
Package ‘grf’
September 3, 2019

Title Generalized Random Forests

Version 0.10.4

BugReports https://github.com/grf-labs/grf/issues

Description A pluggable package for forest-based statistical estimation and inference.
GRF currently provides methods for non-parametric least-squares regression,
quantile regression, and treatment effect estimation (optionally using instrumental
variables).

Depends R (>= 3.3.0)

License GPL-3

LinkingTo Rcpp, RcppEigen

Imports DiceKriging, lmtest, Matrix, methods, Rcpp (>= 0.12.15),
sandwich (>= 2.4-0)

RoxygenNote 6.1.1

Suggests DiagrammeR, testthat,

SystemRequirements GNU make

URL https://github.com/grf-labs/grf

NeedsCompilation yes

Author Julie Tibshirani [aut, cre],
Susan Athey [aut],
Rina Friedberg [ctb],
Vitor Hadad [ctb],
David Hirshberg [ctb],
Luke Miner [ctb],
Erik Sverdrup [ctb],
Stefan Wager [aut],
Marvin Wright [ctb]

Maintainer Julie Tibshirani <jtibs@cs.stanford.edu>

Repository CRAN

Date/Publication 2019-09-03 12:30:02 UTC

1

https://github.com/grf-labs/grf/issues
https://github.com/grf-labs/grf

2 R topics documented:

R topics documented:

average_late . 3
average_partial_effect . 4
average_treatment_effect . 5
boosted_regression_forest . 6
causal_forest . 9
custom_forest . 12
get_sample_weights . 14
get_tree . 15
grf . 16
instrumental_forest . 18
leaf_stats.causal_forest . 20
leaf_stats.default . 21
leaf_stats.instrumental_forest . 22
leaf_stats.regression_forest . 22
ll_regression_forest . 23
merge_forests . 25
plot.grf_tree . 26
predict.boosted_regression_forest . 26
predict.causal_forest . 27
predict.custom_forest . 29
predict.instrumental_forest . 30
predict.ll_regression_forest . 31
predict.quantile_forest . 32
predict.regression_forest . 33
print.boosted_regression_forest . 35
print.grf . 35
print.grf_tree . 36
print.tuning_output . 36
quantile_forest . 37
regression_forest . 39
split_frequencies . 41
test_calibration . 42
tune_causal_forest . 43
tune_ll_causal_forest . 45
tune_ll_regression_forest . 46
tune_regression_forest . 47
variable_importance . 49

Index 51

average_late 3

average_late Estimate the average (conditional) local average treatment effect us-
ing a causal forest.

Description

Given an outcome Y, treatment W and instrument Z, the (conditional) local average treatment effect
is tau(x) = Cov[Y, Z | X = x] / Cov[W, Z | X = x]. This is the quantity that is estimated with an
instrumental forest. It can be intepreted causally in various ways. Given a homogeneity assumption,
tau(x) is simply the CATE at x. When W is binary and there are no "defiers", Imbens and Angrist
(1994) show that tau(x) can be interpreted as an average treatment effect on compliers. This function
is about estimating tau = E[tau(X)] which, extending standard nomenclature, should perhaps be
called the Average (Conditional) Local Averate Treatment Effect (ACLATE).

Usage

average_late(forest, compliance.score = NULL, subset = NULL)

Arguments

forest The trained forest.
compliance.score

An estimate of the causal effect of Z on W, i.e., Delta(X) = E[W | X, Z = 1] -
E[W | X, Z = 0], for each sample i = 1, ..., n.

subset Specifies subset of the training examples over which we estimate the ATE.
WARNING: For valid statistical performance, the subset should be defined only
using features Xi, not using the instrument Zi, treatment Wi or outcome Yi.

Details

We estimate the ACLATE using a doubly robust estimator. See Chernozhukov et al. (2016) for a
discussion, and Section 5.2 of Athey and Wager (2017) for an example using forests.

If clusters are specified for the forest, then each cluster gets equal weight. For example, if there are
10 clusters with 1 unit each and per-cluster ATE = 1, and there are 10 clusters with 19 units each
and per-cluster ATE = 0, then the overall ATE is 0.5 (not 0.05).

Value

An estimate of the average (C)LATE, along with standard error.

References

Aronow, Peter M., and Allison Carnegie. "Beyond LATE: Estimation of the average treatment
effect with an instrumental variable." Political Analysis 21.4 (2013): 492-506.

Athey, Susan, and Stefan Wager. "Efficient policy learning." arXiv preprint arXiv:1702.02896
(2017).

4 average_partial_effect

Chernozhukov, Victor, Juan Carlos Escanciano, Hidehiko Ichimura, Whitney K. Newey, and James
M. Robins. "Locally robust semiparametric estimation." arXiv preprint arXiv:1608.00033 (2016).

Imbens, Guido W., and Joshua D. Angrist. "Identification and Estimation of Local Average Treat-
ment Effects." Econometrica 62.2 (1994): 467-475.

average_partial_effect

Estimate average partial effects using a causal forest

Description

Gets estimates of the average partial effect, in particular the (conditional) average treatment effect
(target.sample = all): 1/n sum_i = 1^n Cov[Wi, Yi | X = Xi] / Var[Wi | X = Xi]. Note that for a
binary unconfounded treatment, the average partial effect matches the average treatment effect.

Usage

average_partial_effect(forest, calibrate.weights = TRUE, subset = NULL,
num.trees.for.variance = 500)

Arguments

forest The trained forest.
calibrate.weights

Whether to force debiasing weights to match expected moments for 1, W, W.hat,
and 1/Var[W|X].

subset Specifies a subset of the training examples over which we estimate the ATE.
WARNING: For valid statistical performance, the subset should be defined only
using features Xi, not using the treatment Wi or the outcome Yi.

num.trees.for.variance

Number of trees used to estimate Var[Wi | Xi = x]. Default is 500.

Details

If clusters are specified, then each cluster gets equal weight. For example, if there are 10 clusters
with 1 unit each and per-cluster APE = 1, and there are 10 clusters with 19 units each and per-cluster
APE = 0, then the overall APE is 0.5 (not 0.05).

Value

An estimate of the average partial effect, along with standard error.

average_treatment_effect 5

Examples

Not run:
n <- 2000
p <- 10
X <- matrix(rnorm(n * p), n, p)
W <- rbinom(n, 1, 1 / (1 + exp(-X[, 2]))) + rnorm(n)
Y <- pmax(X[, 1], 0) * W + X[, 2] + pmin(X[, 3], 0) + rnorm(n)
tau.forest <- causal_forest(X, Y, W)
tau.hat <- predict(tau.forest)
average_partial_effect(tau.forest)
average_partial_effect(tau.forest, subset = X[, 1] > 0)

End(Not run)

average_treatment_effect

Estimate average treatment effects using a causal forest

Description

Gets estimates of one of the following.

• The (conditional) average treatment effect (target.sample = all): sum_i = 1^n E[Y(1) - Y(0) |
X = Xi] / n

• The (conditional) average treatment effect on the treated (target.sample = treated): sum_Wi =
1 E[Y(1) - Y(0) | X = Xi] / |i : Wi = 1|

• The (conditional) average treatment effect on the controls (target.sample = control): sum_Wi
= 0 E[Y(1) - Y(0) | X = Xi] / |i : Wi = 0|

• The overlap-weighted (conditional) average treatment effect sum_i = 1^n e(Xi) (1 - e(Xi))
E[Y(1) - Y(0) | X = Xi] / sum_i = 1^n e(Xi) (1 - e(Xi)), where e(x) = P[Wi = 1 | Xi = x].

This last estimand is recommended by Li, Morgan, and Zaslavsky (JASA, 2017) in case of poor
overlap (i.e., when the propensities e(x) may be very close to 0 or 1), as it doesn’t involve dividing
by estimated propensities.

Usage

average_treatment_effect(forest, target.sample = c("all", "treated",
"control", "overlap"), method = c("AIPW", "TMLE"), subset = NULL)

Arguments

forest The trained forest.

target.sample Which sample to aggregate treatment effects over.

method Method used for doubly robust inference. Can be either augmented inverse-
propensity weighting (AIPW), or targeted maximum likelihood estimation (TMLE).

6 boosted_regression_forest

subset Specifies subset of the training examples over which we estimate the ATE.
WARNING: For valid statistical performance, the subset should be defined only
using features Xi, not using the treatment Wi or the outcome Yi.

Details

If clusters are specified, then each cluster gets equal weight. For example, if there are 10 clusters
with 1 unit each and per-cluster ATE = 1, and there are 10 clusters with 19 units each and per-cluster
ATE = 0, then the overall ATE is 0.5 (not 0.05).

Value

An estimate of the average treatment effect, along with standard error.

Examples

Not run:
Train a causal forest.
n <- 50
p <- 10
X <- matrix(rnorm(n * p), n, p)
W <- rbinom(n, 1, 0.5)
Y <- pmax(X[, 1], 0) * W + X[, 2] + pmin(X[, 3], 0) + rnorm(n)
c.forest <- causal_forest(X, Y, W)

Predict using the forest.
X.test <- matrix(0, 101, p)
X.test[, 1] <- seq(-2, 2, length.out = 101)
c.pred <- predict(c.forest, X.test)
Estimate the conditional average treatment effect on the full sample (CATE).
average_treatment_effect(c.forest, target.sample = "all")

Estimate the conditional average treatment effect on the treated sample (CATT).
We don't expect much difference between the CATE and the CATT in this example,
since treatment assignment was randomized.
average_treatment_effect(c.forest, target.sample = "treated")

Estimate the conditional average treatment effect on samples with positive X[,1].
average_treatment_effect(c.forest, target.sample = "all", X[, 1] > 0)

End(Not run)

boosted_regression_forest

Boosted regression forest (experimental)

boosted_regression_forest 7

Description

Trains a boosted regression forest that can be used to estimate the conditional mean function mu(x)
= E[Y | X = x]. Selects number of boosting iterations based on cross-validation. This functionality
is experimental and will likely change in future releases.

Usage

boosted_regression_forest(X, Y, sample.weights = NULL,
sample.fraction = 0.5, mtry = NULL, num.trees = 2000,
num.threads = NULL, min.node.size = NULL, honesty = TRUE,
honesty.fraction = NULL, prune.empty.leaves = NULL,
ci.group.size = 2, alpha = NULL, imbalance.penalty = NULL,
seed = NULL, clusters = NULL, samples.per.cluster = NULL,
tune.parameters = FALSE, num.fit.trees = 10, num.fit.reps = 100,
num.optimize.reps = 1000, boost.steps = NULL,
boost.error.reduction = 0.97, boost.max.steps = 5,
boost.trees.tune = 10)

Arguments

X The covariates used in the regression.

