Package ‘ghcm’

January 25, 2021

Type Package
Title Functional Conditional Independence Testing with the GHCM
Version 1.0.0
Description A statistical hypothesis test for conditional independence. Given residuals from a sufficiently powerful regression, it tests whether the covariance of the residuals is vanishing. It can be applied to both discretely-observed functional data and multivariate data. Details of the method can be found in Anton Rask Lundborg, Rajen D. Shah and Jonas Peters (2020) <arXiv:2101.07108>.
License MIT + file LICENSE
Encoding UTF-8
LazyData true
Imports graphics, MASS, refund, stats, utils
Depends R (>= 4.0.0)
RoxygenNote 7.1.1
Suggests testthat, knitr, rmarkdown, bookdown, GeneralisedCovarianceMeasure, ggplot2, reshape2
URL https://github.com/arlundborg/ghcm
BugReports https://github.com/arlundborg/ghcm/issues
VignetteBuilder knitr
NeedsCompilation no
Author Anton Rask Lundborg [aut, cre], Rajen D. Shah [aut], Jonas Peters [aut]
Maintainer Anton Rask Lundborg <a.lundborg@statslab.cam.ac.uk>
Repository CRAN
Date/Publication 2021-01-25 13:10:05 UTC
Description

A simulated dataset containing a combination of functional and scalar variables. The functional variables each consists of 101 observations on an equidistant grid on [0, 1].

Usage

ghcm_sim_data

Format

A data frame with 500 rows of 5 variables:

- **X**: 500 x 101 matrix.
- **Z**: 500 x 101 matrix.
- **W**: 500 x 101 matrix.
- **Y_1**: Numeric vector.
- **Y_2**: Numeric vector.

Details

Y_1 and Y_2 are scalar random variables and are both functions of Z. X, Z and W are functional, Z is a function of X and W is a function of Z.

Source

The generation script can be found in the `data-raw` folder of the package.
Conditional Independence Test using the GHCM

Description
Testing X independent of Y given Z using the Generalised Hilbertian Covariance Measure. The function is applied to residuals from regressing X on Z and regressing Y on Z and its validity is contingent on the performance of the regression methods.

Usage
ghcm_test(
 resid_X_on_Z,
 resid_Y_on_Z,
 X_grid = NULL,
 Y_grid = NULL,
 fpca_method = "fpca.sc",
 b = 10000,
 alpha = 0.05,
 ...
)

Arguments
resid_X_on_Z, resid_Y_on_Z
Numeric vectors or matrices. Residuals when regressing X (Y) on Z with a suitable regression method.

X_grid, Y_grid
Numeric vectors or NA. The grid of values that X (Y) is observed on. When set to NULL (the default) an equidistant grid on the unit interval is created. If NA, X (Y) is assumed to not be a functional random variable.

fpca_method
String or function. If a string is given, will search the refund package for a function with the given name. If a function is given it must take a data matrix and a grid as input and return a matrix with the same number of rows as the input and the coordinates of the input in its FPCA basis as each row. Extra arguments to the fpca function are supplied with Currently supported refund fpca functions are fpca.sc (the default), fpca.ssvd and fpca.face.

b
Positive integer. The number of Monte Carlo realisations from the estimated limiting distribution to estimate the p-value.

alpha
Numeric in the unit interval. Significance level of the test.

... Additional arguments to be passed to the fpca_method.

Value
An object of class ghcm containing:

test_statistic Numeric, test statistic of the test.
plot.ghcm

p Numeric in the unit interval, estimated p-value of the test.
dim Positive integer, the dimension of the truncated limiting Gaussian.
cov dim x dim matrix, estimated covariance of the truncated limiting Gaussian.
samples Numeric vector, samples of the Hilbert-Schmidt norm of the estimated truncated limiting Gaussian.
alpha Numeric in the unit interval, significance level of the test.

References

Examples

library(refund)
set.seed(1)
data(ghcm_sim_data)
grid <- seq(0, 1, length.out = 101)

Test independence of two scalars given a functional variable
m_1 <- pfr(Y_1 ~ lf(Z), data=ghcm_sim_data)
m_2 <- pfr(Y_2 ~ lf(Z), data=ghcm_sim_data)
ghcm_test(resid(m_1), resid(m_2), X_grid = NA, Y_grid = NA)

Test independence of a functional variable and a scalar variable given a functional variable
m_X <- pffr(X ~ ff(Z), data=ghcm_sim_data, chunk.size=31000)
ghcm_test(resid(m_X), resid(m_1), X_grid = grid, Y_grid = NA)

Test independence of two functional variables given a functional variable
m_W <- pffr(W ~ ff(Z), data=ghcm_sim_data, chunk.size=31000)
ghcm_test(resid(m_X), resid(m_W), X_grid = grid, Y_grid = grid)

plot.ghcm

Plotting function for the ghcm-class.

Description

Plots the observed test statistic of a performed GHCM test together with a density estimate of the estimated asymptotic distribution of the test statistic under the null.
Usage

S3 method for class 'ghcm'
plot(x, bw = "SJ", ...)

Arguments

x ghcm-object. The result of running a ghcm_test.
bw a string or numeric. If bw is a string, it should specify a bandwidth method for
the density function in the stats package. If bw is a numeric, it will be used as
the bandwidth in the call to density.
...
additional plotting parameters.

Value

None.

Examples

set.seed(1)
library(refund)
data(ghcm_sim_data)

Test independence of two scalars given a functional variable

m_1 <- pfr(Y_1 ~ lf(Z), data=ghcm_sim_data)
m_2 <- pfr(Y_2 ~ lf(Z), data=ghcm_sim_data)
test <- ghcm_test(resid(m_1), resid(m_2), X_grid = NA, Y_grid = NA)
plot(test)
Index

* datasets
 ghcm_sim_data, 2

ghcm_sim_data, 2
ghcm_test, 3
plot.ghcm, 4