
Package ‘ggraph’
October 13, 2022

Type Package

Title An Implementation of Grammar of Graphics for Graphs and Networks

Version 2.1.0

Maintainer Thomas Lin Pedersen <thomasp85@gmail.com>

Description The grammar of graphics as implemented in ggplot2 is a poor fit for
graph and network visualizations due to its reliance on tabular data input.
ggraph is an extension of the ggplot2 API tailored to graph visualizations
and provides the same flexible approach to building up plots layer by layer.

License MIT + file LICENSE

Encoding UTF-8

LazyData TRUE

Imports Rcpp (>= 0.12.2), dplyr, ggforce (>= 0.3.1), grid, igraph (>=
1.0.0), scales, MASS, digest, gtable, ggrepel, utils, stats,
viridis, rlang, tidygraph, graphlayouts (>= 0.5.0), withr, cli,
vctrs, lifecycle

Suggests network, knitr, rmarkdown, purrr, tibble, seriation, deldir,
gganimate, covr

LinkingTo Rcpp

RoxygenNote 7.2.1

Depends R (>= 2.10), ggplot2 (>= 3.0.0)

VignetteBuilder knitr

URL https://ggraph.data-imaginist.com,

https://github.com/thomasp85/ggraph

BugReports https://github.com/thomasp85/ggraph/issues

NeedsCompilation yes

Author Thomas Lin Pedersen [cre, aut]
(<https://orcid.org/0000-0002-5147-4711>),

RStudio [cph]

Repository CRAN

Date/Publication 2022-10-09 20:33:19 UTC

1

https://ggraph.data-imaginist.com
https://github.com/thomasp85/ggraph
https://github.com/thomasp85/ggraph/issues
https://orcid.org/0000-0002-5147-4711

2 R topics documented:

R topics documented:
autograph . 3
facet_edges . 4
facet_graph . 6
facet_nodes . 8
flare . 9
geometry . 10
geom_axis_hive . 11
geom_conn_bundle . 13
geom_edge_arc . 16
geom_edge_bend . 21
geom_edge_density . 26
geom_edge_diagonal . 28
geom_edge_elbow . 32
geom_edge_fan . 37
geom_edge_hive . 42
geom_edge_link . 47
geom_edge_loop . 51
geom_edge_parallel . 55
geom_edge_point . 60
geom_edge_span . 62
geom_edge_tile . 67
geom_node_arc_bar . 69
geom_node_circle . 70
geom_node_point . 72
geom_node_range . 74
geom_node_text . 75
geom_node_tile . 78
geom_node_voronoi . 80
get_con . 82
get_edges . 83
get_nodes . 84
ggraph . 85
guide_edge_colourbar . 87
guide_edge_coloursteps . 89
guide_edge_direction . 91
highschool . 92
layout_tbl_graph_auto . 93
layout_tbl_graph_backbone . 94
layout_tbl_graph_centrality . 95
layout_tbl_graph_circlepack . 96
layout_tbl_graph_dendrogram . 97
layout_tbl_graph_eigen . 99
layout_tbl_graph_fabric . 100
layout_tbl_graph_focus . 101
layout_tbl_graph_hive . 102
layout_tbl_graph_igraph . 104

autograph 3

layout_tbl_graph_linear . 106
layout_tbl_graph_manual . 107
layout_tbl_graph_matrix . 108
layout_tbl_graph_partition . 109
layout_tbl_graph_pmds . 110
layout_tbl_graph_stress . 111
layout_tbl_graph_treemap . 113
layout_tbl_graph_unrooted . 114
node_angle . 116
pack_circles . 117
scale_edge_alpha . 118
scale_edge_colour . 119
scale_edge_fill . 128
scale_edge_linetype . 135
scale_edge_shape . 137
scale_edge_size . 139
scale_edge_width . 142
scale_label_size . 145
theme_graph . 148
whigs . 150

Index 152

autograph Quickplot wrapper for networks

Description

This function is intended to quickly show an overview of your network data. While it returns
a ggraph object that layers etc can be added to it is limited in use and should not be used as a
foundation for more complicated plots. It allows colour, labeling and sizing of nodes and edges,
and the exact combination of layout and layers will depend on these as well as the features of the
network. The output of this function may be fine-tuned at any release and should not be considered
stable. If a plot should be reproducible it should be created manually.

Usage

autograph(graph, ...)

Default S3 method:
autograph(

graph,
...,
node_colour = NULL,
edge_colour = NULL,
node_size = NULL,
edge_width = NULL,
node_label = NULL,

4 facet_edges

edge_label = NULL
)

Arguments

graph An object coercible to a tbl_graph

... arguments passed on to methods

node_colour, edge_colour

Colour mapping for nodes and edges

node_size, edge_width

Size/width mapping for nodes and edges

node_label, edge_label

Label mapping for nodes and edges

Examples

library(tidygraph)
gr <- create_notable('herschel') %>%

mutate(class = sample(letters[1:3], n(), TRUE)) %E>%
mutate(weight = runif(n()))

Standard graph
autograph(gr)

Adding node labels will cap edges
autograph(gr, node_label = class)

Use tidygraph calls for mapping
autograph(gr, node_size = centrality_pagerank())

Trees are plotted as dendrograms
iris_tree <- hclust(dist(iris[1:4], method = 'euclidean'), method = 'ward.D2')
autograph(iris_tree)

facet_edges Create small multiples based on edge attributes

Description

This function is equivalent to ggplot2::facet_wrap() but only facets edges. Nodes are repeated
in every panel.

facet_edges 5

Usage

facet_edges(
facets,
nrow = NULL,
ncol = NULL,
scales = "fixed",
shrink = TRUE,
labeller = "label_value",
as.table = TRUE,
switch = deprecated(),
drop = TRUE,
dir = "h",
strip.position = "top"

)

Arguments

facets A set of variables or expressions quoted by vars() and defining faceting groups
on the rows or columns dimension. The variables can be named (the names are
passed to labeller).
For compatibility with the classic interface, can also be a formula or character
vector. Use either a one sided formula, ~a + b, or a character vector, c("a",
"b").

nrow, ncol Number of rows and columns.

scales Should scales be fixed ("fixed", the default), free ("free"), or free in one
dimension ("free_x", "free_y")?

shrink If TRUE, will shrink scales to fit output of statistics, not raw data. If FALSE, will
be range of raw data before statistical summary.

labeller A function that takes one data frame of labels and returns a list or data frame
of character vectors. Each input column corresponds to one factor. Thus there
will be more than one with vars(cyl, am). Each output column gets displayed
as one separate line in the strip label. This function should inherit from the
"labeller" S3 class for compatibility with labeller(). You can use different
labeling functions for different kind of labels, for example use label_parsed()
for formatting facet labels. label_value() is used by default, check it for more
details and pointers to other options.

as.table If TRUE, the default, the facets are laid out like a table with highest values at the
bottom-right. If FALSE, the facets are laid out like a plot with the highest value
at the top-right.

switch By default, the labels are displayed on the top and right of the plot. If "x", the
top labels will be displayed to the bottom. If "y", the right-hand side labels will
be displayed to the left. Can also be set to "both".

drop If TRUE, the default, all factor levels not used in the data will automatically be
dropped. If FALSE, all factor levels will be shown, regardless of whether or not
they appear in the data.

dir Direction: either "h" for horizontal, the default, or "v", for vertical.

6 facet_graph

strip.position By default, the labels are displayed on the top of the plot. Using strip.position
it is possible to place the labels on either of the four sides by setting strip.position
= c("top", "bottom", "left", "right")

See Also

Other ggraph-facets: facet_graph(), facet_nodes()

Examples

gr <- tidygraph::as_tbl_graph(highschool)

ggraph(gr) +
geom_edge_link() +
geom_node_point() +
facet_edges(~year)

facet_graph Create a grid of small multiples by node and/or edge attributes

Description

This function is equivalent to ggplot2::facet_grid() in that it allows for building a grid of small
multiples where rows and columns correspond to a specific data value. While ggplot2::facet_grid()
could be used it would lead to unexpected results as it is not possible to specify whether you are
referring to a node or an edge attribute. Furthermore ggplot2::facet_grid() will draw edges in
panels even though the panel does not contain both terminal nodes. facet_graph takes care of all
of these issues, allowing you to define which data type the rows and columns are referencing as
well as filtering the edges based on the nodes in each panel (even when nodes are not drawn).

Usage

facet_graph(
facets,
row_type = "edge",
col_type = "node",
margins = FALSE,
scales = "fixed",
space = "fixed",
shrink = TRUE,
labeller = "label_value",
as.table = TRUE,
switch = NULL,
drop = TRUE

)

facet_graph 7

Arguments

facets This argument is soft-deprecated, please use rows and cols instead.
row_type, col_type

Either 'node' or 'edge'. Which data type is being facetted in the rows and
columns. Default is to facet on nodes column wise and on edges row wise.

margins Either a logical value or a character vector. Margins are additional facets which
contain all the data for each of the possible values of the faceting variables.
If FALSE, no additional facets are included (the default). If TRUE, margins are
included for all faceting variables. If specified as a character vector, it is the
names of variables for which margins are to be created.

scales Are scales shared across all facets (the default, "fixed"), or do they vary across
rows ("free_x"), columns ("free_y"), or both rows and columns ("free")?

space If "fixed", the default, all panels have the same size. If "free_y" their height
will be proportional to the length of the y scale; if "free_x" their width will be
proportional to the length of the x scale; or if "free" both height and width will
vary. This setting has no effect unless the appropriate scales also vary.

shrink If TRUE, will shrink scales to fit output of statistics, not raw data. If FALSE, will
be range of raw data before statistical summary.

labeller A function that takes one data frame of labels and returns a list or data frame
of character vectors. Each input column corresponds to one factor. Thus there
will be more than one with vars(cyl, am). Each output column gets displayed
as one separate line in the strip label. This function should inherit from the
"labeller" S3 class for compatibility with labeller(). You can use different
labeling functions for different kind of labels, for example use label_parsed()
for formatting facet labels. label_value() is used by default, check it for more
details and pointers to other options.

as.table If TRUE, the default, the facets are laid out like a table with highest values at the
bottom-right. If FALSE, the facets are laid out like a plot with the highest value
at the top-right.

switch By default, the labels are displayed on the top and right of the plot. If "x", the
top labels will be displayed to the bottom. If "y", the right-hand side labels will
be displayed to the left. Can also be set to "both".

drop If TRUE, the default, all factor levels not used in the data will automatically be
dropped. If FALSE, all factor levels will be shown, regardless of whether or not
they appear in the data.

See Also

Other ggraph-facets: facet_edges(), facet_nodes()

Examples

library(tidygraph)
gr <- as_tbl_graph(highschool) %>%

mutate(popularity = as.character(cut(centrality_degree(mode = 'in'),
breaks = 3,

8 facet_nodes

labels = c('low', 'medium', 'high')
)))

ggraph(gr) +
geom_edge_link() +
geom_node_point() +
facet_graph(year ~ popularity)

facet_nodes Create small multiples based on node attributes

Description

This function is equivalent to ggplot2::facet_wrap() but only facets nodes. Edges are drawn if
their terminal nodes are both present in a panel.

Usage

facet_nodes(
facets,
nrow = NULL,
ncol = NULL,
scales = "fixed",
shrink = TRUE,
labeller = "label_value",
as.table = TRUE,
switch = deprecated(),
drop = TRUE,
dir = "h",
strip.position = "top"

)

Arguments

facets A set of variables or expressions quoted by vars() and defining faceting groups
on the rows or columns dimension. The variables can be named (the names are
passed to labeller).
For compatibility with the classic interface, can also be a formula or character
vector. Use either a one sided formula, ~a + b, or a character vector, c("a",
"b").

nrow, ncol Number of rows and columns.

scales Should scales be fixed ("fixed", the default), free ("free"), or free in one
dimension ("free_x", "free_y")?

shrink If TRUE, will shrink scales to fit output of statistics, not raw data. If FALSE, will
be range of raw data before statistical summary.

flare 9

labeller A function that takes one data frame of labels and returns a list or data frame
of character vectors. Each input column corresponds to one factor. Thus there
will be more than one with vars(cyl, am). Each output column gets displayed
as one separate line in the strip label. This function should inherit from the
"labeller" S3 class for compatibility with labeller(). You can use different
labeling functions for different kind of labels, for example use label_parsed()
for formatting facet labels. label_value() is used by default, check it for more
details and pointers to other options.

as.table If TRUE, the default, the facets are laid out like a table with highest values at the
bottom-right. If FALSE, the facets are laid out like a plot with the highest value
at the top-right.

switch By default, the labels are displayed on the top and right of the plot. If "x", the
top labels will be displayed to the bottom. If "y", the right-hand side labels will
be displayed to the left. Can also be set to "both".

drop If TRUE, the default, all factor levels not used in the data will automatically be
dropped. If FALSE, all factor levels will be shown, regardless of whether or not
they appear in the data.

dir Direction: either "h" for horizontal, the default, or "v", for vertical.
strip.position By default, the labels are displayed on the top of the plot. Using strip.position

it is possible to place the labels on either of the four sides by setting strip.position
= c("top", "bottom", "left", "right")

See Also

Other ggraph-facets: facet_edges(), facet_graph()

Examples

library(tidygraph)
gr <- as_tbl_graph(highschool) %>%

mutate(popularity = as.character(cut(centrality_degree(mode = 'in'),
breaks = 3,
labels = c('low', 'medium', 'high')

)))
ggraph(gr) +

geom_edge_link() +
geom_node_point() +
facet_nodes(~popularity)

flare The class hierarchy of the flare visualization library

Description

This dataset contains the graph that describes the class hierarchy for the Flare ActionScript visu-
alization library. It contains both the class hierarchy as well as the import connections between
classes. This dataset has been used extensively in the D3.js documentation and examples and are
included here to make it easy to redo the examples in ggraph.

https://blokt.com/tool/prefuse-flare

10 geometry

Usage

flare

Format

A list of three data.frames describing the software structure of flare:

edges This data.frame maps the hierarchical structure of the class hierarchy as an edgelist, with the
class in from being the superclass of the class in to.

vertices This data.frame gives additional information on the classes. It contains the full name, size
and short name of each class.

imports This data.frame contains the class imports for each class implementation. The from col-
umn gives the importing class and the to column gives the import.

Source

The data have been adapted from the JSON downloaded from https://gist.github.com/mbostock/
1044242#file-readme-flare-imports-json courtesy of Mike Bostock. The Flare framework is
the work of the UC Berkeley Visualization Lab.

geometry Define simple shapes for line capping

Description

This set of functions makes it easy to define shapes at the terminal points of edges that are used to
shorten the edges. The shapes themselves are not drawn, but the edges will end at the boundary
of the shape rather than at the node position. This is especially relevant when drawing arrows at
the edges as the arrows will be partly obscured by the node unless the edge is shortened. Edge
shortening is dynamic and will update as the plot is resized, making sure that the capping remains
at an absolute distance to the end point.

Usage

geometry(
type = "circle",
width = 1,
height = width,
width_unit = "cm",
height_unit = width_unit

)

circle(radius = 1, unit = "cm")

square(length = 1, unit = "cm")

ellipsis(a = 1, b = 1, a_unit = "cm", b_unit = a_unit)

https://gist.github.com/mbostock/1044242#file-readme-flare-imports-json
https://gist.github.com/mbostock/1044242#file-readme-flare-imports-json
http://vis.berkeley.edu/

geom_axis_hive 11

rectangle(width = 1, height = 1, width_unit = "cm", height_unit = width_unit)

label_rect(label, padding = margin(1, 1, 1.5, 1, "mm"), ...)

is.geometry(x)

Arguments

type The type of geometry to use. Currently 'circle' and 'rect' is supported.
width, height, length, radius, a, b

The dimensions of the shape.
unit, width_unit, height_unit, a_unit, b_unit

The unit for the numbers given.

label The text to be enclosed

padding extra size to be added around the text using the ggplot2::margin() function

... Passed on to grid::gpar()

x An object to test for geometry inheritance

Details

geometry is the base constructor, while the rest are helpers to save typing. circle creates circles
width a given radius, square creates squares at a given side length, ellipsis creates ellipses with
given a and b values (width and height radii), and rectangle makes rectangles of a given width and
height. label_rect is a helper that, given a list of strings and potentially formatting options creates a
rectangle that encloses the string.

Value

A geometry object encoding the specified shape.

Examples

geometry(c('circle', 'rect', 'rect'), 1:3, 3:1)

circle(1:4, 'mm')

label_rect(c('some', 'different', 'words'), fontsize = 18)

geom_axis_hive Draw rectangular bars and labels on hive axes

Description

This function lets you annotate the axes in a hive plot with labels and color coded bars.

12 geom_axis_hive

Usage

geom_axis_hive(
mapping = NULL,
data = NULL,
position = "identity",
label = TRUE,
axis = TRUE,
show.legend = NA,
...

)

Arguments

mapping Set of aesthetic mappings created by aes(). If specified and inherit.aes =
TRUE (the default), it is combined with the default mapping at the top level of
the plot. You must supply mapping if there is no plot mapping.

data The data to be displayed in this layer. There are three options:
If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot().
A data.frame, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See fortify() for which variables will be
created.
A function will be called with a single argument, the plot data. The return
value must be a data.frame, and will be used as the layer data. A function
can be created from a formula (e.g. ~ head(.x, 10)).

position Position adjustment, either as a string naming the adjustment (e.g. "jitter" to
use position_jitter), or the result of a call to a position adjustment function.
Use the latter if you need to change the settings of the adjustment.

label Should the axes be labelled. Defaults to TRUE

axis Should a rectangle be drawn along the axis. Defaults to TRUE

show.legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes. It
can also be a named logical vector to finely select the aesthetics to display.

... Other arguments passed on to layer(). These are often aesthetics, used to set
an aesthetic to a fixed value, like colour = "red" or size = 3. They may also
be parameters to the paired geom/stat.

Aesthetics

geom_axis_hive understand the following aesthetics.