Y The outcome.

sample.weights Weights given to each observation in estimation. If NULL, each observation
receives the same weight. Default is NULL.

sample.fraction

Fraction of the data used to build each tree. Note: If honesty = TRUE, these
subsamples will further be cut by a factor of honesty.fraction. Default is 0.5.

mtry Number of variables tried for each split. Default is
√
p + 20 where p is the

number of variables.

num.trees Number of trees grown in the forest. Note: Getting accurate confidence intervals
generally requires more trees than getting accurate predictions. Default is 2000.

num.threads Number of threads used in training. If set to NULL, the software automatically
selects an appropriate amount.

min.node.size A target for the minimum number of observations in each tree leaf. Note that
nodes with size smaller than min.node.size can occur, as in the original random-
Forest package. Default is 5.

honesty Whether to use honest splitting (i.e., sub-sample splitting). Default is TRUE.
honesty.fraction

The fraction of data that will be used for determining splits if honesty = TRUE.
Corresponds to set J1 in the notation of the paper. When using the defaults
(honesty = TRUE and honesty.fraction = NULL), half of the data will be used
for determining splits. Default is 0.5.

prune.empty.leaves

(experimental) If true, prunes the estimation sample tree such that no leaves are
empty. If false, keep the same tree as determined in the splits sample (if an empty
leave is encountered, that tree is skipped and does not contribute to the estimate).

8 boosted_regression_forest

Setting this to false may improve performance on small/marginally powered
data, but requires more trees. Only applies if honesty is enabled. Default is
TRUE.

ci.group.size The forest will grow ci.group.size trees on each subsample. In order to provide
confidence intervals, ci.group.size must be at least 2. Default is 2.

alpha A tuning parameter that controls the maximum imbalance of a split. Default is
0.05.

imbalance.penalty

A tuning parameter that controls how harshly imbalanced splits are penalized.
Default is 0.

seed The seed for the C++ random number generator.
clusters Vector of integers or factors specifying which cluster each observation corre-

sponds to. Default is NULL (ignored).
samples.per.cluster

If sampling by cluster, the number of observations to be sampled from each
cluster when training a tree. If NULL, we set samples.per.cluster to the size
of the smallest cluster. If some clusters are smaller than samples.per.cluster,
the whole cluster is used every time the cluster is drawn. Note that clusters
with less than samples.per.cluster observations get relatively smaller weight than
others in training the forest, i.e., the contribution of a given cluster to the final
forest scales with the minimum of the number of observations in the cluster and
samples.per.cluster. Default is NULL.

tune.parameters

If true, NULL parameters are tuned by cross-validation; if false NULL parame-
ters are set to defaults. Default is FALSE.

num.fit.trees The number of trees in each ’mini forest’ used to fit the tuning model. Default
is 10.

num.fit.reps The number of forests used to fit the tuning model. Default is 100.
num.optimize.reps

The number of random parameter values considered when using the model to
select the optimal parameters. Default is 1000.

boost.steps The number of boosting iterations. If NULL, selected by cross-validation. De-
fault is NULL.

boost.error.reduction

If boost.steps is NULL, the percentage of previous steps’ error that must be
estimated by cross validation in order to take a new step, default 0.97.

boost.max.steps

The maximum number of boosting iterations to try when boost.steps=NULL.
Default is 5.

boost.trees.tune

If boost.steps is NULL, the number of trees used to test a new boosting step
when tuning boost.steps. Default is 10.

Value

A boosted regression forest object. $error contains the mean debiased error for each step, and
$forests contains the trained regression forest for each step.

causal_forest 9

Examples

Not run:
Train a boosted regression forest.
n <- 50
p <- 10
X <- matrix(rnorm(n * p), n, p)
Y <- X[, 1] * rnorm(n)
boosted.forest <- boosted_regression_forest(X, Y)

Predict using the forest.
X.test <- matrix(0, 101, p)
X.test[, 1] <- seq(-2, 2, length.out = 101)
boost.pred <- predict(boosted.forest, X.test)

Predict on out-of-bag training samples.
boost.pred <- predict(boosted.forest)

Check how many boosting iterations were used
print(length(boosted.forest$forests))

End(Not run)

causal_forest Causal forest

Description

Trains a causal forest that can be used to estimate conditional average treatment effects tau(X).
When the treatment assignment W is binary and unconfounded, we have tau(X) = E[Y(1) - Y(0) |
X = x], where Y(0) and Y(1) are potential outcomes corresponding to the two possible treatment
states. When W is continuous, we effectively estimate an average partial effect Cov[Y, W | X = x] /
Var[W | X = x], and interpret it as a treatment effect given unconfoundedness.

Usage

causal_forest(X, Y, W, Y.hat = NULL, W.hat = NULL,
sample.weights = NULL, orthog.boosting = FALSE,
sample.fraction = 0.5, mtry = NULL, num.trees = 2000,
min.node.size = NULL, honesty = TRUE, honesty.fraction = NULL,
prune.empty.leaves = NULL, ci.group.size = 2, alpha = NULL,
imbalance.penalty = NULL, stabilize.splits = TRUE, clusters = NULL,
samples.per.cluster = NULL, tune.parameters = FALSE,
num.fit.trees = 200, num.fit.reps = 50, num.optimize.reps = 1000,
compute.oob.predictions = TRUE, num.threads = NULL, seed = NULL)

10 causal_forest

Arguments

X The covariates used in the causal regression.

Y The outcome (must be a numeric vector with no NAs).

W The treatment assignment (must be a binary or real numeric vector with no NAs).

Y.hat Estimates of the expected responses E[Y | Xi], marginalizing over treatment.
If Y.hat = NULL, these are estimated using a separate regression forest. See
section 6.1.1 of the GRF paper for further discussion of this quantity. Default is
NULL.

W.hat Estimates of the treatment propensities E[W | Xi]. If W.hat = NULL, these are
estimated using a separate regression forest. Default is NULL.

sample.weights (experimental) Weights given to each sample in estimation. If NULL, each ob-
servation receives the same weight. Note: To avoid introducing confounding,
weights should be independent of the potential outcomes given X. Default is
NULL.

orthog.boosting

(experimental) If TRUE, then when Y.hat = NULL or W.hat is NULL, the miss-
ing quantities are estimated using boosted regression forests. The number of
boosting steps is selected automatically. Default is FALSE.

sample.fraction

Fraction of the data used to build each tree. Note: If honesty = TRUE, these
subsamples will further be cut by a factor of honesty.fraction. Default is 0.5.

mtry Number of variables tried for each split. Default is
√
p + 20 where p is the

number of variables.

num.trees Number of trees grown in the forest. Note: Getting accurate confidence intervals
generally requires more trees than getting accurate predictions. Default is 2000.

min.node.size A target for the minimum number of observations in each tree leaf. Note that
nodes with size smaller than min.node.size can occur, as in the original random-
Forest package. Default is 5.

honesty Whether to use honest splitting (i.e., sub-sample splitting). Default is TRUE.
honesty.fraction

The fraction of data that will be used for determining splits if honesty = TRUE.
Corresponds to set J1 in the notation of the paper. When using the defaults
(honesty = TRUE and honesty.fraction = NULL), half of the data will be used
for determining splits. Default is 0.5.

prune.empty.leaves

(experimental) If true, prunes the estimation sample tree such that no leaves are
empty. If false, keep the same tree as determined in the splits sample (if an empty
leave is encountered, that tree is skipped and does not contribute to the estimate).
Setting this to false may improve performance on small/marginally powered
data, but requires more trees. Only applies if honesty is enabled. Default is
TRUE.

ci.group.size The forest will grow ci.group.size trees on each subsample. In order to provide
confidence intervals, ci.group.size must be at least 2. Default is 2.

alpha A tuning parameter that controls the maximum imbalance of a split. Default is
0.05.

causal_forest 11

imbalance.penalty

A tuning parameter that controls how harshly imbalanced splits are penalized.
Default is 0.

stabilize.splits

Whether or not the treatment should be taken into account when determining the
imbalance of a split. Default is TRUE.

clusters Vector of integers or factors specifying which cluster each observation corre-
sponds to. Default is NULL (ignored).

samples.per.cluster

If sampling by cluster, the number of observations to be sampled from each
cluster when training a tree. If NULL, we set samples.per.cluster to the size
of the smallest cluster. If some clusters are smaller than samples.per.cluster,
the whole cluster is used every time the cluster is drawn. Note that clusters
with less than samples.per.cluster observations get relatively smaller weight than
others in training the forest, i.e., the contribution of a given cluster to the final
forest scales with the minimum of the number of observations in the cluster and
samples.per.cluster. Default is NULL.

tune.parameters

If true, NULL parameters are tuned by cross-validation; if false NULL parame-
ters are set to defaults. Default is FALSE.

num.fit.trees The number of trees in each ’mini forest’ used to fit the tuning model. Default
is 200.

num.fit.reps The number of forests used to fit the tuning model. Default is 50.
num.optimize.reps

The number of random parameter values considered when using the model to
select the optimal parameters. Default is 1000.

compute.oob.predictions

Whether OOB predictions on training set should be precomputed. Default is
TRUE.

num.threads Number of threads used in training. By default, the number of threads is set to
the maximum hardware concurrency.

seed The seed of the C++ random number generator.

Value

A trained causal forest object. If tune.parameters is enabled, then tuning information will be in-
cluded through the ‘tuning.output‘ attribute.

