_sigfig`
type List of formulas specifying variable types. Accepted values are c("continuous", "continuous2", "categorical", "dichotomous"), e.g. type = list(age ~ "continuous", female ~ "dichotomous"). If type not specified for a variable, the function will default to an appropriate summary type.
value List of formulas specifying the value to display for dichotomous variables. gt-summary selectors, e.g. all_dichotomous(), cannot be used with this argument.
missing Indicates whether to include counts of NA values in the table. Allowed values are "no" (never display NA values), "ifany" (only display if any NA values), and "always" (includes NA count row for all variables). Default is "ifany".
missing_text String to display for count of missing observations. Default is "Unknown".
sort List of formulas specifying the type of sorting to perform for categorical data. Options are frequency where results are sorted in descending order of frequency and alphanumeric, e.g. sort = list(everything() ~ "frequency")
percent Indicates the type of percentage to return. Must be one of "column", "row", or "cell". Default is "column".
include variables to include in the summary table. Default is everything()

Value

a 'tbl_reg_summary' object

Example Output

See Also

See gtsummary::tbl_summary() help file
See vignette for detailed tutorial

Examples

tbl_reg_summary_ex1 <-
df_patient_characteristics %>%
tbl_reg_summary(by = trt, include = c(marker, status))
Index

* datasets
 df_adverse_events, 5
 df_patient_characteristics, 6
 complete_ae_data, 2

add_overall.tbl_ae
 (add_overall_tbl_ae), 3
add_overall.tbl_ae_count
 (add_overall_tbl_ae), 3
add_overall.tbl_ae_focus
 (add_overall_tbl_ae), 3
add_overall_tbl_ae, 3
all_ae_cols (selectors), 8
all_cols_in_strata (selectors), 8
all_overall_cols (selectors), 8
all_unknown_cols (selectors), 8

df_adverse_events, 5, 10, 14
df_patient_characteristics, 6, 10, 14

inline_text.tbl_ae
 (inline_text_tbl_ae), 7
inline_text.tbl_ae_count
 (inline_text_tbl_ae), 7
inline_text.tbl_ae_focus
 (inline_text_tbl_ae), 7
inline_text_tbl_ae, 7
selectors, 8
style_xxx, 9

tbl_ae, 10, 13
tbl_ae_count, 12
tbl_ae_focus, 13
tbl_listing, 15
tbl_reg_summary, 17