Package ‘grove’

January 8, 2018

Type Package
Title Wavelet Functional ANOVA Through Markov Groves
Version 1.1
Date 2018-01-07
Author Jacopo Soriano and Li Ma
Maintainer Jacopo Soriano <jsoriano.stat@gmail.com>
License GPL (>= 3)
Imports methods, Rcpp (>= 0.11.2), wavethresh
LinkingTo Rcpp, RcppArmadillo
NeedsCompilation yes
Repository CRAN
Date/Publication 2018-01-07 23:37:09 UTC

R topics documented:

Denoise .. 2
DWT .. 3
FAnova .. 3
GenerateSyntheticAnova 4
grove .. 5
InvDWT .. 5
PlotFun .. 6
PlotStates .. 7

Index 8
Denoise

Bayesian wavelet denoising

Description

This function carries out Bayesian wavelet denoising using the Normal Inverse Gamma Markov Tree method of Ma and Soriano (2016).

Usage

Denoise(W, alpha = 0.5, nu = 5, n.samples = 500, transition.mode = "Markov", method = "Nelder-Mead")

Arguments

- **W**: An object of class DWT.
- **alpha**: Hyperparameter controlling the global smoothness.
- **nu**: Hyperparameter controlling variance heterogeneity. If Inf, then the variance is identical for all nodes.
- **n.samples**: Number of posterior draws.
- **transition.mode**: Type of transition. The two options are Markov or Independent.
- **method**: Method used for find maximum of marginal likelihood.

Value

An object of class grove.

References

Examples

data <- wavethresh::DJ.EX(n = 512, noisy = TRUE, rsnr = 5)$doppler
W <- DWT(data)
ans <- Denoise(W)
DWT

Discrete wavelet transform

Description

This function performs the discrete wavelet transform (DWT) according to Mallat’s pyramidal algorithm (Mallat, 1989).

Usage

```R
DWT(data, filter.number = 10, family = "DaubLeAsym")
```

Arguments

- `data`: A matrix of data, where each row is an observation. The number of columns must be a power of two.
- `filter.number`: The smoothness of the wavelet to use in the decomposition.
- `family`: The family of wavelets. The two most common options are `DaubExPhase` and `DaubLeAsym`.

Details

See function `wd` from package `wavethresh` for more details.

Value

A `dwt` object. This object is a list with the following components:

Examples

```R
data <- GenerateSyntheticAnova(st.dev = 5, n.replicates = 10)
W <- DWT(data$noisy.Y)
```

FAnova

Bayesian functional ANOVA

Description

This function carries out Bayesian functional ANOVA using the Normal Inverse Gamma Markov Grove method of Ma and Soriano (2016).

Usage

```R
FAnova(W, X, formula, nu = 5, is.kappa.fixed = FALSE, gamma.kappa = 0.3,
      eta.kappa = 0.1, n.samples = 500, transition.mode = "Markov",
      method = "Nelder-Mead")
```
Arguments

- **w**
 - An object of class DWT.
- **x**
 - Design matrix.
- **formula**
 - An object of class formula.
- **nu**
 - Hyperparameter controlling the heterogeneity in the noise variance.
- **is.kappa.fixed**
 - If TRUE, gamma.kappa and eta.kappa are fixed. If FALSE gamma_kappa and eta_kappa are determined using Empirical Bayes.
- **gamma.kappa**
 - Hyperparameter for the MT transition matrix.
- **eta.kappa**
 - Hyperparameter for the MT transition matrix.
- **n.samples**
 - Number of posterior draws.
- **transition.mode**
 - Type of transition. The two options are Markov or Independent.
- **method**
 - Method used for finding maximum of marginal likelihood.

Value

An object of class grove.

References

Examples

```r
## Not run:
data <- GenerateSyntheticAnova(st.dev = 5, n.replicates = 5)
w <- DWT(data$noisy.Y)
x <- data$x
ans <- FAnova(w, x, ~ 1 + factorA + factorB)
denoised.data <- InvDWT(ans, x = c(0, 0, 1, 0))
PlotFun(denoised.data)
## End(Not run)
```

GenerateSyntheticAnova

Generate synthetic functional ANOVA dataset

Description

This function generates a synthetic 3-factor functional ANOVA dataset.