Examples

Not run:
Train a causal forest.
n <- 50
p <- 10
X <- matrix(rnorm(n * p), n, p)
W <- rbinom(n, 1, 0.5)
Y <- pmax(X[, 1], 0) * W + X[, 2] + pmin(X[, 3], 0) + rnorm(n)

12 custom_forest

c.forest <- causal_forest(X, Y, W)

Predict using the forest.
X.test <- matrix(0, 101, p)
X.test[, 1] <- seq(-2, 2, length.out = 101)
c.pred <- predict(c.forest, X.test)

Predict on out-of-bag training samples.
c.pred <- predict(c.forest)

Predict with confidence intervals; growing more trees is now recommended.
c.forest <- causal_forest(X, Y, W, num.trees = 4000)
c.pred <- predict(c.forest, X.test, estimate.variance = TRUE)

In some examples, pre-fitting models for Y and W separately may
be helpful (e.g., if different models use different covariates).
In some applications, one may even want to get Y.hat and W.hat
using a completely different method (e.g., boosting).
n <- 2000
p <- 20
X <- matrix(rnorm(n * p), n, p)
TAU <- 1 / (1 + exp(-X[, 3]))
W <- rbinom(n, 1, 1 / (1 + exp(-X[, 1] - X[, 2])))
Y <- pmax(X[, 2] + X[, 3], 0) + rowMeans(X[, 4:6]) / 2 + W * TAU + rnorm(n)

forest.W <- regression_forest(X, W, tune.parameters = TRUE)
W.hat <- predict(forest.W)$predictions

forest.Y <- regression_forest(X, Y, tune.parameters = TRUE)
Y.hat <- predict(forest.Y)$predictions

forest.Y.varimp <- variable_importance(forest.Y)

Note: Forests may have a hard time when trained on very few variables
(e.g., ncol(X) = 1, 2, or 3). We recommend not being too aggressive
in selection.
selected.vars <- which(forest.Y.varimp / mean(forest.Y.varimp) > 0.2)

tau.forest <- causal_forest(X[, selected.vars], Y, W,
W.hat = W.hat, Y.hat = Y.hat,
tune.parameters = TRUE

)
tau.hat <- predict(tau.forest)$predictions

End(Not run)

custom_forest Custom forest

custom_forest 13

Description

Trains a custom forest model.

Usage

custom_forest(X, Y, sample.fraction = 0.5, mtry = NULL,
num.trees = 2000, min.node.size = NULL, honesty = TRUE,
honesty.fraction = NULL, prune.empty.leaves = NULL, alpha = 0.05,
imbalance.penalty = 0, clusters = NULL, samples.per.cluster = NULL,
compute.oob.predictions = TRUE, num.threads = NULL, seed = NULL)

Arguments

X The covariates used in the regression.

Y The outcome.
sample.fraction

Fraction of the data used to build each tree. Note: If honesty = TRUE, these
subsamples will further be cut by a factor of honesty.fraction. Default is 0.5.

mtry Number of variables tried for each split. Default is
√
p + 20 where p is the

number of variables.

num.trees Number of trees grown in the forest. Note: Getting accurate confidence intervals
generally requires more trees than getting accurate predictions. Default is 2000.

min.node.size A target for the minimum number of observations in each tree leaf. Note that
nodes with size smaller than min.node.size can occur, as in the original random-
Forest package. Default is 5.

honesty Whether to use honest splitting (i.e., sub-sample splitting). Default is TRUE.
honesty.fraction

The fraction of data that will be used for determining splits if honesty = TRUE.
Corresponds to set J1 in the notation of the paper. When using the defaults
(honesty = TRUE and honesty.fraction = NULL), half of the data will be used
for determining splits. Default is 0.5.

prune.empty.leaves

(experimental) If true, prunes the estimation sample tree such that no leaves are
empty. If false, keep the same tree as determined in the splits sample (if an empty
leave is encountered, that tree is skipped and does not contribute to the estimate).
Setting this to false may improve performance on small/marginally powered
data, but requires more trees. Only applies if honesty is enabled. Default is
TRUE.

alpha A tuning parameter that controls the maximum imbalance of a split. Default is
0.05.

imbalance.penalty

A tuning parameter that controls how harshly imbalanced splits are penalized.
Default is 0.

clusters Vector of integers or factors specifying which cluster each observation corre-
sponds to. Default is NULL (ignored).

14 get_sample_weights

samples.per.cluster

If sampling by cluster, the number of observations to be sampled from each
cluster when training a tree. If NULL, we set samples.per.cluster to the size
of the smallest cluster. If some clusters are smaller than samples.per.cluster,
the whole cluster is used every time the cluster is drawn. Note that clusters
with less than samples.per.cluster observations get relatively smaller weight than
others in training the forest, i.e., the contribution of a given cluster to the final
forest scales with the minimum of the number of observations in the cluster and
samples.per.cluster. Default is NULL.

compute.oob.predictions

Whether OOB predictions on training set should be precomputed. Default is
TRUE.

num.threads Number of threads used in training. By default, the number of threads is set to
the maximum hardware concurrency

seed The seed of the C++ random number generator.

Value

A trained regression forest object.

Examples

Not run:
Train a custom forest.
n <- 50
p <- 10
X <- matrix(rnorm(n * p), n, p)
Y <- X[, 1] * rnorm(n)
c.forest <- custom_forest(X, Y)

Predict using the forest.
X.test <- matrix(0, 101, p)
X.test[, 1] <- seq(-2, 2, length.out = 101)
c.pred <- predict(c.forest, X.test)

End(Not run)

get_sample_weights Given a trained forest and test data, compute the training sample
weights for each test point.

Description

During normal prediction, these weights are computed as an intermediate step towards producing
estimates. This function allows for examining the weights directly, so they could be potentially be
used as the input to a different analysis.

get_tree 15

Usage

get_sample_weights(forest, newdata = NULL, num.threads = NULL)

Arguments

forest The trained forest.

newdata Points at which predictions should be made. If NULL, makes out-of-bag pre-
dictions on the training set instead (i.e., provides predictions at Xi using only
trees that did not use the i-th training example).#’ @param max.depth Maxi-
mum depth of splits to consider.

num.threads Number of threads used in training. If set to NULL, the software automatically
selects an appropriate amount.

Value

A sparse matrix where each row represents a test sample, and each column is a sample in the training
data. The value at (i, j) gives the weight of training sample j for test sample i.

Examples

Not run:
p <- 10
n <- 100
X <- matrix(2 * runif(n * p) - 1, n, p)
Y <- (X[, 1] > 0) + 2 * rnorm(n)
rrf <- regression_forest(X, Y, mtry = p)
sample.weights.oob <- get_sample_weights(rrf)

n.test <- 15
X.test <- matrix(2 * runif(n.test * p) - 1, n.test, p)
sample.weights <- get_sample_weights(rrf, X.test)

End(Not run)

get_tree Retrieve a single tree from a trained forest object.

Description

Retrieve a single tree from a trained forest object.

Usage

get_tree(forest, index)

16 grf

Arguments

forest The trained forest.

index The index of the tree to retrieve.

Value

A GRF tree object containing the below attributes. drawn_samples: a list of examples that were
used in training the tree. This includes examples that were used in choosing splits, as well as the
examples that populate the leaf nodes. Put another way, if honesty is enabled, this list includes both
subsamples from the split (J1 and J2 in the notation of the paper). num_samples: the number of
examples used in training the tree. nodes: a list of objects representing the nodes in the tree, starting
with the root node. Each node will contain an ’is_leaf’ attribute, which indicates whether it is an
interior or leaf node. Interior nodes contain the attributes ’left_child’ and ’right_child’, which give
the indices of their children in the list, as well as ’split_variable’, and ’split_value’, which describe
the split that was chosen. Leaf nodes only have the attribute ’samples’, which is a list of the training
examples that the leaf contains. Note that if honesty is enabled, this list will only contain examples
from the second subsample that was used to ’repopulate’ the tree (J2 in the notation of the paper).

Examples

Not run:
Train a quantile forest.
n <- 50
p <- 10
X <- matrix(rnorm(n * p), n, p)
Y <- X[, 1] * rnorm(n)
q.forest <- quantile_forest(X, Y, quantiles = c(0.1, 0.5, 0.9))

Examine a particular tree.
q.tree <- get_tree(q.forest, 3)
q.tree$nodes

End(Not run)

grf GRF

Description

A pluggable package for forest-based statistical estimation and inference. GRF currently provides
non-parametric methods for least-squares regression, quantile regression, and treatment effect esti-
mation (optionally using instrumental variables).

In addition, GRF supports ’honest’ estimation (where one subset of the data is used for choosing
splits, and another for populating the leaves of the tree), and confidence intervals for least-squares
regression and treatment effect estimation.

Some helpful links for getting started:

grf 17

* The R package documentation contains usage examples and method reference (https://grf-labs.github.io/grf).

* The GRF reference gives a detailed description of the GRF algorithm and includes troubleshooting
suggestions: (https://github.com/grf-labs/grf/blob/master/REFERENCE.md).

* For community questions and answers around usage, see Github issues labelled ’question’ (https://github.com/grf-
labs/grf/issues?q=label%3Aquestion).

Examples

Not run:
library(grf)

The following script demonstrates how to use GRF for heterogeneous treatment
effect estimation. For examples of how to use other types of forest, as for
quantile regression and causal effect estimation using instrumental variables,
please consult the documentation on the relevant forest methods (quantile_forest,
instrumental_forest, etc.).

Generate data.
n = 2000; p = 10
X = matrix(rnorm(n*p), n, p)
X.test = matrix(0, 101, p)
X.test[,1] = seq(-2, 2, length.out = 101)

Train a causal forest.
W = rbinom(n, 1, 0.4 + 0.2 * (X[,1] > 0))
Y = pmax(X[,1], 0) * W + X[,2] + pmin(X[,3], 0) + rnorm(n)
tau.forest = causal_forest(X, Y, W)

Estimate treatment effects for the training data using out-of-bag prediction.
tau.hat.oob = predict(tau.forest)
hist(tau.hat.oob$predictions)

Estimate treatment effects for the test sample.
tau.hat = predict(tau.forest, X.test)
plot(X.test[,1], tau.hat$predictions, ylim = range(tau.hat$predictions, 0, 2),
xlab = "x", ylab = "tau", type = "l")
lines(X.test[,1], pmax(0, X.test[,1]), col = 2, lty = 2)

Estimate the conditional average treatment effect on the full sample (CATE).
average_treatment_effect(tau.forest, target.sample = "all")

Estimate the conditional average treatment effect on the treated sample (CATT).
Here, we don't expect much difference between the CATE and the CATT, since
treatment assignment was randomized.
average_treatment_effect(tau.forest, target.sample = "treated")

Add confidence intervals for heterogeneous treatment effects; growing more
trees is now recommended.
tau.forest = causal_forest(X, Y, W, num.trees = 4000)
tau.hat = predict(tau.forest, X.test, estimate.variance = TRUE)
sigma.hat = sqrt(tau.hat$variance.estimates)

18 instrumental_forest

ylim = range(tau.hat$predictions + 1.96 * sigma.hat, tau.hat$predictions - 1.96 * sigma.hat, 0, 2),
plot(X.test[,1], tau.hat$predictions, ylim = ylim, xlab = "x", ylab = "tau", type = "l")
lines(X.test[,1], tau.hat$predictions + 1.96 * sigma.hat, col = 1, lty = 2)
lines(X.test[,1], tau.hat$predictions - 1.96 * sigma.hat, col = 1, lty = 2)
lines(X.test[,1], pmax(0, X.test[,1]), col = 2, lty = 1)

In some examples, pre-fitting models for Y and W separately may
be helpful (e.g., if different models use different covariates).
In some applications, one may even want to get Y.hat and W.hat
using a completely different method (e.g., boosting).