• alpha

• colour

• fill

• size

geom_conn_bundle 13

• linetype

• label_size

• family

• fontface

• lineheight

Author(s)

Thomas Lin Pedersen

Examples

Plot the flare import graph as a hive plot
library(tidygraph)
flareGr <- as_tbl_graph(flare$imports) %>%

mutate(
type = dplyr::case_when(

centrality_degree(mode = 'in') == 0 ~ 'Source',
centrality_degree(mode = 'out') == 0 ~ 'Sink',
TRUE ~ 'Both'

)
) %>%
activate(edges) %>%
mutate(

type = dplyr::case_when(
grepl('flare.analytics', paste(.N()$name[from], .N()$name[to])) ~ 'Analytics',
TRUE ~ 'Other'

)
)

ggraph(flareGr, 'hive', axis = type) +
geom_edge_hive(aes(colour = type), edge_alpha = 0.1) +
geom_axis_hive(aes(colour = type)) +
coord_fixed()

geom_conn_bundle Create hierarchical edge bundles between node connections

Description

Hierarchical edge bundling is a technique to introduce some order into the hairball structure that
can appear when there’s a lot of overplotting and edge crossing in a network plot. The concept
requires that the network has an intrinsic hierarchical structure that defines the layout but is not
shown. Connections between points (that is, not edges) are then drawn so that they loosely follows
the underlying hierarchical structure. This results in a flow-like structure where lines that partly
move in the same direction will be bundled together.

14 geom_conn_bundle

Usage

geom_conn_bundle(
mapping = NULL,
data = get_con(),
position = "identity",
arrow = NULL,
lineend = "butt",
show.legend = NA,
n = 100,
tension = 0.8,
...

)

geom_conn_bundle2(
mapping = NULL,
data = get_con(),
position = "identity",
arrow = NULL,
lineend = "butt",
show.legend = NA,
n = 100,
tension = 0.8,
...

)

geom_conn_bundle0(
mapping = NULL,
data = get_con(),
position = "identity",
arrow = NULL,
lineend = "butt",
show.legend = NA,
tension = 0.8,
...

)

Arguments

mapping Set of aesthetic mappings created by ggplot2::aes() or ggplot2::aes_().
By default x, y, xend, yend, group and circular are mapped to x, y, xend, yend,
edge.id and circular in the edge data.

data The result of a call to get_con()

position Position adjustment, either as a string naming the adjustment (e.g. "jitter" to
use position_jitter), or the result of a call to a position adjustment function.
Use the latter if you need to change the settings of the adjustment.

arrow Arrow specification, as created by grid::arrow().

lineend Line end style (round, butt, square).

geom_conn_bundle 15

show.legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes. It
can also be a named logical vector to finely select the aesthetics to display.

n The number of points to create along the path.

tension How "loose" should the bundles be. 1 will give very tight bundles, while 0 will
turn of bundling completely and give straight lines. Defaults to 0.8

... Other arguments passed on to layer(). These are often aesthetics, used to set
an aesthetic to a fixed value, like colour = "red" or size = 3. They may also
be parameters to the paired geom/stat.

Aesthetics

geom_conn_bundle* understands the following aesthetics. Bold aesthetics are automatically set,
but can be overridden.

• x

• y

• group

• circular

• edge_colour

• edge_width

• edge_linetype

• edge_alpha

• filter

Computed variables

index The position along the path (not computed for the *0 version)

Note

In order to avoid excessive typing edge aesthetic names are automatically expanded. Because of
this it is not necessary to write edge_colour within the aes() call as colour will automatically be
renamed appropriately.

Author(s)

Thomas Lin Pedersen

References

Holten, D. (2006). Hierarchical edge bundles: visualization of adjacency relations in hierarchical
data. IEEE Transactions on Visualization and Computer Graphics, 12(5), 741-748. doi:10.1109/
TVCG.2006.147

https://doi.org/10.1109/TVCG.2006.147
https://doi.org/10.1109/TVCG.2006.147

16 geom_edge_arc

Examples

Create a graph of the flare class system
library(tidygraph)
flareGraph <- tbl_graph(flare$vertices, flare$edges) %>%

mutate(
class = map_bfs_chr(node_is_root(), .f = function(node, dist, path, ...) {

if (dist <= 1) {
return(shortName[node])

}
path$result[[nrow(path)]]

})
)

importFrom <- match(flare$imports$from, flare$vertices$name)
importTo <- match(flare$imports$to, flare$vertices$name)

Use class inheritance for layout but plot class imports as bundles
ggraph(flareGraph, 'dendrogram', circular = TRUE) +

geom_conn_bundle(aes(colour = after_stat(index)),
data = get_con(importFrom, importTo),
edge_alpha = 0.25

) +
geom_node_point(aes(filter = leaf, colour = class)) +
scale_edge_colour_distiller('', direction = 1, guide = 'edge_direction') +
coord_fixed() +
ggforce::theme_no_axes()

geom_edge_arc Draw edges as Arcs

Description

This geom is mainly intended for arc linear and circular diagrams (i.e. used together with layout_tbl_graph_linear()),
though it can be used elsewhere. It draws edges as arcs with a height proportional to the distance
between the nodes. Arcs are calculated as beziers. For linear layout the placement of control points
are related to the curvature argument and the distance between the two nodes. For circular layout
the control points are placed on the same angle as the start and end node at a distance related to the
distance between the nodes.

Usage

geom_edge_arc(
mapping = NULL,
data = get_edges(),
position = "identity",
arrow = NULL,
strength = 1,
n = 100,
fold = FALSE,

geom_edge_arc 17

lineend = "butt",
linejoin = "round",
linemitre = 1,
label_colour = "black",
label_alpha = 1,
label_parse = FALSE,
check_overlap = FALSE,
angle_calc = "rot",
force_flip = TRUE,
label_dodge = NULL,
label_push = NULL,
show.legend = NA,
...,
curvature

)

geom_edge_arc2(
mapping = NULL,
data = get_edges("long"),
position = "identity",
arrow = NULL,
strength = 1,
n = 100,
fold = FALSE,
lineend = "butt",
linejoin = "round",
linemitre = 1,
label_colour = "black",
label_alpha = 1,
label_parse = FALSE,
check_overlap = FALSE,
angle_calc = "rot",
force_flip = TRUE,
label_dodge = NULL,
label_push = NULL,
show.legend = NA,
...,
curvature

)

geom_edge_arc0(
mapping = NULL,
data = get_edges(),
position = "identity",
arrow = NULL,
strength = 1,
lineend = "butt",
show.legend = NA,

18 geom_edge_arc

fold = fold,
...,
curvature

)

Arguments

mapping Set of aesthetic mappings created by ggplot2::aes() or ggplot2::aes_().
By default x, y, xend, yend, group and circular are mapped to x, y, xend, yend,
edge.id and circular in the edge data.

data The return of a call to get_edges() or a data.frame giving edges in correct
format (see details for for guidance on the format). See get_edges() for more
details on edge extraction.

position Position adjustment, either as a string naming the adjustment (e.g. "jitter" to
use position_jitter), or the result of a call to a position adjustment function.
Use the latter if you need to change the settings of the adjustment.

arrow Arrow specification, as created by grid::arrow().

strength The bend of the curve. 1 approximates a halfcircle while 0 will give a straight
line. Negative number will change the direction of the curve. Only used if
circular = FALSE.

n The number of points to create along the path.

fold Logical. Should arcs appear on the same side of the nodes despite different
directions. Default to FALSE.

lineend Line end style (round, butt, square).

linejoin Line join style (round, mitre, bevel).

linemitre Line mitre limit (number greater than 1).

label_colour The colour of the edge label. If NA it will use the colour of the edge.

label_alpha The opacity of the edge label. If NA it will use the opacity of the edge.

label_parse If TRUE, the labels will be parsed into expressions and displayed as described in
grDevices::plotmath().

check_overlap If TRUE, text that overlaps previous text in the same layer will not be plotted.
check_overlap happens at draw time and in the order of the data. Therefore
data should be arranged by the label column before calling geom_text(). Note
that this argument is not supported by geom_label().

angle_calc Either ’none’, ’along’, or ’across’. If ’none’ the label will use the angle aesthetic
of the geom. If ’along’ The label will be written along the edge direction. If
’across’ the label will be written across the edge direction.

force_flip Logical. If angle_calc is either ’along’ or ’across’ should the label be flipped
if it is on it’s head. Default to TRUE.

label_dodge A grid::unit() giving a fixed vertical shift to add to the label in case of
angle_calc is either ’along’ or ’across’

label_push A grid::unit() giving a fixed horizontal shift to add to the label in case of
angle_calc is either ’along’ or ’across’

geom_edge_arc 19

show.legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes. It
can also be a named logical vector to finely select the aesthetics to display.

... Other arguments passed on to layer(). These are often aesthetics, used to set
an aesthetic to a fixed value, like colour = "red" or size = 3. They may also
be parameters to the paired geom/stat.

curvature Deprecated. Use strength instead.

Aesthetics

geom_edge_arc and geom_edge_arc0 understand the following aesthetics. Bold aesthetics are
automatically set, but can be overridden.

• x
• y
• xend
• yend
• circular
• edge_colour

• edge_width

• edge_linetype

• edge_alpha

• filter

geom_edge_arc2 understand the following aesthetics. Bold aesthetics are automatically set, but can
be overridden.

• x
• y
• group
• circular
• edge_colour

• edge_width

• edge_linetype

• edge_alpha

• filter

geom_edge_arc and geom_edge_arc2 furthermore takes the following aesthetics.

• start_cap

• end_cap

• label

• label_pos

20 geom_edge_arc

• label_size
• angle
• hjust
• vjust
• family
• fontface
• lineheight

Computed variables

index The position along the path (not computed for the *0 version)

Edge variants

Many geom_edge_* layers comes in 3 flavors depending on the level of control needed over the
drawing. The default (no numeric postfix) generate a number of points (n) along the edge and
draws it as a path. Each point along the line has a numeric value associated with it giving the
position along the path, and it is therefore possible to show the direction of the edge by mapping
to this e.g. colour = after_stat(index). The version postfixed with a "2" uses the "long" edge
format (see get_edges()) and makes it possible to interpolate node parameter between the start
and end node along the edge. It is considerable less performant so should only be used if this is
needed. The version postfixed with a "0" draws the edge in the most performant way, often directly
using an appropriate grob from the grid package, but does not allow for gradients along the edge.

Often it is beneficial to stop the drawing of the edge before it reaches the node, for instance in cases
where an arrow should be drawn and the arrowhead shouldn’t lay on top or below the node point.
geom_edge_* and geom_edge_*2 supports this through the start_cap and end_cap aesthetics that
takes a geometry() specification and dynamically caps the termini of the edges based on the given
specifications. This means that if end_cap = circle(1, 'cm') the edges will end at a distance of
1cm even during resizing of the plot window.

All geom_edge_* and geom_edge_*2 have the ability to draw a label along the edge. The reason
this is not a separate geom is that in order for the label to know the location of the edge it needs
to know the edge type etc. Labels are drawn by providing a label aesthetic. The label_pos can be
used to specify where along the edge it should be drawn by supplying a number between 0 and 1.
The label_size aesthetic can be used to control the size of the label. Often it is needed to have the
label written along the direction of the edge, but since the actual angle is dependent on the plot
dimensions this cannot be calculated beforehand. Using the angle_calc argument allows you to
specify whether to use the supplied angle aesthetic or whether to draw the label along or across the
edge.

Edge aesthetic name expansion

In order to avoid excessive typing edge aesthetic names are automatically expanded. Because of
this it is not necessary to write edge_colour within the aes() call as colour will automatically be
renamed appropriately.

Author(s)

Thomas Lin Pedersen

geom_edge_bend 21

See Also

Other geom_edge_*: geom_edge_bend(), geom_edge_density(), geom_edge_diagonal(), geom_edge_elbow(),
geom_edge_fan(), geom_edge_hive(), geom_edge_link(), geom_edge_loop(), geom_edge_parallel(),
geom_edge_point(), geom_edge_span(), geom_edge_tile()

Examples

require(tidygraph)
Make a graph with different directions of edges
gr <- create_notable('Meredith') %>%

convert(to_directed) %>%
mutate(class = sample(letters[1:3], n(), replace = TRUE)) %>%
activate(edges) %>%
mutate(

class = sample(letters[1:3], n(), replace = TRUE),
switch = sample(c(TRUE, FALSE), n(), replace = TRUE)

) %>%
reroute(from = to, to = from, subset = switch)

ggraph(gr, 'linear') +
geom_edge_arc(aes(alpha = after_stat(index)))

ggraph(gr, 'linear') +
geom_edge_arc2(aes(colour = node.class), strength = 0.6)

ggraph(gr, 'linear', circular = TRUE) +
geom_edge_arc0(aes(colour = class))

geom_edge_bend Draw edges as diagonals

Description

This geom draws edges as cubic bezier curves with the control points positioned along the elbow
edge. It has the appearance of a softened elbow edge with the hard angle substituted by a tapered
bend.

Usage

geom_edge_bend(
mapping = NULL,
data = get_edges(),
position = "identity",
arrow = NULL,
strength = 1,
flipped = FALSE,
n = 100,
lineend = "butt",

22 geom_edge_bend

linejoin = "round",
linemitre = 1,
label_colour = "black",
label_alpha = 1,
label_parse = FALSE,
check_overlap = FALSE,
angle_calc = "rot",
force_flip = TRUE,
label_dodge = NULL,
label_push = NULL,
show.legend = NA,
...

)

geom_edge_bend2(
mapping = NULL,
data = get_edges("long"),
position = "identity",
arrow = NULL,
strength = 1,
flipped = FALSE,
n = 100,
lineend = "butt",
linejoin = "round",
linemitre = 1,
label_colour = "black",
label_alpha = 1,
label_parse = FALSE,
check_overlap = FALSE,
angle_calc = "rot",
force_flip = TRUE,
label_dodge = NULL,
label_push = NULL,
show.legend = NA,
...

)

geom_edge_bend0(
mapping = NULL,
data = get_edges(),
position = "identity",
arrow = NULL,
strength = 1,
flipped = FALSE,
lineend = "butt",
show.legend = NA,
...

)

geom_edge_bend 23

Arguments

mapping Set of aesthetic mappings created by ggplot2::aes() or ggplot2::aes_().
By default x, y, xend, yend, group and circular are mapped to x, y, xend, yend,
edge.id and circular in the edge data.

data The return of a call to get_edges() or a data.frame giving edges in correct
format (see details for for guidance on the format). See get_edges() for more
details on edge extraction.

position Position adjustment, either as a string naming the adjustment (e.g. "jitter" to
use position_jitter), or the result of a call to a position adjustment function.
Use the latter if you need to change the settings of the adjustment.

arrow Arrow specification, as created by grid::arrow().

strength The strength of the curvature of the bend. 0 will result in a straight line while 1
will give a strong arc.

flipped Logical, Has the layout been flipped by reassigning the mapping of x, y etc?

n The number of points to create along the path.

lineend Line end style (round, butt, square).

linejoin Line join style (round, mitre, bevel).

linemitre Line mitre limit (number greater than 1).

label_colour The colour of the edge label. If NA it will use the colour of the edge.

label_alpha The opacity of the edge label. If NA it will use the opacity of the edge.

label_parse If TRUE, the labels will be parsed into expressions and displayed as described in
grDevices::plotmath().

check_overlap If TRUE, text that overlaps previous text in the same layer will not be plotted.
check_overlap happens at draw time and in the order of the data. Therefore
data should be arranged by the label column before calling geom_text(). Note
that this argument is not supported by geom_label().

angle_calc Either ’none’, ’along’, or ’across’. If ’none’ the label will use the angle aesthetic
of the geom. If ’along’ The label will be written along the edge direction. If
’across’ the label will be written across the edge direction.

force_flip Logical. If angle_calc is either ’along’ or ’across’ should the label be flipped
if it is on it’s head. Default to TRUE.

label_dodge A grid::unit() giving a fixed vertical shift to add to the label in case of
angle_calc is either ’along’ or ’across’

label_push A grid::unit() giving a fixed horizontal shift to add to the label in case of
angle_calc is either ’along’ or ’across’

show.legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes. It
can also be a named logical vector to finely select the aesthetics to display.

... Other arguments passed on to layer(). These are often aesthetics, used to set
an aesthetic to a fixed value, like colour = "red" or size = 3. They may also
be parameters to the paired geom/stat.

24 geom_edge_bend

Aesthetics

geom_edge_bend and geom_edge_bend0 understand the following aesthetics. Bold aesthetics are
automatically set, but can be overridden.

• x
• y
• xend
• yend
• circular
• edge_colour

• edge_width

• edge_linetype

• edge_alpha

• filter

geom_edge_bend2 understand the following aesthetics. Bold aesthetics are automatically set, but
can be overridden.

• x
• y
• group
• circular
• edge_colour

• edge_width

• edge_linetype

• edge_alpha

• filter

geom_edge_bend and geom_edge_bend2 furthermore takes the following aesthetics.

• start_cap

• end_cap

• label

• label_pos

• label_size

• angle

• hjust

• vjust

• family

• fontface

• lineheight

geom_edge_bend 25

Computed variables

index The position along the path (not computed for the *0 version)

Edge variants

Many geom_edge_* layers comes in 3 flavors depending on the level of control needed over the
drawing. The default (no numeric postfix) generate a number of points (n) along the edge and
draws it as a path. Each point along the line has a numeric value associated with it giving the
position along the path, and it is therefore possible to show the direction of the edge by mapping
to this e.g. colour = after_stat(index). The version postfixed with a "2" uses the "long" edge
format (see get_edges()) and makes it possible to interpolate node parameter between the start
and end node along the edge. It is considerable less performant so should only be used if this is
needed. The version postfixed with a "0" draws the edge in the most performant way, often directly
using an appropriate grob from the grid package, but does not allow for gradients along the edge.

Often it is beneficial to stop the drawing of the edge before it reaches the node, for instance in cases
where an arrow should be drawn and the arrowhead shouldn’t lay on top or below the node point.
geom_edge_* and geom_edge_*2 supports this through the start_cap and end_cap aesthetics that
takes a geometry() specification and dynamically caps the termini of the edges based on the given
specifications. This means that if end_cap = circle(1, 'cm') the edges will end at a distance of
1cm even during resizing of the plot window.

All geom_edge_* and geom_edge_*2 have the ability to draw a label along the edge. The reason
this is not a separate geom is that in order for the label to know the location of the edge it needs
to know the edge type etc. Labels are drawn by providing a label aesthetic. The label_pos can be
used to specify where along the edge it should be drawn by supplying a number between 0 and 1.
The label_size aesthetic can be used to control the size of the label. Often it is needed to have the
label written along the direction of the edge, but since the actual angle is dependent on the plot
dimensions this cannot be calculated beforehand. Using the angle_calc argument allows you to
specify whether to use the supplied angle aesthetic or whether to draw the label along or across the
edge.

Edge aesthetic name expansion

In order to avoid excessive typing edge aesthetic names are automatically expanded. Because of
this it is not necessary to write edge_colour within the aes() call as colour will automatically be
renamed appropriately.

