Package ‘glycanr’

March 29, 2021

Title Tools for Analysing N-Glycan Data

Version 0.4.0

Maintainer Ivo Ugrina <ivougrina@gmail.com>

Language en-US

Description Useful utilities in N-glycan data analysis. This package tries
to fill the gap in N-glycan data analysis by providing easy
to use functions for basic operations on data
(see <https://en.wikipedia.org/wiki/Glycomics> for more
details on Glycomics). At the moment ‘glycanr’ is mostly oriented
to data obtained by UPLC (Ultra Performance Liquid Chromatography)
and LCMS (Liquid chromatography–mass spectrometry)
analysis of Plasma and IgG glycome.

Depends R (>= 3.1.2)

Imports ggplot2, tidyr (>= 0.3.1), dplyr (>= 0.4.3), coin

License MIT + file LICENSE

LazyData true

Suggests knitr, markdown, preprocessCore, testthat

VignetteBuilder knitr

URL https://github.com/iugrina/glycanr

BugReports https://github.com/iugrina/glycanr/issues

Encoding UTF-8

RoxygenNote 7.1.1

NeedsCompilation no

Author Ivo Ugrina [aut, cre, cph],
Lucija Klaric [aut],
Alyce Russell [aut],
Frano Vuckovic [aut]

Repository CRAN

Date/Publication 2021-03-29 14:40:02 UTC
R topics documented:

glyco.outliers ... 2
glyco.plot ... 3
ildt ... 5
ildt.translate .. 6
iudt ... 7
iudt.translate .. 8
mediannorm ... 9
medianquotientnorm .. 10
mpiu ... 11
mpiunorm .. 11
phdt ... 11
quantilenorm ... 12
refpeaknorm ... 13
tanorm .. 14

Index 16

glyco.outliers Discover outliers in glycan data

Description

Returns outliers within every glycan structure

Usage

glyco.outliers(data, group = NULL, outlier.function = NULL, alpha = 1.5)

Arguments

data data frame in long format containing glycan measurements

group a possible grouping parameter on which stratification of data should be conducted. It should be a name of one of the columns in dataframe data and of type factor.

outlier.function a function that checks for outliers in a vector. Receives one parameter representing a vector and returns logical vector indicating outliers.

alpha If outlier.function parameter is set to NULL outliers are calculated as those points that are greater than upper quartile + alpha * IQR (interquartile range) or lower than lower quartile - alpha * IQR (interquartile range). If parameter outlier.function is not NULL parameter alpha is not used.
Details

Input data frame should have at least the following three columns:
- gid - representing a unique name of a sample
- glycan - representing glycan names
- value - representing measured values

Value

Returns a data.frame with outliers

Author(s)

Ivo Ugrina

Examples

data(mpiu)
glyco.outliers(mpiu)

outliers per plate
glyco.outliers(mpiu, group="Plate")

Description

This function constructs standard plots in exploratory analysis of N-Glycans.

Usage

glyco.plot(
 data,
 collapse = TRUE,
 violin = FALSE,
 group = NULL,
 all = TRUE,
 p.adjust.method = "holm",
 print.p.values = TRUE,
 log.transform = FALSE,
 glyco.names = NULL
)
glyco.plot

Arguments

data
 data frame which holds columns representing Glycans. These column names must start with 'GP'.
collapse
 should Glycans be presented in one facet (default) or with more facets (one per Glycan).
violin
 should Glycans be presented in a boxplot (default) or violin format.
group
 this a possible grouping parameter on which stratification of data should be conducted. It should be a name of one of the columns in data frame data and of type factor.
all
 should all of the variables (default) be presented in the plot or only those that have significant p-values. This variable is meaningful only when group is not NULL since the testing of differences is conducted between different groups represented by group variable. If group has only 2 levels then Mann-Whitney-Wilcoxon (wilcox.test) test is conducted. Otherwise, Kruskal-Wallis test is conducted (kruskal.test). Obtained p-values are adjusted to multiple testing with p.adjust.
p.adjust.method
 method used for adjustment of p-values to multiple testing. Variable p.adjust.method must be an element of p.adjust.methods.
print.p.values
 should p-values be printed on plots
log.transform
 should Glycans be log transform prior to plotting.
glyco.names
 names of columns that represent glycan data. If NULL all columns starting with 'GP' in their names will be used

Value

Returns a list consisting of p-values, adjusted p-vales and the plot.