Generate new data.
n = 4000; p = 20
X = matrix(rnorm(n * p), n, p)
TAU = 1 / (1 + exp(-X[, 3]))
W = rbinom(n ,1, 1 / (1 + exp(-X[, 1] - X[, 2])))
Y = pmax(X[, 2] + X[, 3], 0) + rowMeans(X[, 4:6]) / 2 + W * TAU + rnorm(n)

forest.W = regression_forest(X, W, tune.parameters = TRUE)
W.hat = predict(forest.W)$predictions

forest.Y = regression_forest(X, Y, tune.parameters = TRUE)
Y.hat = predict(forest.Y)$predictions

forest.Y.varimp = variable_importance(forest.Y)

Note: Forests may have a hard time when trained on very few variables
(e.g., ncol(X) = 1, 2, or 3). We recommend not being too aggressive
in selection.
selected.vars = which(forest.Y.varimp / mean(forest.Y.varimp) > 0.2)

tau.forest = causal_forest(X[, selected.vars], Y, W,
W.hat = W.hat, Y.hat = Y.hat,
tune.parameters = TRUE)

Check whether causal forest predictions are well calibrated.
test_calibration(tau.forest)

End(Not run)

instrumental_forest Intrumental forest

Description

Trains an instrumental forest that can be used to estimate conditional local average treatment effects
tau(X) identified using instruments. Formally, the forest estimates tau(X) = Cov[Y, Z | X = x] /
Cov[W, Z | X = x]. Note that when the instrument Z and treatment assignment W coincide, an
instrumental forest is equivalent to a causal forest.

instrumental_forest 19

Usage

instrumental_forest(X, Y, W, Z, Y.hat = NULL, W.hat = NULL,
Z.hat = NULL, sample.weights = NULL, sample.fraction = 0.5,
mtry = NULL, num.trees = 2000, min.node.size = NULL,
honesty = TRUE, honesty.fraction = NULL, prune.empty.leaves = NULL,
ci.group.size = 2, reduced.form.weight = 0, alpha = 0.05,
imbalance.penalty = 0, stabilize.splits = TRUE, clusters = NULL,
samples.per.cluster = NULL, compute.oob.predictions = TRUE,
num.threads = NULL, seed = NULL)

Arguments

X The covariates used in the instrumental regression.

Y The outcome.

W The treatment assignment (may be binary or real).

Z The instrument (may be binary or real).

Y.hat Estimates of the expected responses E[Y | Xi], marginalizing over treatment. If
Y.hat = NULL, these are estimated using a separate regression forest. Default is
NULL.

W.hat Estimates of the treatment propensities E[W | Xi]. If W.hat = NULL, these are
estimated using a separate regression forest. Default is NULL.

Z.hat Estimates of the instrument propensities E[Z | Xi]. If Z.hat = NULL, these are
estimated using a separate regression forest. Default is NULL.

sample.weights (experimental) Weights given to each observation in estimation. If NULL, each
observation receives equal weight. Default is NULL.

sample.fraction

Fraction of the data used to build each tree. Note: If honesty = TRUE, these
subsamples will further be cut by a factor of honesty.fraction. Default is 0.5.

mtry Number of variables tried for each split. Default is
√
p + 20 where p is the

number of variables.

num.trees Number of trees grown in the forest. Note: Getting accurate confidence intervals
generally requires more trees than getting accurate predictions. Default is 2000.

min.node.size A target for the minimum number of observations in each tree leaf. Note that
nodes with size smaller than min.node.size can occur, as in the original random-
Forest package. Default is 5.

honesty Whether to use honest splitting (i.e., sub-sample splitting). Default is TRUE.
honesty.fraction

The fraction of data that will be used for determining splits if honesty = TRUE.
Corresponds to set J1 in the notation of the paper. When using the defaults
(honesty = TRUE and honesty.fraction = NULL), half of the data will be used
for determining splits. Default is 0.5.

prune.empty.leaves

(experimental) If true, prunes the estimation sample tree such that no leaves are
empty. If false, keep the same tree as determined in the splits sample (if an empty

20 leaf_stats.causal_forest

leave is encountered, that tree is skipped and does not contribute to the estimate).
Setting this to false may improve performance on small/marginally powered
data, but requires more trees. Only applies if honesty is enabled. Default is
TRUE.

ci.group.size The forst will grow ci.group.size trees on each subsample. In order to provide
confidence intervals, ci.group.size must be at least 2. Default is 2.

reduced.form.weight

Whether splits should be regularized towards a naive splitting criterion that ig-
nores the instrument (and instead emulates a causal forest).

alpha A tuning parameter that controls the maximum imbalance of a split. Default is
0.05.

imbalance.penalty

A tuning parameter that controls how harshly imbalanced splits are penalized.
Default is 0.

stabilize.splits

Whether or not the instrument should be taken into account when determining
the imbalance of a split. Default is TRUE.

clusters Vector of integers or factors specifying which cluster each observation corre-
sponds to. Default is NULL (ignored).

samples.per.cluster

If sampling by cluster, the number of observations to be sampled from each
cluster when training a tree. If NULL, we set samples.per.cluster to the size
of the smallest cluster. If some clusters are smaller than samples.per.cluster,
the whole cluster is used every time the cluster is drawn. Note that clusters
with less than samples.per.cluster observations get relatively smaller weight than
others in training the forest, i.e., the contribution of a given cluster to the final
forest scales with the minimum of the number of observations in the cluster and
samples.per.cluster. Default is NULL.

compute.oob.predictions

Whether OOB predictions on training set should be precomputed. Default is
TRUE.

num.threads Number of threads used in training. By default, the number of threads is set to
the maximum hardware concurrency.

seed The seed of the C++ random number generator.

Value

A trained instrumental forest object.

leaf_stats.causal_forest

Calculate summary stats given a set of samples for causal forests.

Description

Calculate summary stats given a set of samples for causal forests.

leaf_stats.default 21

Usage

S3 method for class 'causal_forest'
leaf_stats(forest, samples, ...)

Arguments

forest The GRF forest

samples The samples to include in the calculations.

... Additional arguments (currently ignored).

Value

A named vector containing summary stats

leaf_stats.default A default leaf_stats for forests classes without a leaf_stats method that
always returns NULL.

Description

A default leaf_stats for forests classes without a leaf_stats method that always returns NULL.

Usage

Default S3 method:
leaf_stats(forest, samples, ...)

Arguments

forest Any forest

samples The samples to include in the calculations.

... Additional arguments (currently ignored).

22 leaf_stats.regression_forest

leaf_stats.instrumental_forest

Calculate summary stats given a set of samples for instrumental
forests.

Description

Calculate summary stats given a set of samples for instrumental forests.

Usage

S3 method for class 'instrumental_forest'
leaf_stats(forest, samples, ...)

Arguments

forest The GRF forest
samples The samples to include in the calculations.
... Additional arguments (currently ignored).

Value

A named vector containing summary stats

leaf_stats.regression_forest

Calculate summary stats given a set of samples for regression forests.

Description

Calculate summary stats given a set of samples for regression forests.

Usage

S3 method for class 'regression_forest'
leaf_stats(forest, samples, ...)

Arguments

forest The GRF forest
samples The samples to include in the calculations.
... Additional arguments (currently ignored).

Value

A named vector containing summary stats

ll_regression_forest 23

ll_regression_forest Local Linear forest

Description

Trains a local linear forest that can be used to estimate the conditional mean function mu(x) = E[Y
| X = x]

Usage

ll_regression_forest(X, Y, sample.fraction = 0.5, mtry = NULL,
num.trees = 2000, min.node.size = NULL, honesty = TRUE,
honesty.fraction = NULL, prune.empty.leaves = NULL,
ci.group.size = 1, alpha = NULL, imbalance.penalty = NULL,
clusters = NULL, samples.per.cluster = NULL,
tune.parameters = FALSE, num.fit.trees = 10, num.fit.reps = 100,
num.optimize.reps = 1000, num.threads = NULL, seed = NULL)

Arguments

X The covariates used in the regression.

Y The outcome.
sample.fraction

Fraction of the data used to build each tree. Note: If honesty = TRUE, these
subsamples will further be cut by a factor of honesty.fraction. Default is 0.5.

mtry Number of variables tried for each split. Default is
√
p + 20 where p is the

number of variables.

num.trees Number of trees grown in the forest. Note: Getting accurate confidence intervals
generally requires more trees than getting accurate predictions. Default is 2000.

min.node.size A target for the minimum number of observations in each tree leaf. Note that
nodes with size smaller than min.node.size can occur, as in the original random-
Forest package. Default is 5.

honesty Whether or not honest splitting (i.e., sub-sample splitting) should be used. De-
fault is TRUE.

honesty.fraction

The fraction of data that will be used for determining splits if honesty = TRUE.
Corresponds to set J1 in the notation of the paper. When using the defaults
(honesty = TRUE and honesty.fraction = NULL), half of the data will be used
for determining splits. Default is 0.5.

prune.empty.leaves

(experimental) If true, prunes the estimation sample tree such that no leaves are
empty. If false, keep the same tree as determined in the splits sample (if an empty
leave is encountered, that tree is skipped and does not contribute to the estimate).
Setting this to false may improve performance on small/marginally powered
data, but requires more trees. Only applies if honesty is enabled. Default is
TRUE.

24 ll_regression_forest

ci.group.size The forest will grow ci.group.size trees on each subsample. In order to provide
confidence intervals, ci.group.size must be at least 2. Default is 1.

alpha A tuning parameter that controls the maximum imbalance of a split. Default is
0.05.

imbalance.penalty

A tuning parameter that controls how harshly imbalanced splits are penalized.
Default is 0.

clusters Vector of integers or factors specifying which cluster each observation corre-
sponds to. Default is NULL (ignored).

samples.per.cluster

If sampling by cluster, the number of observations to be sampled from each
cluster when training a tree. If NULL, we set samples.per.cluster to the size
of the smallest cluster. If some clusters are smaller than samples.per.cluster,
the whole cluster is used every time the cluster is drawn. Note that clusters
with less than samples.per.cluster observations get relatively smaller weight than
others in training the forest, i.e., the contribution of a given cluster to the final
forest scales with the minimum of the number of observations in the cluster and
samples.per.cluster. Default is NULL.

tune.parameters

If true, NULL parameters are tuned by cross-validation; if false NULL parame-
ters are set to defaults. Default is FALSE.

num.fit.trees The number of trees in each ’mini forest’ used to fit the tuning model. Default
is 10.

num.fit.reps The number of forests used to fit the tuning model. Default is 100.
num.optimize.reps

The number of random parameter values considered when using the model to
select the optimal parameters. Default is 1000.

num.threads Number of threads used in training. By default, the number of threads is set to
the maximum hardware concurrency.

seed The seed of the C++ random number generator.