Author(s)

Thomas Lin Pedersen

See Also

Other geom_edge_*: geom_edge_arc(), geom_edge_density(), geom_edge_diagonal(), geom_edge_elbow(),
geom_edge_fan(), geom_edge_hive(), geom_edge_link(), geom_edge_loop(), geom_edge_parallel(),
geom_edge_point(), geom_edge_span(), geom_edge_tile()

26 geom_edge_density

Examples

require(tidygraph)
gr <- create_tree(20, 4) %>%

mutate(class = sample(letters[1:3], n(), replace = TRUE)) %>%
activate(edges) %>%
mutate(class = sample(letters[1:3], n(), replace = TRUE))

ggraph(gr, 'tree') +
geom_edge_bend(aes(alpha = after_stat(index)))

ggraph(gr, 'tree') +
geom_edge_bend2(aes(colour = node.class))

ggraph(gr, 'tree') +
geom_edge_bend0(aes(colour = class))

geom_edge_density Show edges as a density map

Description

This geom makes it possible to add a layer showing edge presence as a density map. Each edge is
converted to n points along the line and a jitter is applied. Based on this dataset a two-dimensional
kernel density estimation is applied and plotted as a raster image. The density is mapped to the
alpha level, making it possible to map a variable to the fill.

Usage

geom_edge_density(
mapping = NULL,
data = get_edges("short"),
position = "identity",
show.legend = NA,
n = 100,
...

)

Arguments

mapping Set of aesthetic mappings created by ggplot2::aes() or ggplot2::aes_().
By default x, y, xend, yend, group and circular are mapped to x, y, xend, yend,
edge.id and circular in the edge data.

data The return of a call to get_edges() or a data.frame giving edges in correct
format (see details for for guidance on the format). See get_edges() for more
details on edge extraction.

position Position adjustment, either as a string naming the adjustment (e.g. "jitter" to
use position_jitter), or the result of a call to a position adjustment function.
Use the latter if you need to change the settings of the adjustment.

geom_edge_density 27

show.legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes. It
can also be a named logical vector to finely select the aesthetics to display.

n The number of points to estimate in the x and y direction, i.e. the resolution of
the raster.

... Other arguments passed on to layer(). These are often aesthetics, used to set
an aesthetic to a fixed value, like colour = "red" or size = 3. They may also
be parameters to the paired geom/stat.

Aesthetics

geom_edge_density understand the following aesthetics. Bold aesthetics are automatically set, but
can be overridden.

x y xend yend edge_fill filter

Computed variables

x, y The coordinates for each pixel in the raster

density The density associated with the pixel

Edge aesthetic name expansion

In order to avoid excessive typing edge aesthetic names are automatically expanded. Because of
this it is not necessary to write edge_colour within the aes() call as colour will automatically be
renamed appropriately.

Author(s)

Thomas Lin Pedersen

See Also

Other geom_edge_*: geom_edge_arc(), geom_edge_bend(), geom_edge_diagonal(), geom_edge_elbow(),
geom_edge_fan(), geom_edge_hive(), geom_edge_link(), geom_edge_loop(), geom_edge_parallel(),
geom_edge_point(), geom_edge_span(), geom_edge_tile()

Examples

require(tidygraph)
gr <- create_notable('bull') %>%

activate(edges) %>%
mutate(class = sample(letters[1:3], n(), replace = TRUE))

ggraph(gr, 'stress') +
geom_edge_density(aes(fill = class)) +
geom_edge_link() + geom_node_point()

28 geom_edge_diagonal

geom_edge_diagonal Draw edges as diagonals

Description

This geom draws edges as diagonal bezier curves. The name comes from D3.js where this shape
was called diagonals until it was renamed to links. A diagonal in this context is a quadratic bezier
with the control points positioned halfway between the start and end points but on the same axis.
This produces a pleasing fan-in, fan-out line that is mostly relevant for hierarchical layouts as it
implies an overall directionality in the plot.

Usage

geom_edge_diagonal(
mapping = NULL,
data = get_edges(),
position = "identity",
arrow = NULL,
strength = 1,
flipped = FALSE,
n = 100,
lineend = "butt",
linejoin = "round",
linemitre = 1,
label_colour = "black",
label_alpha = 1,
label_parse = FALSE,
check_overlap = FALSE,
angle_calc = "rot",
force_flip = TRUE,
label_dodge = NULL,
label_push = NULL,
show.legend = NA,
...

)

geom_edge_diagonal2(
mapping = NULL,
data = get_edges("long"),
position = "identity",
arrow = NULL,
strength = 1,
flipped = FALSE,
n = 100,
lineend = "butt",
linejoin = "round",
linemitre = 1,

https://github.com/d3/d3-shape/blob/v1.3.5/README.md#links

geom_edge_diagonal 29

label_colour = "black",
label_alpha = 1,
label_parse = FALSE,
check_overlap = FALSE,
angle_calc = "rot",
force_flip = TRUE,
label_dodge = NULL,
label_push = NULL,
show.legend = NA,
...

)

geom_edge_diagonal0(
mapping = NULL,
data = get_edges(),
position = "identity",
arrow = NULL,
strength = 1,
flipped = FALSE,
lineend = "butt",
show.legend = NA,
...

)

Arguments

mapping Set of aesthetic mappings created by ggplot2::aes() or ggplot2::aes_().
By default x, y, xend, yend, group and circular are mapped to x, y, xend, yend,
edge.id and circular in the edge data.

data The return of a call to get_edges() or a data.frame giving edges in correct
format (see details for for guidance on the format). See get_edges() for more
details on edge extraction.

position Position adjustment, either as a string naming the adjustment (e.g. "jitter" to
use position_jitter), or the result of a call to a position adjustment function.
Use the latter if you need to change the settings of the adjustment.

arrow Arrow specification, as created by grid::arrow().

strength The strength of the curvature of the diagonal. 0 will result in a straight line while
1 will give the familiar S-shape.

flipped Logical, Has the layout been flipped by reassigning the mapping of x, y etc?

n The number of points to create along the path.

lineend Line end style (round, butt, square).

linejoin Line join style (round, mitre, bevel).

linemitre Line mitre limit (number greater than 1).

label_colour The colour of the edge label. If NA it will use the colour of the edge.

label_alpha The opacity of the edge label. If NA it will use the opacity of the edge.

30 geom_edge_diagonal

label_parse If TRUE, the labels will be parsed into expressions and displayed as described in
grDevices::plotmath().

check_overlap If TRUE, text that overlaps previous text in the same layer will not be plotted.
check_overlap happens at draw time and in the order of the data. Therefore
data should be arranged by the label column before calling geom_text(). Note
that this argument is not supported by geom_label().

angle_calc Either ’none’, ’along’, or ’across’. If ’none’ the label will use the angle aesthetic
of the geom. If ’along’ The label will be written along the edge direction. If
’across’ the label will be written across the edge direction.

force_flip Logical. If angle_calc is either ’along’ or ’across’ should the label be flipped
if it is on it’s head. Default to TRUE.

label_dodge A grid::unit() giving a fixed vertical shift to add to the label in case of
angle_calc is either ’along’ or ’across’

label_push A grid::unit() giving a fixed horizontal shift to add to the label in case of
angle_calc is either ’along’ or ’across’

show.legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes. It
can also be a named logical vector to finely select the aesthetics to display.

... Other arguments passed on to layer(). These are often aesthetics, used to set
an aesthetic to a fixed value, like colour = "red" or size = 3. They may also
be parameters to the paired geom/stat.

Aesthetics

geom_edge_diagonal and geom_edge_diagonal0 understand the following aesthetics. Bold aes-
thetics are automatically set, but can be overridden.

• x
• y
• xend
• yend
• circular
• edge_colour

• edge_width

• edge_linetype

• edge_alpha

• filter

geom_edge_diagonal2 understand the following aesthetics. Bold aesthetics are automatically set,
but can be overridden.

• x
• y
• group

geom_edge_diagonal 31

• circular
• edge_colour

• edge_width

• edge_linetype

• edge_alpha

• filter

geom_edge_diagonal and geom_edge_diagonal2 furthermore takes the following aesthetics.

• start_cap

• end_cap

• label

• label_pos

• label_size

• angle

• hjust

• vjust

• family

• fontface

• lineheight

Computed variables

index The position along the path (not computed for the *0 version)

Edge variants

Many geom_edge_* layers comes in 3 flavors depending on the level of control needed over the
drawing. The default (no numeric postfix) generate a number of points (n) along the edge and
draws it as a path. Each point along the line has a numeric value associated with it giving the
position along the path, and it is therefore possible to show the direction of the edge by mapping
to this e.g. colour = after_stat(index). The version postfixed with a "2" uses the "long" edge
format (see get_edges()) and makes it possible to interpolate node parameter between the start
and end node along the edge. It is considerable less performant so should only be used if this is
needed. The version postfixed with a "0" draws the edge in the most performant way, often directly
using an appropriate grob from the grid package, but does not allow for gradients along the edge.

Often it is beneficial to stop the drawing of the edge before it reaches the node, for instance in cases
where an arrow should be drawn and the arrowhead shouldn’t lay on top or below the node point.
geom_edge_* and geom_edge_*2 supports this through the start_cap and end_cap aesthetics that
takes a geometry() specification and dynamically caps the termini of the edges based on the given
specifications. This means that if end_cap = circle(1, 'cm') the edges will end at a distance of
1cm even during resizing of the plot window.

All geom_edge_* and geom_edge_*2 have the ability to draw a label along the edge. The reason
this is not a separate geom is that in order for the label to know the location of the edge it needs

32 geom_edge_elbow

to know the edge type etc. Labels are drawn by providing a label aesthetic. The label_pos can be
used to specify where along the edge it should be drawn by supplying a number between 0 and 1.
The label_size aesthetic can be used to control the size of the label. Often it is needed to have the
label written along the direction of the edge, but since the actual angle is dependent on the plot
dimensions this cannot be calculated beforehand. Using the angle_calc argument allows you to
specify whether to use the supplied angle aesthetic or whether to draw the label along or across the
edge.

Edge aesthetic name expansion

In order to avoid excessive typing edge aesthetic names are automatically expanded. Because of
this it is not necessary to write edge_colour within the aes() call as colour will automatically be
renamed appropriately.

Author(s)

Thomas Lin Pedersen

See Also

Other geom_edge_*: geom_edge_arc(), geom_edge_bend(), geom_edge_density(), geom_edge_elbow(),
geom_edge_fan(), geom_edge_hive(), geom_edge_link(), geom_edge_loop(), geom_edge_parallel(),
geom_edge_point(), geom_edge_span(), geom_edge_tile()

Examples

require(tidygraph)
gr <- create_tree(20, 4) %>%

mutate(class = sample(letters[1:3], n(), replace = TRUE)) %>%
activate(edges) %>%
mutate(class = sample(letters[1:3], n(), replace = TRUE))

ggraph(gr, 'tree') +
geom_edge_diagonal(aes(alpha = after_stat(index)))

ggraph(gr, 'tree') +
geom_edge_diagonal2(aes(colour = node.class))

ggraph(gr, 'tree') +
geom_edge_diagonal0(aes(colour = class))

geom_edge_elbow Draw edges as elbows

geom_edge_elbow 33

Description

This geom draws edges as an angle in the same manner as known from classic dendrogram plots of
hierarchical clustering results. In case a circular transformation has been applied the first line seg-
ment will be drawn as an arc as expected. This geom is only applicable to layouts that return a direc-
tion for the edges (currently layout_tbl_graph_dendrogram(), layout_tbl_graph_partition()
and layout_tbl_graph_igraph() with the "tree" algorithm).

Usage

geom_edge_elbow(
mapping = NULL,
data = get_edges(),
position = "identity",
arrow = NULL,
strength = 1,
flipped = FALSE,
n = 100,
lineend = "butt",
linejoin = "round",
linemitre = 1,
label_colour = "black",
label_alpha = 1,
label_parse = FALSE,
check_overlap = FALSE,
angle_calc = "rot",
force_flip = TRUE,
label_dodge = NULL,
label_push = NULL,
show.legend = NA,
...

)

geom_edge_elbow2(
mapping = NULL,
data = get_edges("long"),
position = "identity",
arrow = NULL,
strength = 1,
flipped = FALSE,
n = 100,
lineend = "butt",
linejoin = "round",
linemitre = 1,
label_colour = "black",
label_alpha = 1,
label_parse = FALSE,
check_overlap = FALSE,
angle_calc = "rot",

34 geom_edge_elbow

force_flip = TRUE,
label_dodge = NULL,
label_push = NULL,
show.legend = NA,
...

)

geom_edge_elbow0(
mapping = NULL,
data = get_edges(),
position = "identity",
arrow = NULL,
flipped = FALSE,
lineend = "butt",
show.legend = NA,
...

)

Arguments

mapping Set of aesthetic mappings created by ggplot2::aes() or ggplot2::aes_().
By default x, y, xend, yend, group and circular are mapped to x, y, xend, yend,
edge.id and circular in the edge data.

data The return of a call to get_edges() or a data.frame giving edges in correct
format (see details for for guidance on the format). See get_edges() for more
details on edge extraction.

position Position adjustment, either as a string naming the adjustment (e.g. "jitter" to
use position_jitter), or the result of a call to a position adjustment function.
Use the latter if you need to change the settings of the adjustment.

arrow Arrow specification, as created by grid::arrow().

strength How bend the elbow should be. 1 will give a right angle, while 0 will give a
straight line. Ignored for circular layouts

flipped Logical, Has the layout been flipped by reassigning the mapping of x, y etc?

n The number of points to create along the path.

lineend Line end style (round, butt, square).

linejoin Line join style (round, mitre, bevel).

linemitre Line mitre limit (number greater than 1).

label_colour The colour of the edge label. If NA it will use the colour of the edge.

label_alpha The opacity of the edge label. If NA it will use the opacity of the edge.

label_parse If TRUE, the labels will be parsed into expressions and displayed as described in
grDevices::plotmath().

check_overlap If TRUE, text that overlaps previous text in the same layer will not be plotted.
check_overlap happens at draw time and in the order of the data. Therefore
data should be arranged by the label column before calling geom_text(). Note
that this argument is not supported by geom_label().

geom_edge_elbow 35

angle_calc Either ’none’, ’along’, or ’across’. If ’none’ the label will use the angle aesthetic
of the geom. If ’along’ The label will be written along the edge direction. If
’across’ the label will be written across the edge direction.

force_flip Logical. If angle_calc is either ’along’ or ’across’ should the label be flipped
if it is on it’s head. Default to TRUE.

label_dodge A grid::unit() giving a fixed vertical shift to add to the label in case of
angle_calc is either ’along’ or ’across’

label_push A grid::unit() giving a fixed horizontal shift to add to the label in case of
angle_calc is either ’along’ or ’across’

show.legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes. It
can also be a named logical vector to finely select the aesthetics to display.

... Other arguments passed on to layer(). These are often aesthetics, used to set
an aesthetic to a fixed value, like colour = "red" or size = 3. They may also
be parameters to the paired geom/stat.

Aesthetics

geom_edge_elbow and geom_edge_elbow0 understand the following aesthetics. Bold aesthetics
are automatically set, but can be overridden.

• x
• y
• xend
• yend
• circular
• direction
• edge_colour

• edge_width

• edge_linetype

• edge_alpha

• filter

geom_edge_elbow2 understand the following aesthetics. Bold aesthetics are automatically set, but
can be overridden.

• x
• y
• group
• circular
• direction
• edge_colour

• edge_width

36 geom_edge_elbow

• edge_linetype

• edge_alpha

• filter

geom_edge_elbow and geom_edge_elbow2 furthermore takes the following aesthetics.

• start_cap

• end_cap

• label

• label_pos

• label_size

• angle

• hjust

• vjust

• family

• fontface

• lineheight

Computed variables

index The position along the path (not computed for the *0 version)

Edge variants

Many geom_edge_* layers comes in 3 flavors depending on the level of control needed over the
drawing. The default (no numeric postfix) generate a number of points (n) along the edge and
draws it as a path. Each point along the line has a numeric value associated with it giving the
position along the path, and it is therefore possible to show the direction of the edge by mapping
to this e.g. colour = after_stat(index). The version postfixed with a "2" uses the "long" edge
format (see get_edges()) and makes it possible to interpolate node parameter between the start
and end node along the edge. It is considerable less performant so should only be used if this is
needed. The version postfixed with a "0" draws the edge in the most performant way, often directly
using an appropriate grob from the grid package, but does not allow for gradients along the edge.

Often it is beneficial to stop the drawing of the edge before it reaches the node, for instance in cases
where an arrow should be drawn and the arrowhead shouldn’t lay on top or below the node point.
geom_edge_* and geom_edge_*2 supports this through the start_cap and end_cap aesthetics that
takes a geometry() specification and dynamically caps the termini of the edges based on the given
specifications. This means that if end_cap = circle(1, 'cm') the edges will end at a distance of
1cm even during resizing of the plot window.

All geom_edge_* and geom_edge_*2 have the ability to draw a label along the edge. The reason
this is not a separate geom is that in order for the label to know the location of the edge it needs
to know the edge type etc. Labels are drawn by providing a label aesthetic. The label_pos can be
used to specify where along the edge it should be drawn by supplying a number between 0 and 1.
The label_size aesthetic can be used to control the size of the label. Often it is needed to have the
label written along the direction of the edge, but since the actual angle is dependent on the plot

geom_edge_fan 37

dimensions this cannot be calculated beforehand. Using the angle_calc argument allows you to
specify whether to use the supplied angle aesthetic or whether to draw the label along or across the
edge.

Edge aesthetic name expansion

In order to avoid excessive typing edge aesthetic names are automatically expanded. Because of
this it is not necessary to write edge_colour within the aes() call as colour will automatically be
renamed appropriately.

