grandR: Comprehensive Analysis of Nucleotide Conversion Sequencing Data

Nucleotide conversion sequencing experiments have been developed to add a temporal dimension to RNA-seq and single-cell RNA-seq. Such experiments require specialized tools for primary processing such as GRAND-SLAM, (see 'Jürges et al' <doi:10.1093/bioinformatics/bty256>) and specialized tools for downstream analyses. 'grandR' provides a comprehensive toolbox for quality control, kinetic modeling, differential gene expression analysis and visualization of such data.

Version: 0.2.0
Imports: stats, Matrix, ggplot2, grDevices, patchwork, plyr, parallel, reshape2, MASS, cowplot, minpack.lm, lfc, methods, utils, numDeriv
Suggests: knitr, rmarkdown, circlize, Seurat, ComplexHeatmap, ggrepel, RCurl, DESeq2, clusterProfiler, msigdbr, fgsea, rclipboard, cubature, lamW, DT, RColorBrewer, eulerr, gsl, htmltools, labeling, matrixStats, monocle, VGAM, quantreg, rlang, graphics, scales, shiny
Published: 2022-09-20
Author: Florian Erhard ORCID iD [aut, cre], Teresa Rummel [ctb], Lygeri Sakellaridi [ctb]
Maintainer: Florian Erhard <Florian.Erhard at>
License: Apache License (≥ 2)
NeedsCompilation: no
Citation: grandR citation info
Materials: README NEWS
CRAN checks: grandR results


Reference manual: grandR.pdf
Vignettes: Getting started


Package source: grandR_0.2.0.tar.gz
Windows binaries: r-devel:, r-release:, r-oldrel:
macOS binaries: r-release (arm64): grandR_0.2.0.tgz, r-oldrel (arm64): grandR_0.2.0.tgz, r-release (x86_64): not available, r-oldrel (x86_64): grandR_0.2.0.tgz


Please use the canonical form to link to this page.