Value

A trained local linear forest object.

Examples

Not run:
Train a standard regression forest.
n <- 50
p <- 10
X <- matrix(rnorm(n * p), n, p)
Y <- X[, 1] * rnorm(n)
forest <- ll_regression_forest(X, Y)

End(Not run)

merge_forests 25

merge_forests Merges a list of forests that were grown using the same data into one
large forest.

Description

Merges a list of forests that were grown using the same data into one large forest.

Usage

merge_forests(forest_list, compute.oob.predictions = TRUE)

Arguments

forest_list A ‘list‘ of forests to be concatenated. All forests must be of the same type,
and the type must be a subclass of ‘grf‘. In addition, all forests must have the
same ’ci.group.size’. Other tuning parameters (e.g. alpha, mtry, min.node.size,
imbalance.penalty) are allowed to differ across forests.

compute.oob.predictions

Whether OOB predictions on training set should be precomputed. Note that
even if OOB predictions have already been precomputed for the forests in ’for-
est_list’, those predictions are not used. Instead, a new set of oob predictions is
computed anew using the larger forest. Default is TRUE.

Value

A single forest containing all the trees in each forest in the input list.

Examples

Not run:
Train standard regression forests
n <- 50
p <- 10
X <- matrix(rnorm(n * p), n, p)
Y <- X[, 1] * rnorm(n)
r.forest1 <- regression_forest(X, Y, compute.oob.predictions = FALSE, num.trees = 100)
r.forest2 <- regression_forest(X, Y, compute.oob.predictions = FALSE, num.trees = 100)

Join the forests together. The resulting forest will contain 200 trees.
big_rf <- merge_forests(list(r.forest1, r.forest2))

End(Not run)

26 predict.boosted_regression_forest

plot.grf_tree Plot a GRF tree object.

Description

Plot a GRF tree object.

Usage

S3 method for class 'grf_tree'
plot(x, ...)

Arguments

x The tree to plot
... Additional arguments (currently ignored).

Examples

Not run:
Save the plot of a tree in the causal forest.
install.packages("DiagrammeR")
install.packages("DiagrammeRsvg")
n <- 500
p <- 10
X <- matrix(rnorm(n * p), n, p)
W <- rbinom(n, 1, 0.5)
Y <- pmax(X[, 1], 0) * W + X[, 2] + pmin(X[, 3], 0) + rnorm(n)
c.forest <- causal_forest(X, Y, W)
#save the first tree in the forest as plot.svg
tree.plot = plot(get_tree(c.forest, 1))
cat(DiagrammeRsvg::export_svg(tree.plot), file='plot.svg')

End(Not run)

predict.boosted_regression_forest

Predict with a boosted regression forest.

Description

Gets estimates of E[Y|X=x] using a trained regression forest.

Usage

S3 method for class 'boosted_regression_forest'
predict(object, newdata = NULL,
boost.predict.steps = NULL, num.threads = NULL, ...)

predict.causal_forest 27

Arguments

object The trained forest.

newdata Points at which predictions should be made. If NULL, makes out-of-bag predic-
tions on the training set instead (i.e., provides predictions at Xi using only trees
that did not use the i-th training example). Note that this matrix should have the
number of columns as the training matrix, and that the columns must appear in
the same order

boost.predict.steps

Number of boosting iterations to use for prediction. If blank, uses the full num-
ber of steps for the object given

num.threads the number of threads used in prediction

... Additional arguments (currently ignored).

Value

A vector of predictions.

Examples

Not run:
Train a boosted regression forest.
n <- 50
p <- 10
X <- matrix(rnorm(n * p), n, p)
Y <- X[, 1] * rnorm(n)
r.boosted.forest <- boosted_regression_forest(X, Y)

Predict using the forest.
X.test <- matrix(0, 101, p)
X.test[, 1] <- seq(-2, 2, length.out = 101)
r.pred <- predict(r.boosted.forest, X.test)

Predict on out-of-bag training samples.
r.pred <- predict(r.boosted.forest)

End(Not run)

predict.causal_forest Predict with a causal forest

Description

Gets estimates of tau(x) using a trained causal forest.

28 predict.causal_forest

Usage

S3 method for class 'causal_forest'
predict(object, newdata = NULL,
linear.correction.variables = NULL, ll.lambda = NULL,
ll.weight.penalty = FALSE, num.threads = NULL,
estimate.variance = FALSE, ...)

Arguments

object The trained forest.

newdata Points at which predictions should be made. If NULL, makes out-of-bag predic-
tions on the training set instead (i.e., provides predictions at Xi using only trees
that did not use the i-th training example). Note that this matrix should have the
number of columns as the training matrix, and that the columns must appear in
the same order.

linear.correction.variables

Optional subset of indexes for variables to be used in local linear prediction. If
NULL, standard GRF prediction is used. Otherwise, we run a locally weighted
linear regression on the included variables. Please note that this is a beta feature
still in development, and may slow down prediction considerably. Defaults to
NULL.

ll.lambda Ridge penalty for local linear predictions. Defaults to NULL and will be cross-
validated.

ll.weight.penalty

Option to standardize ridge penalty by covariance (TRUE), or penalize all co-
variates equally (FALSE). Penalizes equally by default.

num.threads Number of threads used in training. If set to NULL, the software automatically
selects an appropriate amount.

estimate.variance

Whether variance estimates for hattau(x) are desired (for confidence intervals).

... Additional arguments (currently ignored).

Value

Vector of predictions, along with estimates of the error and (optionally) its variance estimates.
Column ’predictions’ contains estimates of the conditional average treatent effect (CATE). The
square-root of column ’variance.estimates’ is the standard error of CATE. For out-of-bag estimates,
we also output the following error measures. First, column ’debiased.error’ contains estimates of
the ’R-loss’ criterion, (See Nie and Wager 2017 for a justification). Second, column ’excess.error’
contains jackknife estimates of the Monte-carlo error (Wager, Hastie, Efron 2014), a measure of
how unstable estimates are if we grow forests of the same size on the same data set. The sum of
’debiased.error’ and ’excess.error’ is the raw error attained by the current forest, and ’debiased.error’
alone is an estimate of the error attained by a forest with an infinite number of trees. We recommend
that users grow enough forests to make the ’excess.error’ negligible.

predict.custom_forest 29

Examples

Not run:
Train a causal forest.
n <- 100
p <- 10
X <- matrix(rnorm(n * p), n, p)
W <- rbinom(n, 1, 0.5)
Y <- pmax(X[, 1], 0) * W + X[, 2] + pmin(X[, 3], 0) + rnorm(n)
c.forest <- causal_forest(X, Y, W)

Predict using the forest.
X.test <- matrix(0, 101, p)
X.test[, 1] <- seq(-2, 2, length.out = 101)
c.pred <- predict(c.forest, X.test)

Predict on out-of-bag training samples.
c.pred <- predict(c.forest)

Predict with confidence intervals; growing more trees is now recommended.
c.forest <- causal_forest(X, Y, W, num.trees = 500)
c.pred <- predict(c.forest, X.test, estimate.variance = TRUE)

End(Not run)

predict.custom_forest Predict with a custom forest.

Description

Predict with a custom forest.

Usage

S3 method for class 'custom_forest'
predict(object, newdata = NULL,
num.threads = NULL, ...)

Arguments

object The trained forest.
newdata Points at which predictions should be made. If NULL, makes out-of-bag predic-

tions on the training set instead (i.e., provides predictions at Xi using only trees
that did not use the i-th training example). Note that this matrix should have the
number of columns as the training matrix, and that the columns must appear in
the same order.

num.threads Number of threads used in training. If set to NULL, the software automatically
selects an appropriate amount.

... Additional arguments (currently ignored).

30 predict.instrumental_forest

Value

Vector of predictions.

Examples

Not run:
Train a custom forest.
n <- 50
p <- 10
X <- matrix(rnorm(n * p), n, p)
Y <- X[, 1] * rnorm(n)
c.forest <- custom_forest(X, Y)

Predict using the forest.
X.test <- matrix(0, 101, p)
X.test[, 1] <- seq(-2, 2, length.out = 101)
c.pred <- predict(c.forest, X.test)

End(Not run)

predict.instrumental_forest

Predict with an instrumental forest

Description

Gets estimates of tau(x) using a trained instrumental forest.

Usage

S3 method for class 'instrumental_forest'
predict(object, newdata = NULL,
num.threads = NULL, estimate.variance = FALSE, ...)

Arguments

object The trained forest.

newdata Points at which predictions should be made. If NULL, makes out-of-bag predic-
tions on the training set instead (i.e., provides predictions at Xi using only trees
that did not use the i-th training example). Note that this matrix should have the
number of columns as the training matrix, and that the columns must appear in
the same order.

num.threads Number of threads used in training. If set to NULL, the software automatically
selects an appropriate amount.

estimate.variance

Whether variance estimates for hattau(x) are desired (for confidence intervals).

... Additional arguments (currently ignored).

predict.ll_regression_forest 31

Value

Vector of predictions, along with (optional) variance estimates.

predict.ll_regression_forest

Predict with a local linear forest

Description

Gets estimates of E[Y|X=x] using a trained regression forest.

Usage

S3 method for class 'll_regression_forest'
predict(object, newdata = NULL,
linear.correction.variables = NULL, ll.lambda = NULL,
ll.weight.penalty = FALSE, num.threads = NULL,
estimate.variance = FALSE, ...)

Arguments

object The trained forest.

newdata Points at which predictions should be made. If NULL, makes out-of-bag predic-
tions on the training set instead (i.e., provides predictions at Xi using only trees
that did not use the i-th training example). Note that this matrix should have the
number of columns as the training matrix, and that the columns must appear in
the same order.

linear.correction.variables

Optional subset of indexes for variables to be used in local linear prediction. If
left NULL, all variables are used. We run a locally weighted linear regression on
the included variables. Please note that this is a beta feature still in development,
and may slow down prediction considerably. Defaults to NULL.

ll.lambda Ridge penalty for local linear predictions
ll.weight.penalty

Option to standardize ridge penalty by covariance (TRUE), or penalize all co-
variates equally (FALSE). Defaults to FALSE.

num.threads Number of threads used in training. If set to NULL, the software automatically
selects an appropriate amount.

estimate.variance

Whether variance estimates for hattau(x) are desired (for confidence intervals).