Author(s)

Thomas Lin Pedersen

See Also

Other geom_edge_*: geom_edge_arc(), geom_edge_bend(), geom_edge_density(), geom_edge_diagonal(),
geom_edge_fan(), geom_edge_hive(), geom_edge_link(), geom_edge_loop(), geom_edge_parallel(),
geom_edge_point(), geom_edge_span(), geom_edge_tile()

Examples

require(tidygraph)
irisDen <- hclust(dist(iris[1:4], method = 'euclidean'), method = 'ward.D2') %>%

as_tbl_graph() %>%
mutate(class = sample(letters[1:3], n(), TRUE)) %>%
activate(edges) %>%
mutate(class = sample(letters[1:3], n(), TRUE))

ggraph(irisDen, 'dendrogram', circular = TRUE) +
geom_edge_elbow(aes(alpha = after_stat(index)))

ggraph(irisDen, 'dendrogram') +
geom_edge_elbow2(aes(colour = node.class))

ggraph(irisDen, 'dendrogram', height = height) +
geom_edge_elbow0(aes(colour = class))

geom_edge_fan Draw edges as curves of different curvature

Description

This geom draws edges as cubic beziers with the control point positioned half-way between the
nodes and at an angle dependent on the presence of parallel edges. This results in parallel edges be-
ing drawn in a non-overlapping fashion resembling the standard approach used in igraph::plot.igraph().
Before calculating the curvature the edges are sorted by direction so that edges going the same way
will be adjacent. This geom is currently the only choice for non-simple graphs if edges should not
be overplotted.

38 geom_edge_fan

Usage

geom_edge_fan(
mapping = NULL,
data = get_edges(),
position = "identity",
arrow = NULL,
strength = 1,
n = 100,
lineend = "butt",
linejoin = "round",
linemitre = 1,
label_colour = "black",
label_alpha = 1,
label_parse = FALSE,
check_overlap = FALSE,
angle_calc = "rot",
force_flip = TRUE,
label_dodge = NULL,
label_push = NULL,
show.legend = NA,
...,
spread

)

geom_edge_fan2(
mapping = NULL,
data = get_edges("long"),
position = "identity",
arrow = NULL,
strength = 1,
n = 100,
lineend = "butt",
linejoin = "round",
linemitre = 1,
label_colour = "black",
label_alpha = 1,
label_parse = FALSE,
check_overlap = FALSE,
angle_calc = "rot",
force_flip = TRUE,
label_dodge = NULL,
label_push = NULL,
show.legend = NA,
...,
spread

)

geom_edge_fan0(

geom_edge_fan 39

mapping = NULL,
data = get_edges(),
position = "identity",
arrow = NULL,
strength = 1,
lineend = "butt",
show.legend = NA,
...,
spread

)

Arguments

mapping Set of aesthetic mappings created by ggplot2::aes() or ggplot2::aes_().
By default x, y, xend, yend, group and circular are mapped to x, y, xend, yend,
edge.id and circular in the edge data.

data The return of a call to get_edges() or a data.frame giving edges in correct
format (see details for for guidance on the format). See get_edges() for more
details on edge extraction.

position Position adjustment, either as a string naming the adjustment (e.g. "jitter" to
use position_jitter), or the result of a call to a position adjustment function.
Use the latter if you need to change the settings of the adjustment.

arrow Arrow specification, as created by grid::arrow().

strength Modify the width of the fans strength > 1 will create wider fans while the
reverse will make them more narrow.

n The number of points to create along the path.

lineend Line end style (round, butt, square).

linejoin Line join style (round, mitre, bevel).

linemitre Line mitre limit (number greater than 1).

label_colour The colour of the edge label. If NA it will use the colour of the edge.

label_alpha The opacity of the edge label. If NA it will use the opacity of the edge.

label_parse If TRUE, the labels will be parsed into expressions and displayed as described in
grDevices::plotmath().

check_overlap If TRUE, text that overlaps previous text in the same layer will not be plotted.
check_overlap happens at draw time and in the order of the data. Therefore
data should be arranged by the label column before calling geom_text(). Note
that this argument is not supported by geom_label().

angle_calc Either ’none’, ’along’, or ’across’. If ’none’ the label will use the angle aesthetic
of the geom. If ’along’ The label will be written along the edge direction. If
’across’ the label will be written across the edge direction.

force_flip Logical. If angle_calc is either ’along’ or ’across’ should the label be flipped
if it is on it’s head. Default to TRUE.

label_dodge A grid::unit() giving a fixed vertical shift to add to the label in case of
angle_calc is either ’along’ or ’across’

40 geom_edge_fan

label_push A grid::unit() giving a fixed horizontal shift to add to the label in case of
angle_calc is either ’along’ or ’across’

show.legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes. It
can also be a named logical vector to finely select the aesthetics to display.

... Other arguments passed on to layer(). These are often aesthetics, used to set
an aesthetic to a fixed value, like colour = "red" or size = 3. They may also
be parameters to the paired geom/stat.

spread Deprecated. Use strength instead.

Aesthetics

geom_edge_fan and geom_edge_fan0 understand the following aesthetics. Bold aesthetics are
automatically set, but can be overridden.

• x
• y
• xend
• yend
• from
• to
• edge_colour

• edge_width

• edge_linetype

• edge_alpha

• filter

geom_edge_fan2 understand the following aesthetics. Bold aesthetics are automatically set, but can
be overridden.

• x
• y
• group
• from
• to
• edge_colour

• edge_width

• edge_linetype

• edge_alpha

• filter

geom_edge_fan and geom_edge_fan2 furthermore takes the following aesthetics.

• start_cap

geom_edge_fan 41

• end_cap
• label
• label_pos
• label_size
• angle
• hjust
• vjust
• family
• fontface
• lineheight

Computed variables

index The position along the path (not computed for the *0 version)

Edge variants

Many geom_edge_* layers comes in 3 flavors depending on the level of control needed over the
drawing. The default (no numeric postfix) generate a number of points (n) along the edge and
draws it as a path. Each point along the line has a numeric value associated with it giving the
position along the path, and it is therefore possible to show the direction of the edge by mapping
to this e.g. colour = after_stat(index). The version postfixed with a "2" uses the "long" edge
format (see get_edges()) and makes it possible to interpolate node parameter between the start
and end node along the edge. It is considerable less performant so should only be used if this is
needed. The version postfixed with a "0" draws the edge in the most performant way, often directly
using an appropriate grob from the grid package, but does not allow for gradients along the edge.

Often it is beneficial to stop the drawing of the edge before it reaches the node, for instance in cases
where an arrow should be drawn and the arrowhead shouldn’t lay on top or below the node point.
geom_edge_* and geom_edge_*2 supports this through the start_cap and end_cap aesthetics that
takes a geometry() specification and dynamically caps the termini of the edges based on the given
specifications. This means that if end_cap = circle(1, 'cm') the edges will end at a distance of
1cm even during resizing of the plot window.

All geom_edge_* and geom_edge_*2 have the ability to draw a label along the edge. The reason
this is not a separate geom is that in order for the label to know the location of the edge it needs
to know the edge type etc. Labels are drawn by providing a label aesthetic. The label_pos can be
used to specify where along the edge it should be drawn by supplying a number between 0 and 1.
The label_size aesthetic can be used to control the size of the label. Often it is needed to have the
label written along the direction of the edge, but since the actual angle is dependent on the plot
dimensions this cannot be calculated beforehand. Using the angle_calc argument allows you to
specify whether to use the supplied angle aesthetic or whether to draw the label along or across the
edge.

Edge aesthetic name expansion

In order to avoid excessive typing edge aesthetic names are automatically expanded. Because of
this it is not necessary to write edge_colour within the aes() call as colour will automatically be
renamed appropriately.

42 geom_edge_hive

Author(s)

Thomas Lin Pedersen

See Also

Other geom_edge_*: geom_edge_arc(), geom_edge_bend(), geom_edge_density(), geom_edge_diagonal(),
geom_edge_elbow(), geom_edge_hive(), geom_edge_link(), geom_edge_loop(), geom_edge_parallel(),
geom_edge_point(), geom_edge_span(), geom_edge_tile()

Examples

require(tidygraph)
gr <- create_notable('bull') %>%

convert(to_directed) %>%
bind_edges(data.frame(from = c(1, 2, 2, 3), to = c(2, 1, 3, 2))) %E>%
mutate(class = sample(letters[1:3], 9, TRUE)) %N>%
mutate(class = sample(c('x', 'y'), 5, TRUE))

ggraph(gr, 'stress') +
geom_edge_fan(aes(alpha = after_stat(index)))

ggraph(gr, 'stress') +
geom_edge_fan2(aes(colour = node.class))

ggraph(gr, 'stress') +
geom_edge_fan0(aes(colour = class))

geom_edge_hive Draw edges in hive plots

Description

This geom is only intended for use together with the hive layout. It draws edges between nodes as
bezier curves, with the control points positioned at the same radii as the start or end point, and at a
distance defined by the curvature argument.

Usage

geom_edge_hive(
mapping = NULL,
data = get_edges(),
position = "identity",
arrow = NULL,
strength = 1,
n = 100,
lineend = "butt",
linejoin = "round",
linemitre = 1,

geom_edge_hive 43

label_colour = "black",
label_alpha = 1,
label_parse = FALSE,
check_overlap = FALSE,
angle_calc = "rot",
force_flip = TRUE,
label_dodge = NULL,
label_push = NULL,
show.legend = NA,
...,
curvature

)

geom_edge_hive2(
mapping = NULL,
data = get_edges("long"),
position = "identity",
arrow = NULL,
strength = 1,
n = 100,
lineend = "butt",
linejoin = "round",
linemitre = 1,
label_colour = "black",
label_alpha = 1,
label_parse = FALSE,
check_overlap = FALSE,
angle_calc = "rot",
force_flip = TRUE,
label_dodge = NULL,
label_push = NULL,
show.legend = NA,
...,
curvature

)

geom_edge_hive0(
mapping = NULL,
data = get_edges(),
position = "identity",
arrow = NULL,
strength = 1,
lineend = "butt",
show.legend = NA,
...,
curvature

)

44 geom_edge_hive

Arguments

mapping Set of aesthetic mappings created by ggplot2::aes() or ggplot2::aes_().
By default x, y, xend, yend, group and circular are mapped to x, y, xend, yend,
edge.id and circular in the edge data.

data The return of a call to get_edges() or a data.frame giving edges in correct
format (see details for for guidance on the format). See get_edges() for more
details on edge extraction.

position Position adjustment, either as a string naming the adjustment (e.g. "jitter" to
use position_jitter), or the result of a call to a position adjustment function.
Use the latter if you need to change the settings of the adjustment.

arrow Arrow specification, as created by grid::arrow().

strength The curvature of the bezier. Defines the distance from the control points to
the midpoint between the start and end node. 1 means the control points are
positioned halfway between the nodes and the middle of the two axes, while 0
means it coincide with the nodes (resulting in straight lines)

n The number of points to create along the path.

lineend Line end style (round, butt, square).

linejoin Line join style (round, mitre, bevel).

linemitre Line mitre limit (number greater than 1).

label_colour The colour of the edge label. If NA it will use the colour of the edge.

label_alpha The opacity of the edge label. If NA it will use the opacity of the edge.

label_parse If TRUE, the labels will be parsed into expressions and displayed as described in
grDevices::plotmath().

check_overlap If TRUE, text that overlaps previous text in the same layer will not be plotted.
check_overlap happens at draw time and in the order of the data. Therefore
data should be arranged by the label column before calling geom_text(). Note
that this argument is not supported by geom_label().

angle_calc Either ’none’, ’along’, or ’across’. If ’none’ the label will use the angle aesthetic
of the geom. If ’along’ The label will be written along the edge direction. If
’across’ the label will be written across the edge direction.

force_flip Logical. If angle_calc is either ’along’ or ’across’ should the label be flipped
if it is on it’s head. Default to TRUE.

label_dodge A grid::unit() giving a fixed vertical shift to add to the label in case of
angle_calc is either ’along’ or ’across’

label_push A grid::unit() giving a fixed horizontal shift to add to the label in case of
angle_calc is either ’along’ or ’across’

show.legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes. It
can also be a named logical vector to finely select the aesthetics to display.

... Other arguments passed on to layer(). These are often aesthetics, used to set
an aesthetic to a fixed value, like colour = "red" or size = 3. They may also
be parameters to the paired geom/stat.

curvature Deprecated. Use strength instead.

geom_edge_hive 45

Aesthetics

geom_edge_hive and geom_edge_hive0 understand the following aesthetics. Bold aesthetics are
automatically set, but can be overridden.

• x
• y
• xend
• yend
• edge_colour

• edge_width

• edge_linetype

• edge_alpha

• filter

geom_edge_hive2 understand the following aesthetics. Bold aesthetics are automatically set, but
can be overridden.

• x
• y
• group
• edge_colour

• edge_width

• edge_linetype

• edge_alpha

• filter

geom_edge_hive and geom_edge_hive2 furthermore takes the following aesthetics.

• start_cap

• end_cap

• label

• label_pos

• label_size

• angle

• hjust

• vjust

• family

• fontface

• lineheight

Computed variables

index The position along the path (not computed for the *0 version)

46 geom_edge_hive

Edge variants

Many geom_edge_* layers comes in 3 flavors depending on the level of control needed over the
drawing. The default (no numeric postfix) generate a number of points (n) along the edge and
draws it as a path. Each point along the line has a numeric value associated with it giving the
position along the path, and it is therefore possible to show the direction of the edge by mapping
to this e.g. colour = after_stat(index). The version postfixed with a "2" uses the "long" edge
format (see get_edges()) and makes it possible to interpolate node parameter between the start
and end node along the edge. It is considerable less performant so should only be used if this is
needed. The version postfixed with a "0" draws the edge in the most performant way, often directly
using an appropriate grob from the grid package, but does not allow for gradients along the edge.

Often it is beneficial to stop the drawing of the edge before it reaches the node, for instance in cases
where an arrow should be drawn and the arrowhead shouldn’t lay on top or below the node point.
geom_edge_* and geom_edge_*2 supports this through the start_cap and end_cap aesthetics that
takes a geometry() specification and dynamically caps the termini of the edges based on the given
specifications. This means that if end_cap = circle(1, 'cm') the edges will end at a distance of
1cm even during resizing of the plot window.

All geom_edge_* and geom_edge_*2 have the ability to draw a label along the edge. The reason
this is not a separate geom is that in order for the label to know the location of the edge it needs
to know the edge type etc. Labels are drawn by providing a label aesthetic. The label_pos can be
used to specify where along the edge it should be drawn by supplying a number between 0 and 1.
The label_size aesthetic can be used to control the size of the label. Often it is needed to have the
label written along the direction of the edge, but since the actual angle is dependent on the plot
dimensions this cannot be calculated beforehand. Using the angle_calc argument allows you to
specify whether to use the supplied angle aesthetic or whether to draw the label along or across the
edge.

Edge aesthetic name expansion

In order to avoid excessive typing edge aesthetic names are automatically expanded. Because of
this it is not necessary to write edge_colour within the aes() call as colour will automatically be
renamed appropriately.

Author(s)

Thomas Lin Pedersen

See Also

Other geom_edge_*: geom_edge_arc(), geom_edge_bend(), geom_edge_density(), geom_edge_diagonal(),
geom_edge_elbow(), geom_edge_fan(), geom_edge_link(), geom_edge_loop(), geom_edge_parallel(),
geom_edge_point(), geom_edge_span(), geom_edge_tile()

Examples

Plot the flare import graph as a hive plot
library(tidygraph)
flareGr <- as_tbl_graph(flare$imports) %>%

mutate(
type = dplyr::case_when(

geom_edge_link 47

centrality_degree(mode = 'in') == 0 ~ 'Source',
centrality_degree(mode = 'out') == 0 ~ 'Sink',
TRUE ~ 'Both'

)
) %>%
activate(edges) %>%
mutate(

type = dplyr::case_when(
grepl('flare.analytics', paste(.N()$name[from], .N()$name[to])) ~ 'Analytics',
TRUE ~ 'Other'

)
)

ggraph(flareGr, 'hive', axis = type) +
geom_edge_hive(aes(colour = type), edge_alpha = 0.1) +
coord_fixed()

geom_edge_link Draw edges as straight lines between nodes

Description

This geom draws edges in the simplest way - as straight lines between the start and end nodes. Not
much more to say about that...

Usage

geom_edge_link(
mapping = NULL,
data = get_edges("short"),
position = "identity",
arrow = NULL,
n = 100,
lineend = "butt",
linejoin = "round",
linemitre = 1,
label_colour = "black",
label_alpha = 1,
label_parse = FALSE,
check_overlap = FALSE,
angle_calc = "rot",
force_flip = TRUE,
label_dodge = NULL,
label_push = NULL,
show.legend = NA,
...

)

48 geom_edge_link

geom_edge_link2(
mapping = NULL,
data = get_edges("long"),
position = "identity",
arrow = NULL,
n = 100,
lineend = "butt",
linejoin = "round",
linemitre = 1,
label_colour = "black",
label_alpha = 1,
label_parse = FALSE,
check_overlap = FALSE,
angle_calc = "rot",
force_flip = TRUE,
label_dodge = NULL,
label_push = NULL,
show.legend = NA,
...

)

geom_edge_link0(
mapping = NULL,
data = get_edges(),
position = "identity",
arrow = NULL,
lineend = "butt",
show.legend = NA,
...

)

Arguments

mapping Set of aesthetic mappings created by ggplot2::aes() or ggplot2::aes_().
By default x, y, xend, yend, group and circular are mapped to x, y, xend, yend,
edge.id and circular in the edge data.

data The return of a call to get_edges() or a data.frame giving edges in correct
format (see details for for guidance on the format). See get_edges() for more
details on edge extraction.

position Position adjustment, either as a string naming the adjustment (e.g. "jitter" to
use position_jitter), or the result of a call to a position adjustment function.
Use the latter if you need to change the settings of the adjustment.

arrow Arrow specification, as created by grid::arrow().

n The number of points to create along the path.

lineend Line end style (round, butt, square).

linejoin Line join style (round, mitre, bevel).

linemitre Line mitre limit (number greater than 1).

geom_edge_link 49

label_colour The colour of the edge label. If NA it will use the colour of the edge.

label_alpha The opacity of the edge label. If NA it will use the opacity of the edge.

label_parse If TRUE, the labels will be parsed into expressions and displayed as described in
grDevices::plotmath().

check_overlap If TRUE, text that overlaps previous text in the same layer will not be plotted.
check_overlap happens at draw time and in the order of the data. Therefore
data should be arranged by the label column before calling geom_text(). Note
that this argument is not supported by geom_label().

angle_calc Either ’none’, ’along’, or ’across’. If ’none’ the label will use the angle aesthetic
of the geom. If ’along’ The label will be written along the edge direction. If
’across’ the label will be written across the edge direction.

force_flip Logical. If angle_calc is either ’along’ or ’across’ should the label be flipped
if it is on it’s head. Default to TRUE.

label_dodge A grid::unit() giving a fixed vertical shift to add to the label in case of
angle_calc is either ’along’ or ’across’

label_push A grid::unit() giving a fixed horizontal shift to add to the label in case of
angle_calc is either ’along’ or ’across’

show.legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes. It
can also be a named logical vector to finely select the aesthetics to display.