Author(s)

Ivo Ugrina

Examples

devAskNewPage(TRUE)
exampleData <- data.frame(ID=1:100, GP1=runif(100),
GP2=rexp(100,0.2), GP3=rgamma(100, 3),
Plate=factor(sample(1:2,100,replace=TRUE)))
glyco.plot(exampleData)
glyco.plot(exampleData, group='Plate', collapse=FALSE, log=TRUE)
ildt

Derived traits for Glycan peaks in IgG for LCMS

Description

Calculates values of derived traits for Glycan peaks in IgG for LCMS

Usage

```r
ildt(data = NULL, method = "2014", print.exp.names = FALSE)
```

Arguments

- **data**: data frame that holds columns representing Glycans.
- **method**: year of the derived traits definition. By default 2014.
- **print.exp.names**: If TRUE return expected column names representing glycans.

Details

Calculates derived traits from basic glycan peaks. User can choose which definition of the derived traits he will use (see references for different versions/definitions of derived traits).

Value

Returns the data frame with derived traits

Author(s)

Ivo Ugrina

References

ildt.translate

Translate names between computer readable and human readable for derived traits of IgG with LCMS

Description

Translates names between computer readable and human readable for derived traits of IgG with LCMS

Usage

ildt.translate(orignames, to = "inverse", method = "2014")

Arguments

orignames vector; type string

orignames type of translation. If inverse is used everything will be translated. For computer names will be translated to computer readable, and for human names will be translated to human readable.

method year of the derived traits definition. By default 2014.

Details

User can choose which definition of the derived traits he will use (see references for different versions/definitions of derived traits).

Value

Returns a character vector with original and translated names

Author(s)

Ivo Ugrina

References

Description

Calculates values of derived traits for Glycan peaks in IgG for UPLC

Usage

iudt(data = NULL, method = "2014", print.exp.names = FALSE)

Arguments

data data frame that holds columns representing Glycans. These column names should start with 'GP'.

method year of the derived traits definition. By default 2014.

print.exp.names If TRUE return expected column names representing glycans.

Details

Calculates derived traits from basic glycan peaks. User can choose which definition of the derived traits he will use (see references for different versions/definitions of derived traits).

Value

Returns the data frame with derived traits

Author(s)

Ivo Ugrina, Frano Vučković

References

iudt.translate

Translate names between computer readable and human readable for derived traits of IgG with UPLC

Description

Translates names between computer readable and human readable for derived traits of IgG with UPLC

Usage

iudt.translate(orignames, to = "inverse", method = "2014")

Arguments

orignames vector; type string
to type of translation. If inverse is used everything will be translated. For computer names will be translated to computer readable, and for human names will be translated to human readable.
method year of the derived traits definition. By default 2014.

Details

User can choose which definition of the derived traits he will use (see references for different versions/definitions of derived traits).

Value

Returns a character vector with original and translated names

Author(s)

Ivo Ugrina

References

Description

Returns glycans normalized with Median Normalization approach.

Usage

mediannorm(d, grouping = FALSE)

Arguments

d data frame in long format containing glycan measurements

grouping should data be normalized per groups

Details

Input data frame should have at least the following three columns:
- gid - representing a unique name of a sample
- glycan - representing glycan names
- value - representing measured values
and if the grouping argument is TRUE it should also have column:
- groups - representing groupings (e.g. IgG1, IgG2 and IgG4)

Value

Returns a data.frame with original glycan values substituted by normalized ones

Author(s)

Ivo Ugrina, Lucija Klarić

Examples

data(mpiu)
mpiun <- mediannorm(mpiu)
head(mpiun)
medianquotientnorm
Median Quotient Normalization of glycan data

Description
Returns glycans normalized with Median Quotient Normalization approach.

Usage
```r
call = medianquotientnorm(d, grouping = FALSE)
```

Arguments
- `d` data frame in long format containing glycan measurements
- `grouping` should data be normalized per groups

Details
Input data frame should have at least the following three columns:
- `gid` representing a unique name of a sample
- `glycan` representing glycan names
- `value` representing measured values
and if the grouping argument is `TRUE` it should also have column:
- `groups` representing groupings (e.g. IgG1, IgG2 and IgG4)

Value
Returns a data.frame with original glycan values substituted by normalized ones

Author(s)
Ivo Ugrina, Lucija Klarić

References
Dieterle F, Ross A, Schlotterbeck G, Senn H.:
Probabilistic Quotient Normalization as Robust Method to Account for Dilution of Complex Biological Mixtures. Application in 1H NMR Metabolomics.
doi: 10.1021/ac051632c

Examples
```r
data(mpiu)
mpiun <- medianquotientnorm(mpiu)
head(mpiun)
```
mpiuc

Multiple plates IgG UPLC data example

Description

This is an example of the data obtained by UPLC while analysing IgG.