... Additional arguments (currently ignored).

Value

A vector of predictions.

32 predict.quantile_forest

Examples

Not run:
Train the forest.
n <- 50
p <- 5
X <- matrix(rnorm(n * p), n, p)
Y <- X[, 1] * rnorm(n)
forest <- ll_regression_forest(X, Y)

Predict using the forest.
X.test <- matrix(0, 101, p)
X.test[, 1] <- seq(-2, 2, length.out = 101)
predictions <- predict(forest, X.test)

Predict on out-of-bag training samples.
predictions.oob <- predict(forest)

End(Not run)

predict.quantile_forest

Predict with a quantile forest

Description

Gets estimates of the conditional quantiles of Y given X using a trained forest.

Usage

S3 method for class 'quantile_forest'
predict(object, newdata = NULL,
quantiles = c(0.1, 0.5, 0.9), num.threads = NULL, ...)

Arguments

object The trained forest.

newdata Points at which predictions should be made. If NULL, makes out-of-bag predic-
tions on the training set instead (i.e., provides predictions at Xi using only trees
that did not use the i-th training example). Note that this matrix should have the
number of columns as the training matrix, and that the columns must appear in
the same order.

quantiles Vector of quantiles at which estimates are required.

num.threads Number of threads used in training. If set to NULL, the software automatically
selects an appropriate amount.

... Additional arguments (currently ignored).

predict.regression_forest 33

Value

Predictions at each test point for each desired quantile.

Examples

Not run:
Train a quantile forest.
n <- 50
p <- 10
X <- matrix(rnorm(n * p), n, p)
Y <- X[, 1] * rnorm(n)
q.forest <- quantile_forest(X, Y, quantiles = c(0.1, 0.5, 0.9))

Predict on out-of-bag training samples.
q.pred <- predict(q.forest)

Predict using the forest.
X.test <- matrix(0, 101, p)
X.test[, 1] <- seq(-2, 2, length.out = 101)
q.pred <- predict(q.forest, X.test)

End(Not run)

predict.regression_forest

Predict with a regression forest

Description

Gets estimates of E[Y|X=x] using a trained regression forest.

Usage

S3 method for class 'regression_forest'
predict(object, newdata = NULL,
linear.correction.variables = NULL, ll.lambda = NULL,
ll.weight.penalty = FALSE, num.threads = NULL,
estimate.variance = FALSE, ...)

Arguments

object The trained forest.

newdata Points at which predictions should be made. If NULL, makes out-of-bag predic-
tions on the training set instead (i.e., provides predictions at Xi using only trees
that did not use the i-th training example). Note that this matrix should have the
number of columns as the training matrix, and that the columns must appear in
the same order.

34 predict.regression_forest

linear.correction.variables

Optional subset of indexes for variables to be used in local linear prediction. If
NULL, standard GRF prediction is used. Otherwise, we run a locally weighted
linear regression on the included variables. Please note that this is a beta feature
still in development, and may slow down prediction considerably. Defaults to
NULL.

ll.lambda Ridge penalty for local linear predictions
ll.weight.penalty

Option to standardize ridge penalty by covariance (TRUE), or penalize all co-
variates equally (FALSE). Defaults to FALSE.

num.threads Number of threads used in training. If set to NULL, the software automatically
selects an appropriate amount.

estimate.variance

Whether variance estimates for hattau(x) are desired (for confidence intervals).
... Additional arguments (currently ignored).

Value

Vector of predictions, along with estimates of the error and (optionally) its variance estimates. Col-
umn ’predictions’ contains estimates of E[Y|X=x]. The square-root of column ’variance.estimates’
is the standard error the test mean-squared error. Column ’excess.error’ contains jackknife estimates
of the Monte-carlo error. The sum of ’debiased.error’ and ’excess.error’ is the raw error attained by
the current forest, and ’debiased.error’ alone is an estimate of the error attained by a forest with an
infinite number of trees. We recommend that users grow enough forests to make the ’excess.error’
negligible.

Examples

Not run:
Train a standard regression forest.
n <- 50
p <- 10
X <- matrix(rnorm(n * p), n, p)
Y <- X[, 1] * rnorm(n)
r.forest <- regression_forest(X, Y)

Predict using the forest.
X.test <- matrix(0, 101, p)
X.test[, 1] <- seq(-2, 2, length.out = 101)
r.pred <- predict(r.forest, X.test)

Predict on out-of-bag training samples.
r.pred <- predict(r.forest)

Predict with confidence intervals; growing more trees is now recommended.
r.forest <- regression_forest(X, Y, num.trees = 100)
r.pred <- predict(r.forest, X.test, estimate.variance = TRUE)

End(Not run)

print.boosted_regression_forest 35

print.boosted_regression_forest

Print a boosted regression forest

Description

Print a boosted regression forest

Usage

S3 method for class 'boosted_regression_forest'
print(x, ...)

Arguments

x The boosted forest to print.

... Additional arguments (currently ignored).

print.grf Print a GRF forest object.

Description

Print a GRF forest object.

Usage

S3 method for class 'grf'
print(x, decay.exponent = 2, max.depth = 4, ...)

Arguments

x The tree to print.

decay.exponent A tuning parameter that controls the importance of split depth.

max.depth The maximum depth of splits to consider.

... Additional arguments (currently ignored).

36 print.tuning_output

print.grf_tree Print a GRF tree object.

Description

Print a GRF tree object.

Usage

S3 method for class 'grf_tree'
print(x, ...)

Arguments

x The tree to print.

... Additional arguments (currently ignored).

print.tuning_output Print tuning output. Displays average error for q-quantiles of tuned
parameters.

Description

Print tuning output. Displays average error for q-quantiles of tuned parameters.

Usage

S3 method for class 'tuning_output'
print(x, tuning.quantiles = seq(0, 1, 0.2), ...)

Arguments

x The tuning output to print.

tuning.quantiles

vector of quantiles to display average error over. Default: seq(0, 1, 0.2) (quin-
tiles)

... Additional arguments (currently ignored).

quantile_forest 37

quantile_forest Quantile forest

Description

Trains a regression forest that can be used to estimate quantiles of the conditional distribution of Y
given X = x.

Usage

quantile_forest(X, Y, quantiles = c(0.1, 0.5, 0.9),
regression.splitting = FALSE, sample.fraction = 0.5, mtry = NULL,
num.trees = 2000, min.node.size = NULL, honesty = TRUE,
honesty.fraction = NULL, prune.empty.leaves = NULL, alpha = 0.05,
imbalance.penalty = 0, clusters = NULL, samples.per.cluster = NULL,
num.threads = NULL, seed = NULL)

Arguments

X The covariates used in the quantile regression.

Y The outcome.

quantiles Vector of quantiles used to calibrate the forest. Default is (0.1, 0.5, 0.9).
regression.splitting

Whether to use regression splits when growing trees instead of specialized splits
based on the quantiles (the default). Setting this flag to true corresponds to the
approach to quantile forests from Meinshausen (2006). Default is FALSE.

sample.fraction

Fraction of the data used to build each tree. Note: If honesty = TRUE, these
subsamples will further be cut by a factor of honesty.fraction. Default is 0.5.

mtry Number of variables tried for each split. Default is
√
p + 20 where p is the

number of variables.

num.trees Number of trees grown in the forest. Note: Getting accurate confidence intervals
generally requires more trees than getting accurate predictions. Default is 2000.

min.node.size A target for the minimum number of observations in each tree leaf. Note that
nodes with size smaller than min.node.size can occur, as in the original random-
Forest package. Default is 5.

honesty Whether to use honest splitting (i.e., sub-sample splitting). Default is TRUE.

honesty.fraction

The fraction of data that will be used for determining splits if honesty = TRUE.
Corresponds to set J1 in the notation of the paper. When using the defaults
(honesty = TRUE and honesty.fraction = NULL), half of the data will be used
for determining splits. Default is 0.5.

38 quantile_forest

prune.empty.leaves

(experimental) If true, prunes the estimation sample tree such that no leaves are
empty. If false, keep the same tree as determined in the splits sample (if an empty
leave is encountered, that tree is skipped and does not contribute to the estimate).
Setting this to false may improve performance on small/marginally powered
data, but requires more trees. Only applies if honesty is enabled. Default is
TRUE.

alpha A tuning parameter that controls the maximum imbalance of a split. Default is
0.05.

imbalance.penalty

A tuning parameter that controls how harshly imbalanced splits are penalized.
Default is 0.

clusters Vector of integers or factors specifying which cluster each observation corre-
sponds to. Default is NULL (ignored).

samples.per.cluster

If sampling by cluster, the number of observations to be sampled from each
cluster when training a tree. If NULL, we set samples.per.cluster to the size
of the smallest cluster. If some clusters are smaller than samples.per.cluster,
the whole cluster is used every time the cluster is drawn. Note that clusters
with less than samples.per.cluster observations get relatively smaller weight than
others in training the forest, i.e., the contribution of a given cluster to the final
forest scales with the minimum of the number of observations in the cluster and
samples.per.cluster. Default is NULL.

num.threads Number of threads used in training. By default, the number of threads is set to
the maximum hardware concurrency.

seed The seed of the C++ random number generator.

Value

A trained quantile forest object.

Examples

Not run:
Generate data.
n <- 50
p <- 10
X <- matrix(rnorm(n * p), n, p)
X.test <- matrix(0, 101, p)
X.test[, 1] <- seq(-2, 2, length.out = 101)
Y <- X[, 1] * rnorm(n)

Train a quantile forest.
q.forest <- quantile_forest(X, Y, quantiles = c(0.1, 0.5, 0.9))

Make predictions.
q.hat <- predict(q.forest, X.test)

Make predictions for different quantiles than those used in training.

regression_forest 39

q.hat <- predict(q.forest, X.test, quantiles = c(0.1, 0.9))

Train a quantile forest using regression splitting instead of quantile-based
splits, emulating the approach in Meinshausen (2006).
meins.forest <- quantile_forest(X, Y, regression.splitting = TRUE)

Make predictions for the desired quantiles.
q.hat <- predict(meins.forest, X.test, quantiles = c(0.1, 0.5, 0.9))

End(Not run)

regression_forest Regression forest

Description

Trains a regression forest that can be used to estimate the conditional mean function mu(x) = E[Y |
X = x]

Usage

regression_forest(X, Y, sample.weights = NULL, sample.fraction = 0.5,
mtry = NULL, num.trees = 2000, min.node.size = NULL,
honesty = TRUE, honesty.fraction = NULL, prune.empty.leaves = NULL,
ci.group.size = 2, alpha = NULL, imbalance.penalty = NULL,
clusters = NULL, samples.per.cluster = NULL,
tune.parameters = FALSE, num.fit.trees = 50, num.fit.reps = 100,
num.optimize.reps = 1000, compute.oob.predictions = TRUE,
num.threads = NULL, seed = NULL)

Arguments

X The covariates used in the regression.