... Other arguments passed on to layer(). These are often aesthetics, used to set
an aesthetic to a fixed value, like colour = "red" or size = 3. They may also
be parameters to the paired geom/stat.

Edge variants

Many geom_edge_* layers comes in 3 flavors depending on the level of control needed over the
drawing. The default (no numeric postfix) generate a number of points (n) along the edge and
draws it as a path. Each point along the line has a numeric value associated with it giving the
position along the path, and it is therefore possible to show the direction of the edge by mapping
to this e.g. colour = after_stat(index). The version postfixed with a "2" uses the "long" edge
format (see get_edges()) and makes it possible to interpolate node parameter between the start
and end node along the edge. It is considerable less performant so should only be used if this is
needed. The version postfixed with a "0" draws the edge in the most performant way, often directly
using an appropriate grob from the grid package, but does not allow for gradients along the edge.

Often it is beneficial to stop the drawing of the edge before it reaches the node, for instance in cases
where an arrow should be drawn and the arrowhead shouldn’t lay on top or below the node point.
geom_edge_* and geom_edge_*2 supports this through the start_cap and end_cap aesthetics that
takes a geometry() specification and dynamically caps the termini of the edges based on the given
specifications. This means that if end_cap = circle(1, 'cm') the edges will end at a distance of
1cm even during resizing of the plot window.

All geom_edge_* and geom_edge_*2 have the ability to draw a label along the edge. The reason
this is not a separate geom is that in order for the label to know the location of the edge it needs
to know the edge type etc. Labels are drawn by providing a label aesthetic. The label_pos can be
used to specify where along the edge it should be drawn by supplying a number between 0 and 1.

50 geom_edge_link

The label_size aesthetic can be used to control the size of the label. Often it is needed to have the
label written along the direction of the edge, but since the actual angle is dependent on the plot
dimensions this cannot be calculated beforehand. Using the angle_calc argument allows you to
specify whether to use the supplied angle aesthetic or whether to draw the label along or across the
edge.

Edge aesthetic name expansion

In order to avoid excessive typing edge aesthetic names are automatically expanded. Because of
this it is not necessary to write edge_colour within the aes() call as colour will automatically be
renamed appropriately.

Aesthetics

geom_edge_link and geom_edge_link0 understand the following aesthetics. Bold aesthetics are
automatically set, but can be overridden.

• x
• y
• xend
• yend
• edge_colour

• edge_width

• edge_linetype

• edge_alpha

• filter

geom_edge_link2 understand the following aesthetics. Bold aesthetics are automatically set, but
can be overridden.

• x
• y
• group
• edge_colour

• edge_width

• edge_linetype

• edge_alpha

• filter

geom_edge_link and geom_edge_link2 furthermore takes the following aesthetics.

• start_cap

• end_cap

• label

• label_pos

geom_edge_loop 51

• label_size

• angle

• hjust

• vjust

• family

• fontface

• lineheight

Computed variables

index The position along the path (not computed for the *0 version)

Author(s)

Thomas Lin Pedersen

See Also

Other geom_edge_*: geom_edge_arc(), geom_edge_bend(), geom_edge_density(), geom_edge_diagonal(),
geom_edge_elbow(), geom_edge_fan(), geom_edge_hive(), geom_edge_loop(), geom_edge_parallel(),
geom_edge_point(), geom_edge_span(), geom_edge_tile()

Examples

require(tidygraph)
gr <- create_notable('bull') %>%

mutate(class = sample(letters[1:3], n(), replace = TRUE)) %>%
activate(edges) %>%
mutate(class = sample(letters[1:3], n(), replace = TRUE))

ggraph(gr, 'stress') +
geom_edge_link(aes(alpha = after_stat(index)))

ggraph(gr, 'stress') +
geom_edge_link2(aes(colour = node.class))

ggraph(gr, 'stress') +
geom_edge_link0(aes(colour = class))

geom_edge_loop Draw edges as diagonals

52 geom_edge_loop

Description

This geom draws edge loops (edges starting and ending at the same node). Loops are drawn as
bezier curves starting and ending at the position of the node and with control points protruding at
an angle and in a direction specified in the call. As the start and end node is always the same no
*2 method is provided. Loops can severely clutter up your visualization which is why they are
decoupled from the other edge drawings. Only plot them if they are of importance. If the graph
doesn’t contain any loops the geom adds nothing silently.

Usage

geom_edge_loop(
mapping = NULL,
data = get_edges(),
position = "identity",
arrow = NULL,
n = 100,
lineend = "butt",
linejoin = "round",
linemitre = 1,
label_colour = "black",
label_alpha = 1,
label_parse = FALSE,
check_overlap = FALSE,
angle_calc = "rot",
force_flip = TRUE,
label_dodge = NULL,
label_push = NULL,
show.legend = NA,
...

)

geom_edge_loop0(
mapping = NULL,
data = get_edges(),
position = "identity",
arrow = NULL,
lineend = "butt",
show.legend = NA,
...

)

Arguments

mapping Set of aesthetic mappings created by ggplot2::aes() or ggplot2::aes_().
By default x, y, xend, yend, group and circular are mapped to x, y, xend, yend,
edge.id and circular in the edge data.

data The return of a call to get_edges() or a data.frame giving edges in correct
format (see details for for guidance on the format). See get_edges() for more

geom_edge_loop 53

details on edge extraction.

position Position adjustment, either as a string naming the adjustment (e.g. "jitter" to
use position_jitter), or the result of a call to a position adjustment function.
Use the latter if you need to change the settings of the adjustment.

arrow Arrow specification, as created by grid::arrow().

n The number of points to create along the path.

lineend Line end style (round, butt, square).

linejoin Line join style (round, mitre, bevel).

linemitre Line mitre limit (number greater than 1).

label_colour The colour of the edge label. If NA it will use the colour of the edge.

label_alpha The opacity of the edge label. If NA it will use the opacity of the edge.

label_parse If TRUE, the labels will be parsed into expressions and displayed as described in
grDevices::plotmath().

check_overlap If TRUE, text that overlaps previous text in the same layer will not be plotted.
check_overlap happens at draw time and in the order of the data. Therefore
data should be arranged by the label column before calling geom_text(). Note
that this argument is not supported by geom_label().

angle_calc Either ’none’, ’along’, or ’across’. If ’none’ the label will use the angle aesthetic
of the geom. If ’along’ The label will be written along the edge direction. If
’across’ the label will be written across the edge direction.

force_flip Logical. If angle_calc is either ’along’ or ’across’ should the label be flipped
if it is on it’s head. Default to TRUE.

label_dodge A grid::unit() giving a fixed vertical shift to add to the label in case of
angle_calc is either ’along’ or ’across’

label_push A grid::unit() giving a fixed horizontal shift to add to the label in case of
angle_calc is either ’along’ or ’across’

show.legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes. It
can also be a named logical vector to finely select the aesthetics to display.

... Other arguments passed on to layer(). These are often aesthetics, used to set
an aesthetic to a fixed value, like colour = "red" or size = 3. They may also
be parameters to the paired geom/stat.

Aesthetics

geom_edge_loop and geom_edge_loop0 understand the following aesthetics. Bold aesthetics are
automatically set, but can be overridden.

• x
• y
• from
• to
• span 90

54 geom_edge_loop

• direction 45

• strength 1

• edge_colour

• edge_width

• edge_linetype

• edge_alpha

• filter

geom_edge_loop furthermore takes the following aesthetics.

• start_cap

• end_cap

• label

• label_pos

• label_size

• angle

• hjust

• vjust

• family

• fontface

• lineheight

Computed variables

index The position along the path (not computed for the *0 version)

Edge variants

Many geom_edge_* layers comes in 3 flavors depending on the level of control needed over the
drawing. The default (no numeric postfix) generate a number of points (n) along the edge and
draws it as a path. Each point along the line has a numeric value associated with it giving the
position along the path, and it is therefore possible to show the direction of the edge by mapping
to this e.g. colour = after_stat(index). The version postfixed with a "2" uses the "long" edge
format (see get_edges()) and makes it possible to interpolate node parameter between the start
and end node along the edge. It is considerable less performant so should only be used if this is
needed. The version postfixed with a "0" draws the edge in the most performant way, often directly
using an appropriate grob from the grid package, but does not allow for gradients along the edge.

Often it is beneficial to stop the drawing of the edge before it reaches the node, for instance in cases
where an arrow should be drawn and the arrowhead shouldn’t lay on top or below the node point.
geom_edge_* and geom_edge_*2 supports this through the start_cap and end_cap aesthetics that
takes a geometry() specification and dynamically caps the termini of the edges based on the given
specifications. This means that if end_cap = circle(1, 'cm') the edges will end at a distance of
1cm even during resizing of the plot window.

geom_edge_parallel 55

All geom_edge_* and geom_edge_*2 have the ability to draw a label along the edge. The reason
this is not a separate geom is that in order for the label to know the location of the edge it needs
to know the edge type etc. Labels are drawn by providing a label aesthetic. The label_pos can be
used to specify where along the edge it should be drawn by supplying a number between 0 and 1.
The label_size aesthetic can be used to control the size of the label. Often it is needed to have the
label written along the direction of the edge, but since the actual angle is dependent on the plot
dimensions this cannot be calculated beforehand. Using the angle_calc argument allows you to
specify whether to use the supplied angle aesthetic or whether to draw the label along or across the
edge.

Edge aesthetic name expansion

In order to avoid excessive typing edge aesthetic names are automatically expanded. Because of
this it is not necessary to write edge_colour within the aes() call as colour will automatically be
renamed appropriately.

Author(s)

Thomas Lin Pedersen

See Also

Other geom_edge_*: geom_edge_arc(), geom_edge_bend(), geom_edge_density(), geom_edge_diagonal(),
geom_edge_elbow(), geom_edge_fan(), geom_edge_hive(), geom_edge_link(), geom_edge_parallel(),
geom_edge_point(), geom_edge_span(), geom_edge_tile()

Examples

require(tidygraph)
gr <- as_tbl_graph(

data.frame(from = c(1, 1, 2, 2, 3, 3, 3), to = c(1, 2, 2, 3, 3, 1, 2))
)

ggraph(gr, 'stress') +
geom_edge_loop(aes(alpha = after_stat(index))) +
geom_edge_fan(aes(alpha = after_stat(index)))

ggraph(gr, 'stress') +
geom_edge_loop0() +
geom_edge_fan0()

geom_edge_parallel Draw multi edges as parallel lines

Description

This geom draws multi edges as parallel lines. The edges are first sorted by direction and then
shifted a fixed amount so that all edges are visible.

56 geom_edge_parallel

Usage

geom_edge_parallel(
mapping = NULL,
data = get_edges(),
position = "identity",
arrow = NULL,
sep = unit(2, "mm"),
n = 100,
lineend = "butt",
linejoin = "round",
linemitre = 1,
label_colour = "black",
label_alpha = 1,
label_parse = FALSE,
check_overlap = FALSE,
angle_calc = "rot",
force_flip = TRUE,
label_dodge = NULL,
label_push = NULL,
show.legend = NA,
...

)

geom_edge_parallel2(
mapping = NULL,
data = get_edges("long"),
position = "identity",
arrow = NULL,
sep = unit(2, "mm"),
n = 100,
lineend = "butt",
linejoin = "round",
linemitre = 1,
label_colour = "black",
label_alpha = 1,
label_parse = FALSE,
check_overlap = FALSE,
angle_calc = "rot",
force_flip = TRUE,
label_dodge = NULL,
label_push = NULL,
show.legend = NA,
...

)

geom_edge_parallel0(
mapping = NULL,
data = get_edges(),

geom_edge_parallel 57

position = "identity",
arrow = NULL,
sep = unit(2, "mm"),
lineend = "butt",
show.legend = NA,
...

)

Arguments

mapping Set of aesthetic mappings created by ggplot2::aes() or ggplot2::aes_().
By default x, y, xend, yend, group and circular are mapped to x, y, xend, yend,
edge.id and circular in the edge data.

data The return of a call to get_edges() or a data.frame giving edges in correct
format (see details for for guidance on the format). See get_edges() for more
details on edge extraction.

position Position adjustment, either as a string naming the adjustment (e.g. "jitter" to
use position_jitter), or the result of a call to a position adjustment function.
Use the latter if you need to change the settings of the adjustment.

arrow Arrow specification, as created by grid::arrow().

sep The separation between parallel edges, given as a grid::unit()

n The number of points to create along the path.

lineend Line end style (round, butt, square).

linejoin Line join style (round, mitre, bevel).

linemitre Line mitre limit (number greater than 1).

label_colour The colour of the edge label. If NA it will use the colour of the edge.

label_alpha The opacity of the edge label. If NA it will use the opacity of the edge.

label_parse If TRUE, the labels will be parsed into expressions and displayed as described in
grDevices::plotmath().

check_overlap If TRUE, text that overlaps previous text in the same layer will not be plotted.
check_overlap happens at draw time and in the order of the data. Therefore
data should be arranged by the label column before calling geom_text(). Note
that this argument is not supported by geom_label().

angle_calc Either ’none’, ’along’, or ’across’. If ’none’ the label will use the angle aesthetic
of the geom. If ’along’ The label will be written along the edge direction. If
’across’ the label will be written across the edge direction.

force_flip Logical. If angle_calc is either ’along’ or ’across’ should the label be flipped
if it is on it’s head. Default to TRUE.

label_dodge A grid::unit() giving a fixed vertical shift to add to the label in case of
angle_calc is either ’along’ or ’across’

label_push A grid::unit() giving a fixed horizontal shift to add to the label in case of
angle_calc is either ’along’ or ’across’

58 geom_edge_parallel

show.legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes. It
can also be a named logical vector to finely select the aesthetics to display.

... Other arguments passed on to layer(). These are often aesthetics, used to set
an aesthetic to a fixed value, like colour = "red" or size = 3. They may also
be parameters to the paired geom/stat.

Aesthetics

geom_edge_parallel and geom_edge_parallel0 understand the following aesthetics. Bold aes-
thetics are automatically set, but can be overridden.

• x
• y
• xend
• yend
• from
• to
• edge_colour

• edge_width

• edge_linetype

• edge_alpha

• filter

geom_edge_parallel2 understand the following aesthetics. Bold aesthetics are automatically set,
but can be overridden.

• x
• y
• group
• from
• to
• edge_colour

• edge_width

• edge_linetype

• edge_alpha

• filter

geom_edge_parallel and geom_edge_parallel2 furthermore takes the following aesthetics.

• start_cap

• end_cap

• label

geom_edge_parallel 59

• label_pos

• label_size

• angle

• hjust

• vjust

• family

• fontface

• lineheight

Computed variables

index The position along the path (not computed for the *0 version)

Edge variants

Many geom_edge_* layers comes in 3 flavors depending on the level of control needed over the
drawing. The default (no numeric postfix) generate a number of points (n) along the edge and
draws it as a path. Each point along the line has a numeric value associated with it giving the
position along the path, and it is therefore possible to show the direction of the edge by mapping
to this e.g. colour = after_stat(index). The version postfixed with a "2" uses the "long" edge
format (see get_edges()) and makes it possible to interpolate node parameter between the start
and end node along the edge. It is considerable less performant so should only be used if this is
needed. The version postfixed with a "0" draws the edge in the most performant way, often directly
using an appropriate grob from the grid package, but does not allow for gradients along the edge.

Often it is beneficial to stop the drawing of the edge before it reaches the node, for instance in cases
where an arrow should be drawn and the arrowhead shouldn’t lay on top or below the node point.
geom_edge_* and geom_edge_*2 supports this through the start_cap and end_cap aesthetics that
takes a geometry() specification and dynamically caps the termini of the edges based on the given
specifications. This means that if end_cap = circle(1, 'cm') the edges will end at a distance of
1cm even during resizing of the plot window.

All geom_edge_* and geom_edge_*2 have the ability to draw a label along the edge. The reason
this is not a separate geom is that in order for the label to know the location of the edge it needs
to know the edge type etc. Labels are drawn by providing a label aesthetic. The label_pos can be
used to specify where along the edge it should be drawn by supplying a number between 0 and 1.
The label_size aesthetic can be used to control the size of the label. Often it is needed to have the
label written along the direction of the edge, but since the actual angle is dependent on the plot
dimensions this cannot be calculated beforehand. Using the angle_calc argument allows you to
specify whether to use the supplied angle aesthetic or whether to draw the label along or across the
edge.

Edge aesthetic name expansion

In order to avoid excessive typing edge aesthetic names are automatically expanded. Because of
this it is not necessary to write edge_colour within the aes() call as colour will automatically be
renamed appropriately.

60 geom_edge_point

Author(s)

David Schoch and Thomas Lin Pedersen

See Also

Other geom_edge_*: geom_edge_arc(), geom_edge_bend(), geom_edge_density(), geom_edge_diagonal(),
geom_edge_elbow(), geom_edge_fan(), geom_edge_hive(), geom_edge_link(), geom_edge_loop(),
geom_edge_point(), geom_edge_span(), geom_edge_tile()

Examples

require(tidygraph)
gr <- create_notable('bull') %>%

convert(to_directed) %>%
bind_edges(data.frame(from = c(1, 2, 2, 3), to = c(2, 1, 3, 2))) %E>%
mutate(class = sample(letters[1:3], 9, TRUE)) %N>%
mutate(class = sample(c('x', 'y'), 5, TRUE))

ggraph(gr, 'stress') +
geom_edge_parallel(aes(alpha = after_stat(index)))

ggraph(gr, 'stress') +
geom_edge_parallel2(aes(colour = node.class))

ggraph(gr, 'stress') +
geom_edge_parallel0(aes(colour = class))

Use capping and sep to fine tune the look
ggraph(gr, 'stress') +

geom_edge_parallel(start_cap = circle(1), end_cap = circle(1),
arrow = arrow(length = unit(2, 'mm')), sep = unit(4, 'mm')) +

geom_node_point(size = 12)

geom_edge_point Draw edges as glyphs

Description

This geom draws edges as glyphs with their x-position defined by the x-position of the start node,
and the y-position defined by the y-position of the end node. As such it will result in a matrix layout
when used in conjunction with layout_tbl_graph_matrix()

Usage

geom_edge_point(
mapping = NULL,
data = get_edges(),
position = "identity",

geom_edge_point 61

mirror = FALSE,
show.legend = NA,
...