Usage

```r
GenerateSyntheticAnova(st.dev = 10, n.replicates = 5)
```
Arguments

- `st.dev`: The standard deviation of the error.
- `n.replicates`: The number of replicates for each factor combination.

Value

A list containing the data without noise, the data with noise, and the design matrix.

Examples

```r
data <- GenerateSyntheticAnova(st.dev = 5, n.replicates = 10)
ix <- 1
plot(data$clean.Y[ix, ], type = "l", col = "red", ylab = "")
lines(data$noisy.Y[ix, ], col = "blue")
```

grove

grove: A package for functional denoising and functional ANOVA

Description

The grove package implements a wavelet-domain Bayesian hierarchical model for functional analysis of variance.

invdwt

Inverse discrete wavelet transform

Description

This function performs the inverse discrete wavelet transform.

Usage

```r
InvDWT(grove.obj, x = NULL, include.C = TRUE, sample.C = FALSE)
```

Arguments

- `grove.obj`: An object of class `grove`.
- `x`: A vector of the values of a predictor.
- `include.C`: If TRUE, C is used for reconstructing the function.
- `sample.C`: If TRUE, draws from C are used for reconstructing the function.

Value

A matrix with each row representing a draw from the reconstructed signal.
Examples

data <- wavethresh::DJ.EX(n = 512, noisy = TRUE, rsnr = 5)$doppler
W <- DWT(data)
ans <- Denoise(W)
denoised.data <- InvDWT(ans)
plot(data, type = "l")
lines(denoised.data[1,], col = "red")

plotfun
Function to plot the denoised signal

Description
This function plots the credible bounds of the denoised signal.

Usage

PlotFun(data, p = c(0.025, 0.5, 0.975), band.type = "pointwise",
main = "", col = "blue", type = "1", ylab = "", xlab = "",
ylim = NULL)

Arguments

data Matrix of posterior samples.
p Vector with the lower, center and upper quantile.
band.type Type of credible intervals. The options are: pointwise, global or global.
main The main title of the plot.
col The color of the point estimate.
type The type of line of the point estimate.
ylab The label of the y-axis.
xlab The label of the x-axis.
ylim The range of the y-axis.

Value
A plot.

Examples

data <- wavethresh::DJ.EX(n = 512, noisy = TRUE, rsnr = 5)$doppler
W <- DWT(data)
ans <- Denoise(W)
denoised.data <- InvDWT(ans)
PlotFun(denoised.data)
PlotFun(denoised.data, band.type = "both")
PlotStates

Function to plot the hidden states

Description

This function plots on a tree the state of each latent variables.

Usage

\[
\text{PlotStates}(\text{grove.obj}, \text{block} = \text{"Intercept"}, \text{legend} = \text{FALSE}, \text{main} = \text{NULL}, \text{prior} = \text{FALSE})
\]

Arguments

- **grove.obj**: Output from function Fanova.
- **block**: Which block to plot.
- **legend**: If TRUE, show legend.
- **main**: Main title.
- **prior**: If TRUE, plot prior state probabilities. If FALSE, plot posterior state probabilities.

Value

A plot.

Examples

```r
## Not run:
data <- GenerateSyntheticAnova(st.dev = 5, n.replicates = 5)
W <- DWT(data$noisy.Y)
X <- data$X
ans <- Fanova(W, X, ~ 1 + factorA + factorB)
PlotStates(ans)
PlotStates(ans, block = "factorA")
PlotStates(ans, block = "factorB")
## End(Not run)
```
Index

Denoise, 2
DWT, 3

FAnova, 3

GenerateSyntheticAnova, 4
grove, 5
grove-package (grove), 5

InvDWT, 5

PlotFun, 6
PlotStates, 7