Y The outcome.

sample.weights (experimental) Weights given to an observation in estimation. If NULL, each
observation is given the same weight. Default is NULL.

sample.fraction

Fraction of the data used to build each tree. Note: If honesty = TRUE, these
subsamples will further be cut by a factor of honesty.fraction. Default is 0.5.

mtry Number of variables tried for each split. Default is
√
p + 20 where p is the

number of variables.

num.trees Number of trees grown in the forest. Note: Getting accurate confidence intervals
generally requires more trees than getting accurate predictions. Default is 2000.

min.node.size A target for the minimum number of observations in each tree leaf. Note that
nodes with size smaller than min.node.size can occur, as in the original random-
Forest package. Default is 5.

40 regression_forest

honesty Whether to use honest splitting (i.e., sub-sample splitting). Default is TRUE.
honesty.fraction

The fraction of data that will be used for determining splits if honesty = TRUE.
Corresponds to set J1 in the notation of the paper. When using the defaults
(honesty = TRUE and honesty.fraction = NULL), half of the data will be used
for determining splits. Default is 0.5.

prune.empty.leaves

(experimental) If true, prunes the estimation sample tree such that no leaves are
empty. If false, keep the same tree as determined in the splits sample (if an empty
leave is encountered, that tree is skipped and does not contribute to the estimate).
Setting this to false may improve performance on small/marginally powered
data, but requires more trees. Only applies if honesty is enabled. Default is
TRUE.

ci.group.size The forest will grow ci.group.size trees on each subsample. In order to provide
confidence intervals, ci.group.size must be at least 2. Default is 2.

alpha A tuning parameter that controls the maximum imbalance of a split. Default is
0.05.

imbalance.penalty

A tuning parameter that controls how harshly imbalanced splits are penalized.
Default is 0.

clusters Vector of integers or factors specifying which cluster each observation corre-
sponds to. Default is NULL (ignored).

samples.per.cluster

If sampling by cluster, the number of observations to be sampled from each
cluster when training a tree. If NULL, we set samples.per.cluster to the size
of the smallest cluster. If some clusters are smaller than samples.per.cluster,
the whole cluster is used every time the cluster is drawn. Note that clusters
with less than samples.per.cluster observations get relatively smaller weight than
others in training the forest, i.e., the contribution of a given cluster to the final
forest scales with the minimum of the number of observations in the cluster and
samples.per.cluster. Default is NULL.

tune.parameters

If true, NULL parameters are tuned by cross-validation; if false NULL parame-
ters are set to defaults. Default is FALSE.

num.fit.trees The number of trees in each ’mini forest’ used to fit the tuning model. Default
is 50.

num.fit.reps The number of forests used to fit the tuning model. Default is 100.
num.optimize.reps

The number of random parameter values considered when using the model to
select the optimal parameters. Default is 1000.

compute.oob.predictions

Whether OOB predictions on training set should be precomputed. Default is
TRUE.

num.threads Number of threads used in training. By default, the number of threads is set to
the maximum hardware concurrency.

seed The seed of the C++ random number generator.

split_frequencies 41

Value

A trained regression forest object. If tune.parameters is enabled, then tuning information will be
included through the ‘tuning.output‘ attribute.

Examples

Not run:
Train a standard regression forest.
n <- 50
p <- 10
X <- matrix(rnorm(n * p), n, p)
Y <- X[, 1] * rnorm(n)
r.forest <- regression_forest(X, Y)

Predict using the forest.
X.test <- matrix(0, 101, p)
X.test[, 1] <- seq(-2, 2, length.out = 101)
r.pred <- predict(r.forest, X.test)

Predict on out-of-bag training samples.
r.pred <- predict(r.forest)

Predict with confidence intervals; growing more trees is now recommended.
r.forest <- regression_forest(X, Y, num.trees = 100)
r.pred <- predict(r.forest, X.test, estimate.variance = TRUE)

End(Not run)

split_frequencies Calculate which features the forest split on at each depth.

Description

Calculate which features the forest split on at each depth.

Usage

split_frequencies(forest, max.depth = 4)

Arguments

forest The trained forest.

max.depth Maximum depth of splits to consider.

Value

A matrix of split depth by feature index, where each value is the number of times the feature was
split on at that depth.

42 test_calibration

Examples

Not run:
Train a quantile forest.
n <- 50
p <- 10
X <- matrix(rnorm(n * p), n, p)
Y <- X[, 1] * rnorm(n)
q.forest <- quantile_forest(X, Y, quantiles = c(0.1, 0.5, 0.9))

Calculate the split frequencies for this forest.
split_frequencies(q.forest)

End(Not run)

test_calibration Omnibus evaluation of the quality of the random forest estimates via
calibration.

Description

Test calibration of the forest. Computes the best linear fit of the target estimand using the for-
est prediction (on held-out data) as well as the mean forest prediction as the sole two regressors.
A coefficient of 1 for ‘mean.forest.prediction‘ suggests that the mean forest prediction is correct,
whereas a coefficient of 1 for ‘differential.forest.prediction‘ additionally suggests that the forest has
captured heterogeneity in the underlying signal. The p-value of the ‘differential.forest.prediction‘
coefficient also acts as an omnibus test for the presence of heterogeneity: If the coefficient is signif-
icantly greater than 0, then we can reject the null of no heterogeneity.

Usage

test_calibration(forest)

Arguments

forest The trained forest.

Value

A heteroskedasticity-consistent test of calibration.

References

Chernozhukov, Victor, Mert Demirer, Esther Duflo, and Ivan Fernandez-Val. "Generic Machine
Learning Inference on Heterogenous Treatment Effects in Randomized Experiments." arXiv preprint
arXiv:1712.04802 (2017).

tune_causal_forest 43

Examples

Not run:
n <- 800
p <- 5
X <- matrix(rnorm(n * p), n, p)
W <- rbinom(n, 1, 0.25 + 0.5 * (X[, 1] > 0))
Y <- pmax(X[, 1], 0) * W + X[, 2] + pmin(X[, 3], 0) + rnorm(n)
forest <- causal_forest(X, Y, W)
test_calibration(forest)

End(Not run)

tune_causal_forest Causal forest tuning

Description

Finds the optimal parameters to be used in training a regression forest. This method currently tunes
over min.node.size, mtry, sample.fraction, alpha, and imbalance.penalty. Please see the method
’causal_forest’ for a description of the standard causal forest parameters. Note that if fixed values
can be supplied for any of the parameters mentioned above, and in that case, that parameter will not
be tuned. For example, if this method is called with min.node.size = 10 and alpha = 0.7, then those
parameter values will be treated as fixed, and only sample.fraction and imbalance.penalty will be
tuned.

Usage

tune_causal_forest(X, Y, W, Y.hat, W.hat, sample.weights = NULL,
num.fit.trees = 100, num.fit.reps = 50, num.optimize.reps = 1000,
min.node.size = NULL, sample.fraction = 0.5, mtry = NULL,
alpha = NULL, imbalance.penalty = NULL, stabilize.splits = TRUE,
honesty = TRUE, honesty.fraction = NULL, prune.empty.leaves = NULL,
clusters = NULL, samples.per.cluster = NULL, num.threads = NULL,
seed = NULL)

Arguments

X The covariates used in the causal regression.

Y The outcome.

W The treatment assignment (may be binary or real).

Y.hat Estimates of the expected responses E[Y | Xi], marginalizing over treatment.
See section 6.1.1 of the GRF paper for further discussion of this quantity.

W.hat Estimates of the treatment propensities E[W | Xi].

44 tune_causal_forest

sample.weights Weights defining the population on which we want our estimator of tau(x) to
perform well on average. If NULL, this is the population from which X1 ... Xn
are sampled. Otherwise, it is a reweighted version, in which we observe Xi with
probability proportional to sample.weights[i]. Default is NULL.

num.fit.trees The number of trees in each ’mini forest’ used to fit the tuning model. Default
is 200.

num.fit.reps The number of forests used to fit the tuning model. Default is 50.
num.optimize.reps

The number of random parameter values considered when using the model to
select the optimal parameters. Default is 1000.

min.node.size A target for the minimum number of observations in each tree leaf. Note that
nodes with size smaller than min.node.size can occur, as in the original random-
Forest package. Default is 5.

sample.fraction

Fraction of the data used to build each tree. Note: If honesty = TRUE, these
subsamples will further be cut by a factor of honesty.fraction. Default is 0.5.

mtry Number of variables tried for each split. Default is
√
p + 20 where p is the

number of variables.

alpha A tuning parameter that controls the maximum imbalance of a split. Default is
0.05.

imbalance.penalty

A tuning parameter that controls how harshly imbalanced splits are penalized.
Default is 0.

stabilize.splits

Whether or not the treatment should be taken into account when determining the
imbalance of a split (experimental). Default is TRUE.

honesty Whether to use honest splitting (i.e., sub-sample splitting). Default is TRUE.
honesty.fraction

The fraction of data that will be used for determining splits if honesty = TRUE.
Corresponds to set J1 in the notation of the paper. When using the defaults
(honesty = TRUE and honesty.fraction = NULL), half of the data will be used
for determining splits. Default is 0.5.

prune.empty.leaves

(experimental) If true, prunes the estimation sample tree such that no leaves are
empty. If false, keep the same tree as determined in the splits sample (if an empty
leave is encountered, that tree is skipped and does not contribute to the estimate).
Setting this to false may improve performance on small/marginally powered
data, but requires more trees. Only applies if honesty is enabled. Default is
TRUE.

clusters Vector of integers or factors specifying which cluster each observation corre-
sponds to. Default is NULL (ignored).

samples.per.cluster

If sampling by cluster, the number of observations to be sampled from each
cluster. Must be less than the size of the smallest cluster. If set to NULL software
will set this value to the size of the smallest cluster. Default is NULL.

tune_ll_causal_forest 45

num.threads Number of threads used in training. By default, the number of threads is set to
the maximum hardware concurrency.

seed The seed of the C++ random number generator.