)

Arguments

mapping Set of aesthetic mappings created by ggplot2::aes() or ggplot2::aes_().
By default x, y, xend, yend, group and circular are mapped to x, y, xend, yend,
edge.id and circular in the edge data.

data The return of a call to get_edges() or a data.frame giving edges in correct
format (see details for for guidance on the format). See get_edges() for more
details on edge extraction.

position Position adjustment, either as a string naming the adjustment (e.g. "jitter" to
use position_jitter), or the result of a call to a position adjustment function.
Use the latter if you need to change the settings of the adjustment.

mirror Logical. Should edge points be duplicated on both sides of the diagonal. In-
tended for undirected graphs. Default to FALSE

show.legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes. It
can also be a named logical vector to finely select the aesthetics to display.

... Other arguments passed on to layer(). These are often aesthetics, used to set
an aesthetic to a fixed value, like colour = "red" or size = 3. They may also
be parameters to the paired geom/stat.

Aesthetics

geom_edge_point understands the following aesthetics. Bold aesthetics are automatically set, but
can be overridden.

• x
• y
• edge_shape

• edge_colour

• edge_size

• edge_alpha

• filter

Edge aesthetic name expansion

In order to avoid excessive typing edge aesthetic names are automatically expanded. Because of
this it is not necessary to write edge_colour within the aes() call as colour will automatically be
renamed appropriately.

Author(s)

Thomas Lin Pedersen

62 geom_edge_span

See Also

Other geom_edge_*: geom_edge_arc(), geom_edge_bend(), geom_edge_density(), geom_edge_diagonal(),
geom_edge_elbow(), geom_edge_fan(), geom_edge_hive(), geom_edge_link(), geom_edge_loop(),
geom_edge_parallel(), geom_edge_span(), geom_edge_tile()

Examples

require(tidygraph)
gr <- create_notable('zachary') %>%

mutate(group = group_infomap()) %>%
morph(to_split, group) %>%
activate(edges) %>%
mutate(edge_group = as.character(.N()$group[1])) %>%
unmorph()

ggraph(gr, 'matrix', sort.by = node_rank_hclust()) +
geom_edge_point(aes(colour = edge_group), mirror = TRUE, edge_size = 3) +
scale_y_reverse() +
coord_fixed() +
labs(edge_colour = 'Infomap Cluster') +
ggtitle("Zachary' Karate Club")

geom_edge_span Draw edges as vertical spans

Description

This edge geom is mainly intended for use with fabric layouts. It draws edges as vertical segments
with an optional end shape adornment. Due to the special nature of fabric layouts where nodes are
not a single point in space but a line, this geom doesn’t derive the x position from the location of
the terminal nodes, but defaults to using the edge_x variable calculated by the fabric layout. If this
geom is used with other layouts xand xend must be given explicitly.

Usage

geom_edge_span(
mapping = NULL,
data = get_edges("short"),
position = "identity",
end_shape = NA,
arrow = NULL,
n = 100,
lineend = "butt",
linejoin = "round",
linemitre = 1,
label_colour = "black",
label_alpha = 1,
label_parse = FALSE,

geom_edge_span 63

check_overlap = FALSE,
angle_calc = "rot",
force_flip = TRUE,
label_dodge = NULL,
label_push = NULL,
show.legend = NA,
...

)

geom_edge_span2(
mapping = NULL,
data = get_edges("long"),
position = "identity",
end_shape = NA,
arrow = NULL,
n = 100,
lineend = "butt",
linejoin = "round",
linemitre = 1,
label_colour = "black",
label_alpha = 1,
label_parse = FALSE,
check_overlap = FALSE,
angle_calc = "rot",
force_flip = TRUE,
label_dodge = NULL,
label_push = NULL,
show.legend = NA,
...

)

geom_edge_span0(
mapping = NULL,
data = get_edges(),
position = "identity",
end_shape = NA,
arrow = NULL,
lineend = "butt",
show.legend = NA,
...

)

Arguments

mapping Set of aesthetic mappings created by ggplot2::aes() or ggplot2::aes_().
By default x, y, xend, yend, group and circular are mapped to x, y, xend, yend,
edge.id and circular in the edge data.

data The return of a call to get_edges() or a data.frame giving edges in correct

64 geom_edge_span

format (see details for for guidance on the format). See get_edges() for more
details on edge extraction.

position Position adjustment, either as a string naming the adjustment (e.g. "jitter" to
use position_jitter), or the result of a call to a position adjustment function.
Use the latter if you need to change the settings of the adjustment.

end_shape The adornment to put at the ends of the span. The naming follows the conven-
tions of the shape aesthetic in ggplot2::geom_point()

arrow Arrow specification, as created by grid::arrow().

n The number of points to create along the path.

lineend Line end style (round, butt, square).

linejoin Line join style (round, mitre, bevel).

linemitre Line mitre limit (number greater than 1).

label_colour The colour of the edge label. If NA it will use the colour of the edge.

label_alpha The opacity of the edge label. If NA it will use the opacity of the edge.

label_parse If TRUE, the labels will be parsed into expressions and displayed as described in
grDevices::plotmath().

check_overlap If TRUE, text that overlaps previous text in the same layer will not be plotted.
check_overlap happens at draw time and in the order of the data. Therefore
data should be arranged by the label column before calling geom_text(). Note
that this argument is not supported by geom_label().

angle_calc Either ’none’, ’along’, or ’across’. If ’none’ the label will use the angle aesthetic
of the geom. If ’along’ The label will be written along the edge direction. If
’across’ the label will be written across the edge direction.

force_flip Logical. If angle_calc is either ’along’ or ’across’ should the label be flipped
if it is on it’s head. Default to TRUE.

label_dodge A grid::unit() giving a fixed vertical shift to add to the label in case of
angle_calc is either ’along’ or ’across’

label_push A grid::unit() giving a fixed horizontal shift to add to the label in case of
angle_calc is either ’along’ or ’across’

show.legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes. It
can also be a named logical vector to finely select the aesthetics to display.

... Other arguments passed on to layer(). These are often aesthetics, used to set
an aesthetic to a fixed value, like colour = "red" or size = 3. They may also
be parameters to the paired geom/stat.

Aesthetics

geom_edge_span and geom_edge_span0 understand the following aesthetics. Bold aesthetics are
automatically set, but can be overridden.

• x
• y

geom_edge_span 65

• xend

• yend

• edge_colour

• edge_width

• edge_linetype

• edge_alpha

• filter

geom_edge_span2 understand the following aesthetics. Bold aesthetics are automatically set, but
can be overridden.

• x

• y

• group

• edge_colour

• edge_width

• edge_linetype

• edge_alpha

• filter

geom_edge_span and geom_edge_span2 furthermore takes the following aesthetics.

• start_cap

• end_cap

• label

• label_pos

• label_size

• angle

• hjust

• vjust

• family

• fontface

• lineheight

Computed variables

index The position along the path (not computed for the *0 version)

66 geom_edge_span

Edge variants

Many geom_edge_* layers comes in 3 flavors depending on the level of control needed over the
drawing. The default (no numeric postfix) generate a number of points (n) along the edge and
draws it as a path. Each point along the line has a numeric value associated with it giving the
position along the path, and it is therefore possible to show the direction of the edge by mapping
to this e.g. colour = after_stat(index). The version postfixed with a "2" uses the "long" edge
format (see get_edges()) and makes it possible to interpolate node parameter between the start
and end node along the edge. It is considerable less performant so should only be used if this is
needed. The version postfixed with a "0" draws the edge in the most performant way, often directly
using an appropriate grob from the grid package, but does not allow for gradients along the edge.

Often it is beneficial to stop the drawing of the edge before it reaches the node, for instance in cases
where an arrow should be drawn and the arrowhead shouldn’t lay on top or below the node point.
geom_edge_* and geom_edge_*2 supports this through the start_cap and end_cap aesthetics that
takes a geometry() specification and dynamically caps the termini of the edges based on the given
specifications. This means that if end_cap = circle(1, 'cm') the edges will end at a distance of
1cm even during resizing of the plot window.

All geom_edge_* and geom_edge_*2 have the ability to draw a label along the edge. The reason
this is not a separate geom is that in order for the label to know the location of the edge it needs
to know the edge type etc. Labels are drawn by providing a label aesthetic. The label_pos can be
used to specify where along the edge it should be drawn by supplying a number between 0 and 1.
The label_size aesthetic can be used to control the size of the label. Often it is needed to have the
label written along the direction of the edge, but since the actual angle is dependent on the plot
dimensions this cannot be calculated beforehand. Using the angle_calc argument allows you to
specify whether to use the supplied angle aesthetic or whether to draw the label along or across the
edge.

Edge aesthetic name expansion

In order to avoid excessive typing edge aesthetic names are automatically expanded. Because of
this it is not necessary to write edge_colour within the aes() call as colour will automatically be
renamed appropriately.

Author(s)

Thomas Lin Pedersen

See Also

Other geom_edge_*: geom_edge_arc(), geom_edge_bend(), geom_edge_density(), geom_edge_diagonal(),
geom_edge_elbow(), geom_edge_fan(), geom_edge_hive(), geom_edge_link(), geom_edge_loop(),
geom_edge_parallel(), geom_edge_point(), geom_edge_tile()

Examples

require(tidygraph)
gr <- play_smallworld(n_dim = 3, dim_size = 3, order = 1, p_rewire = 0.6)

Standard use
ggraph(gr, 'fabric', sort.by = node_rank_fabric()) +

geom_edge_tile 67

geom_node_range(colour = 'grey80') +
geom_edge_span()

Add end shapes
ggraph(gr, 'fabric', sort.by = node_rank_fabric()) +

geom_node_range(colour = 'grey80') +
geom_edge_span(end_shape = 'circle')

If the layout include shadow edges these can be styled differently
ggraph(gr, 'fabric', sort.by = node_rank_fabric(), shadow.edges = TRUE) +

geom_node_range(colour = 'grey80') +
geom_edge_span(aes(colour = shadow_edge), end_shape = 'square') +
scale_edge_colour_manual(values = c('FALSE' = 'black', 'TRUE' = 'grey'))

geom_edge_tile Draw edges as glyphs

Description

This geom draws edges as tiles with their x-position defined by the x-position of the start node, and
the y-position defined by the y-position of the end node. As such it will result in a matrix layout
when used in conjunction with layout_tbl_graph_matrix()

Usage

geom_edge_tile(
mapping = NULL,
data = get_edges(),
position = "identity",
mirror = FALSE,
show.legend = NA,
...

)

Arguments

mapping Set of aesthetic mappings created by ggplot2::aes() or ggplot2::aes_().
By default x, y, xend, yend, group and circular are mapped to x, y, xend, yend,
edge.id and circular in the edge data.

data The return of a call to get_edges() or a data.frame giving edges in correct
format (see details for for guidance on the format). See get_edges() for more
details on edge extraction.

position Position adjustment, either as a string naming the adjustment (e.g. "jitter" to
use position_jitter), or the result of a call to a position adjustment function.
Use the latter if you need to change the settings of the adjustment.

mirror Logical. Should edge points be duplicated on both sides of the diagonal. In-
tended for undirected graphs. Default to FALSE

68 geom_edge_tile

show.legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes. It
can also be a named logical vector to finely select the aesthetics to display.

... Other arguments passed on to layer(). These are often aesthetics, used to set
an aesthetic to a fixed value, like colour = "red" or size = 3. They may also
be parameters to the paired geom/stat.

Aesthetics

geom_edge_tile understands the following aesthetics. Bold aesthetics are automatically set, but
can be overridden.

• x
• y
• edge_fill

• edge_colour

• edge_size

• edge_alpha

• filter

Edge aesthetic name expansion

In order to avoid excessive typing edge aesthetic names are automatically expanded. Because of
this it is not necessary to write edge_colour within the aes() call as colour will automatically be
renamed appropriately.

Author(s)

Thomas Lin Pedersen

See Also

Other geom_edge_*: geom_edge_arc(), geom_edge_bend(), geom_edge_density(), geom_edge_diagonal(),
geom_edge_elbow(), geom_edge_fan(), geom_edge_hive(), geom_edge_link(), geom_edge_loop(),
geom_edge_parallel(), geom_edge_point(), geom_edge_span()

Examples

require(tidygraph)
gr <- create_notable('zachary') %>%

mutate(group = group_infomap()) %>%
morph(to_split, group) %>%
activate(edges) %>%
mutate(edge_group = as.character(.N()$group[1])) %>%
unmorph()

ggraph(gr, 'matrix', sort.by = node_rank_hclust()) +
geom_edge_tile(aes(fill = edge_group), mirror = TRUE) +
scale_y_reverse() +

geom_node_arc_bar 69

coord_fixed() +
labs(edge_colour = 'Infomap Cluster') +
ggtitle("Zachary' Karate Club")

geom_node_arc_bar Show nodes as thick arcs

Description

This geom is equivalent in functionality to ggforce::geom_arc_bar() and allows for plotting
of nodes as arcs with an inner and outer radius scaled by the coordinate system. Its main use is
currently in sunburst plots as created with circular partition layouts

Usage

geom_node_arc_bar(
mapping = NULL,
data = NULL,
position = "identity",
show.legend = NA,
...

)

Arguments

mapping Set of aesthetic mappings created by ggplot2::aes() or ggplot2::aes_().
By default x and y are mapped to x0 and y0 in the node data.

data The data to be displayed in this layer. There are three options:
If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot().
A data.frame, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See fortify() for which variables will be
created.
A function will be called with a single argument, the plot data. The return
value must be a data.frame, and will be used as the layer data. A function
can be created from a formula (e.g. ~ head(.x, 10)).

position Position adjustment, either as a string naming the adjustment (e.g. "jitter" to
use position_jitter), or the result of a call to a position adjustment function.
Use the latter if you need to change the settings of the adjustment.

show.legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes. It
can also be a named logical vector to finely select the aesthetics to display.

... Other arguments passed on to layer(). These are often aesthetics, used to set
an aesthetic to a fixed value, like colour = "red" or size = 3. They may also
be parameters to the paired geom/stat.

70 geom_node_circle

Aesthetics

geom_node_point understand the following aesthetics. Bold aesthetics are automatically set, but
can be overridden.

• x0

• y0

• r0

• r

• start

• end

• alpha

• colour

• fill

• shape

• size

• stroke

• filter

Author(s)

Thomas Lin Pedersen

See Also

Other geom_node_*: geom_node_circle(), geom_node_point(), geom_node_range(), geom_node_text(),
geom_node_tile(), geom_node_voronoi()

Examples

require(tidygraph)
gr <- tbl_graph(flare$vertices, flare$edges)
ggraph(gr, 'partition', circular = TRUE, weight = size) +

geom_node_arc_bar()

geom_node_circle Show nodes as circles

Description

This geom is equivalent in functionality to ggforce::geom_circle() and allows for plotting of
nodes as circles with a radius scaled by the coordinate system. Because of the geoms reliance on the
coordinate system it will only produce true circles when combined with ggplot2::coord_fixed()

geom_node_circle 71

Usage

geom_node_circle(
mapping = NULL,
data = NULL,
position = "identity",
show.legend = NA,
...

)

Arguments

mapping Set of aesthetic mappings created by ggplot2::aes() or ggplot2::aes_().
By default x and y are mapped to x0 and y0 in the node data.

data The data to be displayed in this layer. There are three options:
If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot().
A data.frame, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See fortify() for which variables will be
created.
A function will be called with a single argument, the plot data. The return
value must be a data.frame, and will be used as the layer data. A function
can be created from a formula (e.g. ~ head(.x, 10)).

position Position adjustment, either as a string naming the adjustment (e.g. "jitter" to
use position_jitter), or the result of a call to a position adjustment function.
Use the latter if you need to change the settings of the adjustment.

show.legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes. It
can also be a named logical vector to finely select the aesthetics to display.

... Other arguments passed on to layer(). These are often aesthetics, used to set
an aesthetic to a fixed value, like colour = "red" or size = 3. They may also
be parameters to the paired geom/stat.

Aesthetics

geom_node_circle understand the following aesthetics. Bold aesthetics are automatically set, but
can be overridden.

• x0
• y0
• r
• alpha

• colour

• fill

• shape

• size

72 geom_node_point

• stroke

• filter

Author(s)

Thomas Lin Pedersen

See Also

Other geom_node_*: geom_node_arc_bar(), geom_node_point(), geom_node_range(), geom_node_text(),
geom_node_tile(), geom_node_voronoi()

Examples

require(tidygraph)
gr <- tbl_graph(flare$vertices, flare$edges)
ggraph(gr, 'circlepack', weight = size) +

geom_node_circle() +
coord_fixed()

geom_node_point Show nodes as points

Description

This geom is equivalent in functionality to ggplot2::geom_point() and allows for simple plotting
of nodes in different shapes, colours and sizes.

Usage

geom_node_point(
mapping = NULL,
data = NULL,
position = "identity",
show.legend = NA,
...

)

Arguments

mapping Set of aesthetic mappings created by ggplot2::aes() or ggplot2::aes_().
By default x and y are mapped to x and y in the node data.

data The data to be displayed in this layer. There are three options:
If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot().
A data.frame, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See fortify() for which variables will be
created.

geom_node_point 73

A function will be called with a single argument, the plot data. The return
value must be a data.frame, and will be used as the layer data. A function
can be created from a formula (e.g. ~ head(.x, 10)).

position Position adjustment, either as a string naming the adjustment (e.g. "jitter" to
use position_jitter), or the result of a call to a position adjustment function.
Use the latter if you need to change the settings of the adjustment.

show.legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes. It
can also be a named logical vector to finely select the aesthetics to display.

... Other arguments passed on to layer(). These are often aesthetics, used to set
an aesthetic to a fixed value, like colour = "red" or size = 3. They may also
be parameters to the paired geom/stat.

Aesthetics

geom_node_point understand the following aesthetics. Bold aesthetics are automatically set, but
can be overridden.

• x

• y

• alpha

• colour

• fill

• shape

• size

• stroke

• filter

Author(s)

Thomas Lin Pedersen

See Also

Other geom_node_*: geom_node_arc_bar(), geom_node_circle(), geom_node_range(), geom_node_text(),
geom_node_tile(), geom_node_voronoi()

Examples

require(tidygraph)
gr <- create_notable('bull') %>%

mutate(class = sample(letters[1:3], n(), replace = TRUE))

ggraph(gr, 'stress') + geom_node_point()

74 geom_node_range

geom_node_range Show nodes as a line spanning a horizontal range

Description

This geom is most useful together with the fabric layout for showing the horizontal span of each
node.