Usage

mpiuc

Format

An object of class `data.frame` with 13680 rows and 4 columns.

mpiunorm

Normalized mpiuc data

Description

This is an example of the normalized mpiuc data. It is intended to be used for unit tests.

Usage

mpiunorm

Format

An object of class `data.frame` with 68400 rows and 5 columns.

phdt

Derived traits for Glycan peaks in PLASMA for HPLC

Description

Calculates values of derived traits for Glycan peaks in Plasma for HPLC

Usage

phdt(data = NULL, method = "2011", print.exp.names = FALSE)
Arguments

data data frame that holds columns representing Glycans. These column names should start with ‘GP’.
method year of the derived traits definition. By default 2011.
print.exp.names If TRUE return expected column names representing glycans.

Details

Calculates derived traits from basic glycan peaks. User can choose which definition of the derived traits he will use (see references for different versions/definitions of derived traits).

Value

Returns the data frame with derived traits

Author(s)

Ivo Ugrina, Lucija Klarić

References

quantilenorm

Quantile Normalization of glycan data

Description

Returns glycans normalized with Quantile Normalization approach.

Usage

quantilenorm(d, grouping = FALSE, transpose = FALSE)

Arguments

d data frame in long format containing glycan measurements
grouping should data be normalized per groups
transpose transpose the data prior to normalization
Details

Input data frame should have at least the following three columns:
- gid - representing a unique name of a sample
- glycan - representing glycan names
- value - representing measured values
and if the grouping argument is TRUE it should also have column:
- groups - representing groupings (e.g. IgG1, IgG2 and IgG4)

Value

Returns a data.frame with original glycan values substituted by normalized ones

Author(s)

Ivo Ugrina, Lucija Klarić

References

Bolstad, B. M., Irizarry R. A., Astrand, M, and Speed, T. P.:
A Comparison of Normalization Methods for High Density Oligonucleotide Array Data Based on Bias and Variance.
doi: 10.1093/bioinformatics/19.2.185

Examples

data(mpiu)
if(requireNamespace("preprocessCore", quietly=TRUE)){
 mpiun <- quantilenorm(mpiu)
 head(mpiun)

 # transpose (change) subjects and measurements
 mpiunt <- quantilenorm(mpiu, transpose=TRUE)
 head(mpiunt)
}

refpeaknorm | Reference Peak Normalization of glycan data

Description

Returns glycans normalized with Reference Peak Normalization approach.

Usage

refpeaknorm(d, grouping = FALSE, peak = NULL)
Arguments

- **d**: data frame in long format containing glycan measurements
- **grouping**: should data be normalized per groups
- **peak**: glycan name to use as the reference peak. If NULL peak with maximal value (summed through all samples) is used

Details

Input data frame should have at least the following three columns:
- **gid**: representing a unique name of a sample
- **glycan**: representing glycan names
- **value**: representing measured values
and if the grouping argument is TRUE it should also have column:
- **groups**: representing groupings (e.g. IgG1, IgG2 and IgG4)

Value

Returns a data.frame with original glycan values substituted by normalized ones

Author(s)

Ivo Ugrina, Lucija Klarić

Examples

```r
data(mpiu)
mpiun <- tanorm(mpiu)
head(mpiun)
```

Description

Returns glycans normalized with Total Area Normalization approach.

Usage

`tanorm(d, grouping = FALSE)`

Arguments

- **d**: data frame in long format containing glycan measurements
- **grouping**: should data be normalized per groups
Details

Input data frame should have at least the following three columns:
- gid - representing a unique name of a sample
- glycan - representing glycan names
- value - representing measured values
and if the grouping argument is TRUE it should also have column:
- groups - representing groupings (e.g. IgG1, IgG2 and IgG4)

Value

Returns a data.frame with original glycan values substituted by normalized ones

Author(s)

Ivo Ugrina

Examples

data(mpiu)
mpiun <- tanorm(mpiu)
head(mpiun)
Index

* datasets
 mpiu, 11
 mpiunorm, 11
 glyco.outliers, 2
 glyco.plot, 3
 ildt, 5
 ildt.translate, 6
 iudt, 7
 iudt.translate, 8
 kruskal.test, 4
 mediannorm, 9
 medianquotientnorm, 10
 mpiu, 11
 mpiunorm, 11
 p.adjust, 4
 p.adjust.methods, 4
 phdt, 11
 quantilenorm, 12
 refpeaknorm, 13
 tanorm, 14
 wilcox.test, 4