Value

A list consisting of the optimal parameter values (’params’) along with their debiased error (’error’).

Examples

Not run:
Find the optimal tuning parameters.
n <- 50
p <- 10
X <- matrix(rnorm(n * p), n, p)
W <- rbinom(n, 1, 0.5)
Y <- pmax(X[, 1], 0) * W + X[, 2] + pmin(X[, 3], 0) + rnorm(n)
Y.hat <- predict(regression_forest(X, Y))$predictions
W.hat <- rep(0.5, n)
params <- tune_causal_forest(X, Y, W, Y.hat, W.hat)$params

Use these parameters to train a regression forest.
tuned.forest <- causal_forest(X, Y, W,

Y.hat = Y.hat, W.hat = W.hat, num.trees = 1000,
min.node.size = as.numeric(params["min.node.size"]),
sample.fraction = as.numeric(params["sample.fraction"]),
mtry = as.numeric(params["mtry"]),
alpha = as.numeric(params["alpha"]),
imbalance.penalty = as.numeric(params["imbalance.penalty"])

)

End(Not run)

tune_ll_causal_forest Local linear forest tuning

Description

Finds the optimal ridge penalty for local linear causal prediction.

Usage

tune_ll_causal_forest(forest, linear.correction.variables = NULL,
ll.weight.penalty = FALSE, num.threads = NULL, lambda.path = NULL)

46 tune_ll_regression_forest

Arguments

forest The forest used for prediction.
linear.correction.variables

Variables to use for local linear prediction. If left null, all variables are used.
Default is NULL.

ll.weight.penalty

Option to standardize ridge penalty by covariance (TRUE), or penalize all co-
variates equally (FALSE). Defaults to FALSE.

num.threads Number of threads used in training. If set to NULL, the software automatically
selects an appropriate amount.

lambda.path Optional list of lambdas to use for cross-validation.

Value

A list of lambdas tried, corresponding errors, and optimal ridge penalty lambda.

Examples

Not run:
Find the optimal tuning parameters.
n <- 50
p <- 10
X <- matrix(rnorm(n * p), n, p)
W <- rbinom(n, 1, 0.5)
Y <- pmax(X[, 1], 0) * W + X[, 2] + pmin(X[, 3], 0) + rnorm(n)

forest <- causal_forest(X, Y, W)
tuned.lambda <- tune_ll_causal_forest(forest)

Use this parameter to predict from a local linear causal forest.
predictions <- predict(forest, linear.correction.variables = 1:p, lambda = tuned.lambda)

End(Not run)

tune_ll_regression_forest

Local linear forest tuning

Description

Finds the optimal ridge penalty for local linear prediction.

Usage

tune_ll_regression_forest(forest, linear.correction.variables = NULL,
ll.weight.penalty = FALSE, num.threads = NULL, lambda.path = NULL)

tune_regression_forest 47

Arguments

forest The forest used for prediction.
linear.correction.variables

Variables to use for local linear prediction. If left null, all variables are used.
Default is NULL.

ll.weight.penalty

Option to standardize ridge penalty by covariance (TRUE), or penalize all co-
variates equally (FALSE). Defaults to FALSE.

num.threads Number of threads used in training. If set to NULL, the software automatically
selects an appropriate amount.

lambda.path Optional list of lambdas to use for cross-validation.

Value

A list of lambdas tried, corresponding errors, and optimal ridge penalty lambda.

Examples

Not run:
Find the optimal tuning parameters.
n <- 500
p <- 10
X <- matrix(rnorm(n * p), n, p)
Y <- X[, 1] * rnorm(n)
forest <- regression_forest(X, Y)
tuned.lambda <- tune_ll_regression_forest(forest)

Use this parameter to predict from a local linear forest.
predictions <- predict(forest, linear.correction.variables = 1:p, lambda = tuned.lambda)

End(Not run)

tune_regression_forest

Regression forest tuning

Description

Finds the optimal parameters to be used in training a regression forest. This method currently tunes
over min.node.size, mtry, sample.fraction, alpha, and imbalance.penalty. Please see the method
’regression_forest’ for a description of the standard forest parameters. Note that if fixed values can
be supplied for any of the parameters mentioned above, and in that case, that parameter will not be
tuned. For example, if this method is called with min.node.size = 10 and alpha = 0.7, then those
parameter values will be treated as fixed, and only sample.fraction and imbalance.penalty will be
tuned.

48 tune_regression_forest

Usage

tune_regression_forest(X, Y, sample.weights = NULL, num.fit.trees = 10,
num.fit.reps = 100, num.optimize.reps = 1000, min.node.size = NULL,
sample.fraction = 0.5, mtry = NULL, alpha = NULL,
imbalance.penalty = NULL, honesty = TRUE, honesty.fraction = NULL,
prune.empty.leaves = NULL, clusters = NULL,
samples.per.cluster = NULL, num.threads = NULL, seed = NULL)

Arguments

X The covariates used in the regression.

Y The outcome.

sample.weights (experimental) Weights given to an observation in estimation. If NULL, each
observation is given the same weight. Default is NULL.

num.fit.trees The number of trees in each ’mini forest’ used to fit the tuning model. Default
is 10.

num.fit.reps The number of forests used to fit the tuning model. Default is 100.
num.optimize.reps

The number of random parameter values considered when using the model to
select the optimal parameters. Default is 1000.

min.node.size A target for the minimum number of observations in each tree leaf. Note that
nodes with size smaller than min.node.size can occur, as in the original random-
Forest package. Default is 5.

sample.fraction

Fraction of the data used to build each tree. Note: If honesty = TRUE, these
subsamples will further be cut by a factor of honesty.fraction. Default is 0.5.

mtry Number of variables tried for each split. Default is
√
p + 20 where p is the

number of variables.

alpha A tuning parameter that controls the maximum imbalance of a split. Default is
0.05.

imbalance.penalty

A tuning parameter that controls how harshly imbalanced splits are penalized.
Default is 0.

honesty Whether or not honest splitting (i.e., sub-sample splitting) should be used. De-
fault is TRUE.

honesty.fraction

The fraction of data that will be used for determining splits if honesty = TRUE.
Corresponds to set J1 in the notation of the paper. When using the defaults
(honesty = TRUE and honesty.fraction = NULL), half of the data will be used
for determining splits. Default is 0.5.

prune.empty.leaves

(experimental) If true, prunes the estimation sample tree such that no leaves are
empty. If false, keep the same tree as determined in the splits sample (if an empty
leave is encountered, that tree is skipped and does not contribute to the estimate).
Setting this to false may improve performance on small/marginally powered

variable_importance 49

data, but requires more trees. Only applies if honesty is enabled. Default is
TRUE.

clusters Vector of integers or factors specifying which cluster each observation corre-
sponds to. Default is NULL (ignored).

samples.per.cluster

If sampling by cluster, the number of observations to be sampled from each
cluster. Must be less than the size of the smallest cluster. If set to NULL software
will set this value to the size of the smallest cluster. Default is NULL.

num.threads Number of threads used in training. By default, the number of threads is set to
the maximum hardware concurrency.

seed The seed of the C++ random number generator.

Value

A list consisting of the optimal parameter values (’params’) along with their debiased error (’error’).

Examples

Not run:
Find the optimal tuning parameters.
n <- 500
p <- 10
X <- matrix(rnorm(n * p), n, p)
Y <- X[, 1] * rnorm(n)
params <- tune_regression_forest(X, Y)$params

Use these parameters to train a regression forest.
tuned.forest <- regression_forest(X, Y,

num.trees = 1000,
min.node.size = as.numeric(params["min.node.size"]),
sample.fraction = as.numeric(params["sample.fraction"]),
mtry = as.numeric(params["mtry"]),
alpha = as.numeric(params["alpha"]),
imbalance.penalty = as.numeric(params["imbalance.penalty"])

)

End(Not run)

variable_importance Calculate a simple measure of ’importance’ for each feature.

Description

Calculate a simple measure of ’importance’ for each feature.

Usage

variable_importance(forest, decay.exponent = 2, max.depth = 4)

50 variable_importance

Arguments

forest The trained forest.

decay.exponent A tuning parameter that controls the importance of split depth.

max.depth Maximum depth of splits to consider.

Value

A list specifying an ’importance value’ for each feature.

Examples

Not run:
Train a quantile forest.
n <- 50
p <- 10
X <- matrix(rnorm(n * p), n, p)
Y <- X[, 1] * rnorm(n)
q.forest <- quantile_forest(X, Y, quantiles = c(0.1, 0.5, 0.9))

Calculate the 'importance' of each feature.
variable_importance(q.forest)

End(Not run)

Index

average_late, 3
average_partial_effect, 4
average_treatment_effect, 5

boosted_regression_forest, 6

causal_forest, 9
custom_forest, 12

get_sample_weights, 14
get_tree, 15
grf, 16

instrumental_forest, 18

leaf_stats.causal_forest, 20
leaf_stats.default, 21
leaf_stats.instrumental_forest, 22
leaf_stats.regression_forest, 22
ll_regression_forest, 23

merge_forests, 25

plot.grf_tree, 26
predict.boosted_regression_forest, 26
predict.causal_forest, 27
predict.custom_forest, 29
predict.instrumental_forest, 30
predict.ll_regression_forest, 31
predict.quantile_forest, 32
predict.regression_forest, 33
print.boosted_regression_forest, 35
print.grf, 35
print.grf_tree, 36
print.tuning_output, 36

quantile_forest, 37

regression_forest, 39

split_frequencies, 41

test_calibration, 42
tune_causal_forest, 43
tune_ll_causal_forest, 45
tune_ll_regression_forest, 46
tune_regression_forest, 47

variable_importance, 49

51

	average_late
	average_partial_effect
	average_treatment_effect
	boosted_regression_forest
	causal_forest
	custom_forest
	get_sample_weights
	get_tree
	grf
	instrumental_forest
	leaf_stats.causal_forest
	leaf_stats.default
	leaf_stats.instrumental_forest
	leaf_stats.regression_forest
	ll_regression_forest
	merge_forests
	plot.grf_tree
	predict.boosted_regression_forest
	predict.causal_forest
	predict.custom_forest
	predict.instrumental_forest
	predict.ll_regression_forest
	predict.quantile_forest
	predict.regression_forest
	print.boosted_regression_forest
	print.grf
	print.grf_tree
	print.tuning_output
	quantile_forest
	regression_forest
	split_frequencies
	test_calibration
	tune_causal_forest
	tune_ll_causal_forest
	tune_ll_regression_forest
	tune_regression_forest
	variable_importance
	Index