Usage

geom_node_range(
mapping = NULL,
data = NULL,
position = "identity",
show.legend = NA,
...

)

Arguments

mapping Set of aesthetic mappings created by ggplot2::aes() or ggplot2::aes_().
By default x is mapped to xmin, xend is mapped to xmax and y and yend are
mapped to y in the node data.

data The data to be displayed in this layer. There are three options:

If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot().

A data.frame, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See fortify() for which variables will be
created.

A function will be called with a single argument, the plot data. The return
value must be a data.frame, and will be used as the layer data. A function
can be created from a formula (e.g. ~ head(.x, 10)).

position Position adjustment, either as a string naming the adjustment (e.g. "jitter" to
use position_jitter), or the result of a call to a position adjustment function.
Use the latter if you need to change the settings of the adjustment.

show.legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes. It
can also be a named logical vector to finely select the aesthetics to display.

... Other arguments passed on to layer(). These are often aesthetics, used to set
an aesthetic to a fixed value, like colour = "red" or size = 3. They may also
be parameters to the paired geom/stat.

geom_node_text 75

Aesthetics

geom_node_point understand the following aesthetics. Bold aesthetics are automatically set, but
can be overridden.

• x

• xend

• y

• yend

• alpha

• colour

• linetype

• size

• filter

Author(s)

Thomas Lin Pedersen

See Also

Other geom_node_*: geom_node_arc_bar(), geom_node_circle(), geom_node_point(), geom_node_text(),
geom_node_tile(), geom_node_voronoi()

Examples

require(tidygraph)
gr <- as_tbl_graph(highschool)

ggraph(gr, layout = 'fabric') +
geom_node_range()

geom_node_text Annotate nodes with text

Description

These geoms are equivalent in functionality to ggplot2::geom_text() and ggplot2::geom_label()
and allows for simple annotation of nodes.

76 geom_node_text

Usage

geom_node_text(
mapping = NULL,
data = NULL,
position = "identity",
parse = FALSE,
nudge_x = 0,
nudge_y = 0,
check_overlap = FALSE,
show.legend = NA,
repel = FALSE,
...

)

geom_node_label(
mapping = NULL,
data = NULL,
position = "identity",
parse = FALSE,
nudge_x = 0,
nudge_y = 0,
label.padding = unit(0.25, "lines"),
label.r = unit(0.15, "lines"),
label.size = 0.25,
show.legend = NA,
repel = FALSE,
...

)

Arguments

mapping Set of aesthetic mappings created by ggplot2::aes() or ggplot2::aes_().
By default x and y are mapped to x and y in the node data.

data The data to be displayed in this layer. There are three options:
If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot().
A data.frame, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See fortify() for which variables will be
created.
A function will be called with a single argument, the plot data. The return
value must be a data.frame, and will be used as the layer data. A function
can be created from a formula (e.g. ~ head(.x, 10)).

position Position adjustment, either as a string, or the result of a call to a position adjust-
ment function. Cannot be jointy specified with nudge_x or nudge_y.

parse If TRUE, the labels will be parsed into expressions and displayed as described in
?plotmath.

geom_node_text 77

nudge_x, nudge_y

Horizontal and vertical adjustment to nudge labels by. Useful for offsetting text
from points, particularly on discrete scales.

check_overlap If TRUE, text that overlaps previous text in the same layer will not be plotted.
check_overlap happens at draw time and in the order of the data. Therefore
data should be arranged by the label column before calling geom_text(). Note
that this argument is not supported by geom_label().

show.legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes. It
can also be a named logical vector to finely select the aesthetics to display.

repel If TRUE, text labels will be repelled from each other to avoid overlapping, using
the GeomTextRepel geom from the ggrepel package.

... Other arguments passed on to layer(). These are often aesthetics, used to set
an aesthetic to a fixed value, like colour = "red" or size = 3. They may also
be parameters to the paired geom/stat.

label.padding Amount of padding around label. Defaults to 0.25 lines.

label.r Radius of rounded corners. Defaults to 0.15 lines.

label.size Size of label border, in mm.

Aesthetics

geom_node_text understands the following aesthetics. Bold aesthetics are automatically set, but
can be overridden. Italic aesthetics are required but not set by default

• x
• y
• label

• alpha

• angle

• colour

• family

• fontface

• hjust

• lineheight

• size

• vjust

Author(s)

Thomas Lin Pedersen

See Also

Other geom_node_*: geom_node_arc_bar(), geom_node_circle(), geom_node_point(), geom_node_range(),
geom_node_tile(), geom_node_voronoi()

78 geom_node_tile

Examples

require(tidygraph)
gr <- create_notable('bull') %>%

mutate(class = sample(letters[1:3], n(), replace = TRUE))

ggraph(gr, 'stress') +
geom_node_point(aes(label = class))

ggraph(gr, 'stress') +
geom_node_label(aes(label = class), repel = TRUE)

geom_node_tile Draw the rectangles in a treemap

Description

A treemap is a space filling layout that recursively divides a rectangle to the children of the node.
Often only the leaf nodes are drawn as nodes higher up in the hierarchy would obscure what is
below. geom_treemap is a shorthand for geom_node_treemap as node is implicit in the case of
treemap drawing

Usage

geom_node_tile(
mapping = NULL,
data = NULL,
position = "identity",
show.legend = NA,
...

)

Arguments

mapping Set of aesthetic mappings created by ggplot2::aes() or ggplot2::aes_().
By default x, y, width and height are mapped to x, y, width and height in the
node data.

data The data to be displayed in this layer. There are three options:
If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot().
A data.frame, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See fortify() for which variables will be
created.
A function will be called with a single argument, the plot data. The return
value must be a data.frame, and will be used as the layer data. A function
can be created from a formula (e.g. ~ head(.x, 10)).

geom_node_tile 79

position Position adjustment, either as a string naming the adjustment (e.g. "jitter" to
use position_jitter), or the result of a call to a position adjustment function.
Use the latter if you need to change the settings of the adjustment.

show.legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes. It
can also be a named logical vector to finely select the aesthetics to display.

... Other arguments passed on to layer(). These are often aesthetics, used to set
an aesthetic to a fixed value, like colour = "red" or size = 3. They may also
be parameters to the paired geom/stat.

Aesthetics

geom_treemap understand the following aesthetics. Bold aesthetics are automatically set, but can
be overridden.

• x
• y
• width
• height
• alpha

• colour

• fill

• size

• stroke

• filter

Author(s)

Thomas Lin Pedersen

See Also

Other geom_node_*: geom_node_arc_bar(), geom_node_circle(), geom_node_point(), geom_node_range(),
geom_node_text(), geom_node_voronoi()

Examples

Create a graph of the flare class system
library(tidygraph)
flareGraph <- tbl_graph(flare$vertices, flare$edges) %>%

mutate(
class = map_bfs_chr(node_is_root(), .f = function(node, dist, path, ...) {

if (dist <= 1) {
return(shortName[node])

}
path$result[[nrow(path)]]

})

80 geom_node_voronoi

)

ggraph(flareGraph, 'treemap', weight = size) +
geom_node_tile(aes(fill = class, filter = leaf, alpha = depth), colour = NA) +
geom_node_tile(aes(size = depth), colour = 'white') +
scale_alpha(range = c(1, 0.5), guide = 'none') +
scale_size(range = c(4, 0.2), guide = 'none')

geom_node_voronoi Show nodes as voronoi tiles

Description

This geom is equivalent in functionality to ggforce::geom_voronoi_tile() and allows for plot-
ting of nodes as tiles from a voronoi tesselation. As with ggforce::geom_voronoi_tile() it is
possible to restrict the size of the tile to a fixed radius, as well as round corners and expand/contract
the tile.

Usage

geom_node_voronoi(
mapping = NULL,
data = NULL,
position = "identity",
show.legend = NA,
bound = NULL,
eps = 1e-09,
max.radius = NULL,
normalize = FALSE,
asp.ratio = 1,
expand = 0,
radius = 0,
...

)

Arguments

mapping Set of aesthetic mappings created by ggplot2::aes() or ggplot2::aes_().
By default x and y are mapped to x and y in the node data and group set to -1.

data The data to be displayed in this layer. There are three options:
If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot().
A data.frame, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See fortify() for which variables will be
created.
A function will be called with a single argument, the plot data. The return
value must be a data.frame, and will be used as the layer data. A function
can be created from a formula (e.g. ~ head(.x, 10)).

geom_node_voronoi 81

position Position adjustment, either as a string naming the adjustment (e.g. "jitter" to
use position_jitter), or the result of a call to a position adjustment function.
Use the latter if you need to change the settings of the adjustment.

show.legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes. It
can also be a named logical vector to finely select the aesthetics to display.

bound The bounding rectangle for the tesselation or a custom polygon to clip the tesse-
lation to. Defaults to NULL which creates a rectangle expanded 10\ vector giving
the bounds in the following order: xmin, xmax, ymin, ymax. If supplied as a
polygon it should either be a 2-column matrix or a data.frame containing an x
and y column.

eps A value of epsilon used in testing whether a quantity is zero, mainly in the
context of whether points are collinear. If anomalous errors arise, it is possible
that these may averted by adjusting the value of eps upward or downward.

max.radius The maximum distance a tile can extend from the point of origin. Will in effect
clip each tile to a circle centered at the point with the given radius. If normalize
= TRUE the radius will be given relative to the normalized values

normalize Should coordinates be normalized prior to calculations. If x and y are in wildly
different ranges it can lead to tesselation and triangulation that seems off when
plotted without ggplot2::coord_fixed(). Normalization of coordinates solves
this. The coordinates are transformed back after calculations.

asp.ratio If normalize = TRUE the x values will be multiplied by this amount after nor-
malization.

expand A numeric or unit vector of length one, specifying the expansion amount. Neg-
ative values will result in contraction instead. If the value is given as a numeric
it will be understood as a proportion of the plot area width.

radius As expand but specifying the corner radius.

... Other arguments passed on to layer(). These are often aesthetics, used to set
an aesthetic to a fixed value, like colour = "red" or size = 3. They may also
be parameters to the paired geom/stat.

Aesthetics

geom_node_voronoi understand the following aesthetics. Bold aesthetics are automatically set, but
can be overridden.

• x
• y
• alpha

• colour

• fill

• shape

• size

• stroke

• filter

82 get_con

Author(s)

Thomas Lin Pedersen

See Also

Other geom_node_*: geom_node_arc_bar(), geom_node_circle(), geom_node_point(), geom_node_range(),
geom_node_text(), geom_node_tile()

Examples

require(tidygraph)
gr <- create_notable('meredith') %>%

mutate(group = sample(letters[1:4], n(), TRUE))

ggraph(gr) +
geom_node_voronoi(aes(fill = group, colour = group), alpha = 0.3) +
geom_edge_link(alpha = 0.3) +
geom_node_point()

Use max.radius to make the tesselation more "node"-like
ggraph(gr) +

geom_node_voronoi(aes(fill = group, colour = group), alpha = 0.3, max.radius = 1) +
geom_edge_link(alpha = 0.3) +
geom_node_point()

get_con Create a connection extractor function

Description

Connections within the ggraph terminology are links between nodes that are not part of the network
structure itself. In that sense connections do not affect the layout calculation in any way and will not
be drawn by the standard geom_edge_* functions. A connection does not need to only be defined
by a start and end node, but can include intermediary nodes. get_con helps in creating connection
data by letting you specify start and end nodes and automatically finds the shortest path within the
graph structure that connects the given points. If this is not what is needed it is also possible to
supply a list of vectors giving node indices that define a connection.

Usage

get_con(
from = integer(),
to = integer(),
paths = NULL,
...,
weight = NULL,
mode = "all"

)

get_edges 83

Arguments

from, to The index of the start and end nodes for the connections

paths A list of integer vectors giving the index of nodes defining connections

... Additional information to be added to the final data output

weight An expression to be evaluated on the edge data to provide weights for the short-
est path calculations

mode Character constant, gives whether the shortest paths to or from the given ver-
tices should be calculated for directed graphs. If out then the shortest paths
from the vertex, if in then to it will be considered. If all, the default, then the
corresponding undirected graph will be used, ie. not directed paths are searched.
This argument is ignored for undirected graphs.

Value

A function that takes a layout_ggraph object and returns the given connections

See Also

Other extractors: get_edges(), get_nodes()

get_edges Create edge extractor function

Description

This function returns another function that can extract edges from a ggraph_layout object. The
functionality of the returned function is decided by the arguments to get_edges. The need for
get_edges is mainly to pass to the data argument of the different geom_edge_* functions in order
to present them with the right kind of data. In general each geom_edge_* has the default set correctly
so there is only need to modify the data argument if parallel edges should be collapsed.

Usage

get_edges(format = "short", collapse = "none", ...)

Arguments

format Either 'short' (the default) or 'long'. See details for a descriptions of the
differences

collapse Either 'none' (the default), 'all' or 'direction'. Specifies whether parallel
edges should be merged. See details for more information

... Additional data that will be cbind’ed together with the returned edge data.

84 get_nodes

Details

There are two types of return formats possible for the result of the returned function:

short In this format each edge is described in one line in the format expected for ggplot2::geom_segment(),
that is, the start node position is encoded in the x and y column and the end node position is
encoded in the xend and yend column. If node parameters are added to the edge the name of
the parameters will be prefixed with node1. for the start node and node2. for the end node.

long In this format each edge consists of two rows with matching edge.id value. The start and end
position are both encoded in the x and y column. The relative position of the rows determines
which is the start and end node, the first occurring being the start node. If node parameters are
added to the edge data the name of the parameters will be prefixed with node..

Node parameters are automatically added so it is possible to format edge aesthetics according to
start or end node parameters, or interpolate edge aesthetics between start and end node parameters.
Node parameters will be prefixed to avoid name clash with edge parameters. The prefix depends on
the format (see above).
If the graph is not simple (it contains at most one edge between each node pair) it can be collapsed
so either all edges between two nodes or all edges of the same direction between two nodes are
merged. The edge parameters are taken from the first occurring edge, so if some more sophisticated
summary is needed it is suggested that the graph be tidied up before plotting with ggraph.

Value

A data.frame with columns dependent on format as well as the graph type. In addition to the
columns discussed in the details section, the data.frame will always contain the columns from, to
and circular, the two former giving the indexes of the start and end node and the latter if the layout
is circular (needed for correct formatting of some geom_edge_*). The graph dependent information
is:

dendrogram A label column will hold the value of the edgetext attribute. In addition any value
stored in the edgePar attribute will be added. Lastly a direction column will hold the relative
position between the start and end nodes (needed for correct formatting of geom_edge_elbow()).

igraph All edge attributes of the original graph object is added as columns to the data.frame

See Also

Other extractors: get_con(), get_nodes()

get_nodes Create a node extractor function

Description

This function returns another function that can extract nodes from a ggraph_layout object. As
a ggraph_layout object is essentially a data.frame of nodes it might seem useless to provide this
function, but since the node data is not necessarily available until after the ggraph() call it can be
beneficial to be able to add information to the node data on a per-layer basis. Unlike get_edges()
the use of get_nodes is not mandatory and is only required if additional data should be added to
selected node layers.

ggraph 85

Usage

get_nodes(...)

Arguments

... Additional data that should be cbind’ed together with the node data.

Value

A data.frame with the node data as well of any additional data supplied through ...

See Also

Other extractors: get_con(), get_edges()

ggraph Create a ggraph plot

Description

This function is the equivalent of ggplot2::ggplot() in ggplot2. It takes care of setting up the plot
object along with creating the layout for the plot based on the graph and the specification passed
in. Alternatively a layout can be prepared in advance using create_layout and passed as the data
argument. See Details for a description of all available layouts.

Usage

ggraph(graph, layout = "auto", ...)

create_layout(graph, layout, circular, ...)

Default S3 method:
create_layout(graph, layout, ...)

S3 method for class 'layout_ggraph'
create_layout(graph, ...)

S3 method for class 'tbl_graph'
create_layout(graph, layout, circular = FALSE, ...)

Arguments

graph The object containing the graph. See Details for a list of supported classes.
Or a layout_ggraph object as returned from create_layout in which case all
subsequent arguments is ignored.

layout The type of layout to create. Either a valid string, a function, a matrix, or a
data.frame (see Details)

86 ggraph

... Arguments passed on to the layout function.
circular Should the layout be transformed into a radial representation. Only possible for

some layouts. Defaults to FALSE

Details

Following is a short description of the different layout types available in ggraph. Each layout is
further described in its own help pages. Any type of regular graph/network data can be represented
as a tbl_graph object. Because of this the different layouts that can be applied to tbl_graph objects
are quite diverse, but not all layouts makes sense to all types of graphs. It is up to the user to
understand their data and choose an appropriate layout. For standard node-edge diagrams igraph
defines a long range of different layout functions that are all available through the igraph layout
where the specific layout is specified using the algorithm argument. In order to minimize typing
all igraph algorithms can also be passed directly into the layout argument.

Any object that has an appropriate as_tbl_graph method can be passed into ggraph() and will
automatically be converted underneath.

auto The default layout. See layout_tbl_graph_auto() for further details
igraph Use one of the internal igraph layout algorithms. The algorithm is specified using the

algorithm argument. All strings accepted by the algorithm argument can also be supplied
directly into layout. See layout_tbl_graph_igraph() for further details

dendrogram Lays out the nodes in a tree-like graph as a dendrogram with leaves set at 0 and parents
1 unit above its tallest child. See layout_tbl_graph_dendrogram() for further details

manual Lets the user manually specify the location of each node. See layout_tbl_graph_manual()
for further details

linear Arranges the nodes linearly or circularly in order to make an arc diagram. See layout_tbl_graph_linear()
for further details

matrix Arranges nodes on a diagonal thus preparing it for use with geom_edge_point() to make
a matrix plot. See layout_tbl_graph_matrix() for further details

treemap Creates a treemap from the graph, that is, a space-filing subdivision of rectangles showing
a weighted hierarchy. See layout_tbl_graph_treemap() for further details

circlepack Creates a layout showing a hierarchy as circles within circles. Conceptually equal to
treemaps. See layout_tbl_graph_circlepack() for further details

partition Create icicle or sunburst charts, where each layer subdivides the division given by the
preceding layer. See layout_tbl_graph_partition() for further details

hive Positions nodes on axes spreading out from the center based on node attributes. See layout_tbl_graph_hive()
for further details

Alternatively a matrix or a data.frame can be provided to the layout argument. In the former case
the first column will be used as x coordinates and the second column will by used as y coordinates,
further columns are dropped. In the latter case the data.frame is used as the layout table and must
thus contain a numeric x and y column.

Lastly a function can be provided to the layout argument. It will be called with the graph object
as its first argument and any additional argument passed into ggraph()/create_layout(). The
function must return either a data.frame or an object coercible to one and have an x and y column,
or an object coercible to a tbl_graph. In the latter case the node data is extracted and used as layout
(and must thus contain an x and y column) and the graph will be added as the graph attribute.

guide_edge_colourbar 87

Value

For ggraph() an object of class gg onto which layers, scales, etc. can be added. For create_layout()
an object inheriting from layout_ggraph. layout_ggraph itself inherits from data.frame and can
be considered as such. The data.frame contains the node positions in the x and y column along with
additional columns generated by the specific layout, as well as node parameters inherited from the
graph. Additional information is stored as attributes to the data.frame. The original graph object is
stored in the graph attribute and the circular attribute contains a logical indicating whether the
layout has been transformed to a circular representation.

See Also

get_edges() for extracting edge information from the layout and get_con() for extracting path
information.

Examples

require(tidygraph)
gr <- create_notable('bull')
layout <- create_layout(gr, layout = 'igraph', algorithm = 'kk')

guide_edge_colourbar Colourbar legend for edges

Description

This function is equivalent to ggplot2::guide_colourbar() but works for edge aesthetics.

Usage

guide_edge_colourbar(..., available_aes = c("edge_colour", "edge_fill"))

guide_edge_colorbar(..., available_aes = c("edge_colour", "edge_fill"))

Arguments

... Arguments passed on to ggplot2::guide_colourbar

title A character string or expression indicating a title of guide. If NULL, the
title is not shown. By default (waiver()), the name of the scale object or
the name specified in labs() is used for the title.

title.position A character string indicating the position of a title. One of
"top" (default for a vertical guide), "bottom", "left" (default for a horizontal
guide), or "right."

title.theme A theme object for rendering the title text. Usually the object
of element_text() is expected. By default, the theme is specified by
legend.title in theme() or theme.

title.hjust A number specifying horizontal justification of the title text.

88 guide_edge_colourbar

title.vjust A number specifying vertical justification of the title text.
label logical. If TRUE then the labels are drawn. If FALSE then the labels are

invisible.
label.position A character string indicating the position of a label. One of

"top", "bottom" (default for horizontal guide), "left", or "right" (default for
vertical guide).

label.theme A theme object for rendering the label text. Usually the object
of element_text() is expected. By default, the theme is specified by
legend.text in theme().

label.hjust A numeric specifying horizontal justification of the label text.
The default for standard text is 0 (left-aligned) and 1 (right-aligned) for
expressions.

label.vjust A numeric specifying vertical justification of the label text.
barwidth A numeric or a grid::unit() object specifying the width of the

colourbar. Default value is legend.key.width or legend.key.size in
theme() or theme.

barheight A numeric or a grid::unit() object specifying the height of the
colourbar. Default value is legend.key.height or legend.key.size in
theme() or theme.

nbin A numeric specifying the number of bins for drawing the colourbar. A
smoother colourbar results from a larger value.

raster A logical. If TRUE then the colourbar is rendered as a raster object. If
FALSE then the colourbar is rendered as a set of rectangles. Note that not all
graphics devices are capable of rendering raster image.

frame.colour A string specifying the colour of the frame drawn around the
bar. If NULL (the default), no frame is drawn.

frame.linewidth A numeric specifying the width of the frame drawn around
the bar in millimetres.

frame.linetype A numeric specifying the linetype of the frame drawn around
the bar.

ticks A logical specifying if tick marks on the colourbar should be visible.
ticks.colour A string specifying the colour of the tick marks.
ticks.linewidth A numeric specifying the width of the tick marks in mil-

limetres.
draw.ulim A logical specifying if the upper limit tick marks should be visible.
draw.llim A logical specifying if the lower limit tick marks should be visible.
direction A character string indicating the direction of the guide. One of

"horizontal" or "vertical."
default.unit A character string indicating grid::unit() for barwidth and

barheight.
reverse logical. If TRUE the colourbar is reversed. By default, the highest value

is on the top and the lowest value is on the bottom
order positive integer less than 99 that specifies the order of this guide among

multiple guides. This controls the order in which multiple guides are dis-
played, not the contents of the guide itself. If 0 (default), the order is deter-
mined by a secret algorithm.

guide_edge_coloursteps 89

available_aes A vector of character strings listing the aesthetics for which a colourbar can be
drawn.

Value

A guide object

guide_edge_coloursteps

Coloursteps legend for edges

Description

This function is equivalent to ggplot2::guide_coloursteps() but works for edge aesthetics.

Usage

guide_edge_coloursteps(
even.steps = TRUE,
show.limits = NULL,
ticks = FALSE,
...,
available_aes = c("edge_colour", "edge_fill")

)

guide_edge_colorsteps(
even.steps = TRUE,
show.limits = NULL,
ticks = FALSE,
...,
available_aes = c("edge_colour", "edge_fill")

)

Arguments

even.steps Should the rendered size of the bins be equal, or should they be proportional to
their length in the data space? Defaults to TRUE

show.limits Logical. Should the limits of the scale be shown with labels and ticks. Default
is NULL meaning it will take the value from the scale. This argument is ignored
if labels is given as a vector of values. If one or both of the limits is also given
in breaks it will be shown irrespective of the value of show.limits.

ticks A logical specifying if tick marks on the colourbar should be visible.

... Arguments passed on to ggplot2::guide_colourbar

title A character string or expression indicating a title of guide. If NULL, the
title is not shown. By default (waiver()), the name of the scale object or
the name specified in labs() is used for the title.

90 guide_edge_coloursteps

title.position A character string indicating the position of a title. One of
"top" (default for a vertical guide), "bottom", "left" (default for a horizontal
guide), or "right."

title.theme A theme object for rendering the title text. Usually the object
of element_text() is expected. By default, the theme is specified by
legend.title in theme() or theme.

title.hjust A number specifying horizontal justification of the title text.
title.vjust A number specifying vertical justification of the title text.
label logical. If TRUE then the labels are drawn. If FALSE then the labels are

invisible.
label.position A character string indicating the position of a label. One of

"top", "bottom" (default for horizontal guide), "left", or "right" (default for
vertical guide).

label.theme A theme object for rendering the label text. Usually the object
of element_text() is expected. By default, the theme is specified by
legend.text in theme().

label.hjust A numeric specifying horizontal justification of the label text.
The default for standard text is 0 (left-aligned) and 1 (right-aligned) for
expressions.

label.vjust A numeric specifying vertical justification of the label text.
barwidth A numeric or a grid::unit() object specifying the width of the

colourbar. Default value is legend.key.width or legend.key.size in
theme() or theme.

barheight A numeric or a grid::unit() object specifying the height of the
colourbar. Default value is legend.key.height or legend.key.size in
theme() or theme.

nbin A numeric specifying the number of bins for drawing the colourbar. A
smoother colourbar results from a larger value.

raster A logical. If TRUE then the colourbar is rendered as a raster object. If
FALSE then the colourbar is rendered as a set of rectangles. Note that not all
graphics devices are capable of rendering raster image.

frame.colour A string specifying the colour of the frame drawn around the
bar. If NULL (the default), no frame is drawn.

frame.linewidth A numeric specifying the width of the frame drawn around
the bar in millimetres.

frame.linetype A numeric specifying the linetype of the frame drawn around
the bar.

ticks.colour A string specifying the colour of the tick marks.
ticks.linewidth A numeric specifying the width of the tick marks in mil-

limetres.
draw.ulim A logical specifying if the upper limit tick marks should be visible.
draw.llim A logical specifying if the lower limit tick marks should be visible.
direction A character string indicating the direction of the guide. One of

"horizontal" or "vertical."
default.unit A character string indicating grid::unit() for barwidth and

barheight.

guide_edge_direction 91

reverse logical. If TRUE the colourbar is reversed. By default, the highest value
is on the top and the lowest value is on the bottom

order positive integer less than 99 that specifies the order of this guide among
multiple guides. This controls the order in which multiple guides are dis-
played, not the contents of the guide itself. If 0 (default), the order is deter-
mined by a secret algorithm.

available_aes A vector of character strings listing the aesthetics for which a colourbar can be
drawn.

Value

A guide object

guide_edge_direction Edge direction guide

Description

This guide is intended to show the direction of edges based on the aesthetics mapped to its progres-
sion, such as changing width, colour and opacity.

Usage

guide_edge_direction(
title = waiver(),
title.position = NULL,
title.theme = NULL,
title.hjust = NULL,
title.vjust = NULL,
arrow = TRUE,
arrow.position = NULL,
barwidth = NULL,
barheight = NULL,
nbin = 500,
direction = NULL,
default.unit = "line",
reverse = FALSE,
order = 0,
override.aes = list(),
...

)

Arguments

title A character string or expression indicating a title of guide. If NULL, the title is
not shown. By default (waiver()), the name of the scale object or the name
specified in labs() is used for the title.

92 highschool

title.position A character string indicating the position of a title. One of "top" (default for a
vertical guide), "bottom", "left" (default for a horizontal guide), or "right."

title.theme A theme object for rendering the title text. Usually the object of element_text()
is expected. By default, the theme is specified by legend.title in theme() or
theme.

title.hjust A number specifying horizontal justification of the title text.

title.vjust A number specifying vertical justification of the title text.

arrow Logical. Should an arrow be drawn to illustrate the direction. Defaults to TRUE

arrow.position The position of the arrow relative to the example edge.

barwidth A numeric or a grid::unit() object specifying the width of the colourbar.
Default value is legend.key.width or legend.key.size in theme() or theme.

barheight A numeric or a grid::unit() object specifying the height of the colourbar. De-
fault value is legend.key.height or legend.key.size in theme() or theme.

nbin A numeric specifying the number of bins for drawing the colourbar. A smoother
colourbar results from a larger value.

direction A character string indicating the direction of the guide. One of "horizontal" or
"vertical."

default.unit A character string indicating grid::unit() for barwidth and barheight.

reverse logical. If TRUE the colourbar is reversed. By default, the highest value is on the
top and the lowest value is on the bottom

order positive integer less than 99 that specifies the order of this guide among multiple
guides. This controls the order in which multiple guides are displayed, not the
contents of the guide itself. If 0 (default), the order is determined by a secret
algorithm.

override.aes A list specifying aesthetic parameters of legend key.

... ignored.

Examples

gr <- tidygraph::as_tbl_graph(highschool)
ggraph(gr, layout = 'kk') +

geom_edge_fan(aes(alpha = after_stat(index))) +
guides(edge_alpha = guide_edge_direction())

highschool Friendship among high school boys

Description

This dataset shows the friendship among high school boys as assessed by the question: "What
fellows here in school do you go around with most often?". The question was posed twice, with one
year in between (1957 and 1958) and shows the evolution in friendship between the two timepoints.

layout_tbl_graph_auto 93

Usage

highschool

Format

The graph is stored as an unnamed edgelist with a year attribute.

from The boy answering the question

to The boy being the answer to the question

year The year the friendship was reported

Source

Coleman, J. S. Introduction to Mathematical Sociology. New York: Free Press, pp.450-451.

layout_tbl_graph_auto Automatically pick a layout based on graph type

Description

This function infers the layout from the graph structure and is the default when calling ggraph().
If an x and y argument is passed along, the manual layout is chosen. Otherwise if the graph is either
a rooted tree or a rooted forest the layout will be dendrogram if the nodes contains a height variable
or tree if not. If the tree is unrooted the unrooted layout will be used. If the tree is a DAG the
sygiyama layout will be used. Otherwise the stress layout will be used (or sparse_tree if the
graph contains more than 2000 nodes).

Usage

layout_tbl_graph_auto(graph, circular, ...)

Arguments

graph A tbl_graph object

circular Logical. Should the layout be transformed to a circular representation. Defaults
to FALSE. Only applicable if the graph is a tree structure

... Arguments passed on to the chosen layout

Value

A data.frame with the columns x, y, circular as well as any information stored as node variables
in the tbl_graph object.

94 layout_tbl_graph_backbone

See Also

Other layout_tbl_graph_*: layout_tbl_graph_backbone(), layout_tbl_graph_centrality(),
layout_tbl_graph_circlepack(), layout_tbl_graph_dendrogram(), layout_tbl_graph_eigen(),
layout_tbl_graph_fabric(), layout_tbl_graph_focus(), layout_tbl_graph_hive(), layout_tbl_graph_igraph(),
layout_tbl_graph_linear(), layout_tbl_graph_manual(), layout_tbl_graph_matrix(), layout_tbl_graph_partition(),
layout_tbl_graph_pmds(), layout_tbl_graph_stress(), layout_tbl_graph_treemap(), layout_tbl_graph_unrooted()

layout_tbl_graph_backbone

Place node to emphasize group structure

Description

This layout is optimised for drawing small-world types of graphs often found in social networks,
where distinct groups are still highly connected to the remaining graph. Typical layouts struggle
with this as they attempt to minimise the edge length of all edges equally. The backbone layout is
based on weighing edges based on how well they hold together communities. The end result is that
communities tend to stick together despite high interconnectivity.

Usage

layout_tbl_graph_backbone(graph, keep = 0.2, circular = FALSE)

Arguments

graph A tbl_graph object

keep The fraction of edges to use for creating the backbone

circular ignored

Value

A data.frame with the columns x, y, circular as well as any information stored as node variables
in the tbl_graph object. Further an edge attribute called backbone is added giving whether the edge
was selected as backbone.

Author(s)

The underlying algorithm is implemented in the graphlayouts package by David Schoch

References

Nocaj, A., Ortmann, M., & Brandes, U. (2015). Untangling the hairballs of multi-centered, small-
world online social media networks. Journal of Graph Algorithms and Applications: JGAA, 19(2),
595-618.

layout_tbl_graph_centrality 95

See Also

Other layout_tbl_graph_*: layout_tbl_graph_auto(), layout_tbl_graph_centrality(), layout_tbl_graph_circlepack(),
layout_tbl_graph_dendrogram(), layout_tbl_graph_eigen(), layout_tbl_graph_fabric(),
layout_tbl_graph_focus(), layout_tbl_graph_hive(), layout_tbl_graph_igraph(), layout_tbl_graph_linear(),
layout_tbl_graph_manual(), layout_tbl_graph_matrix(), layout_tbl_graph_partition(),
layout_tbl_graph_pmds(), layout_tbl_graph_stress(), layout_tbl_graph_treemap(), layout_tbl_graph_unrooted()

layout_tbl_graph_centrality

Place nodes in circles according to centrality measure

Description

This layout places nodes in circles with the radii relative to a given centrality measure. Under the
hood it use stress majorisation to place nodes optimally given the radius constraint.

Usage

layout_tbl_graph_centrality(
graph,
centrality,
scale = TRUE,
niter = 500,
tolerance = 1e-04,
tseq = seq(0, 1, 0.2),
circular = FALSE

)

Arguments

graph A tbl_graph object

centrality An expression evaluating to a centrality measure for the nodes. See the different
centrality_*() algorithms in tidygraph for a selection.

scale Should the centrality measure be scaled between 0 and 100

niter number of iterations during stress optimization

tolerance stopping criterion for stress optimization

tseq Transitioning steps

circular ignored

Value

A data.frame with the columns x, y, circular, centrality as well as any information stored as
node variables in the tbl_graph object.

96 layout_tbl_graph_circlepack

Author(s)

The underlying algorithm is implemented in the graphlayouts package by David Schoch

References

Brandes, U., & Pich, C. (2011). More flexible radial layout. Journal of Graph Algorithms and
Applications, 15(1), 157-173.

See Also

Other layout_tbl_graph_*: layout_tbl_graph_auto(), layout_tbl_graph_backbone(), layout_tbl_graph_circlepack(),
layout_tbl_graph_dendrogram(), layout_tbl_graph_eigen(), layout_tbl_graph_fabric(),
layout_tbl_graph_focus(), layout_tbl_graph_hive(), layout_tbl_graph_igraph(), layout_tbl_graph_linear(),
layout_tbl_graph_manual(), layout_tbl_graph_matrix(), layout_tbl_graph_partition(),
layout_tbl_graph_pmds(), layout_tbl_graph_stress(), layout_tbl_graph_treemap(), layout_tbl_graph_unrooted()

layout_tbl_graph_circlepack

Calculate nodes as circles packed within their parent circle

Description

The circle packing algorithm is basically a treemap using circles instead of rectangles. Due to the
nature of circles they cannot be packed as efficiently leading to increased amount of "empty space"
as compared to a treemap. This can be beneficial though, as the added empty space can aid in
visually showing the hierarchy.

Usage

layout_tbl_graph_circlepack(
graph,
weight = NULL,
circular = FALSE,
sort.by = NULL,
direction = "out"

)

Arguments

graph An tbl_graph object
weight An optional node variable to use as weight. Will only affect the weight of leaf

nodes as the weight of non-leaf nodes are derived from their children.
circular Logical. Should the layout be transformed to a circular representation. Ignored.
sort.by The name of a node variable to sort the nodes by.
direction The direction of the tree in the graph. 'out' (default) means that parents point

towards their children, while 'in' means that children point towards their par-
ent.

layout_tbl_graph_dendrogram 97

Details

The circle packing is based on the algorithm developed by Weixin Wang and collaborators which
tries to find the most dense packing of circles as they are added, one by one. This makes the
algorithm very dependent on the order in which circles are added and it is possible that layouts
could sometimes be optimized by choosing a different ordering. The algorithm for finding the
enclosing circle is the randomized incremental algorithm proposed by Emo Welzl. Both of the
above algorithms are the same as used in the D3.js implementation of circle packing and their C++
implementation in ggraph is inspired by Mike Bostocks JavaScript implementation.

Value

A data.frame with the columns x, y, r, leaf, depth, circular as well as any information stored as
node variables in the tbl_graph object.

Note

Circle packing is a layout intended for trees, that is, graphs where nodes only have one parent and
zero or more children. If the provided graph does not fit this format an attempt to convert it to such
a format will be made.

References

Wang, W., Wang, H. H., Dai, G., & Wang, H. (2006). Visualization of large hierarchical data by
circle packing. Chi, 517-520.

Welzl, E. (1991). Smallest enclosing disks (balls and ellipsoids). New Results and New Trends in
Computer Science, 359-370.

See Also

Other layout_tbl_graph_*: layout_tbl_graph_auto(), layout_tbl_graph_backbone(), layout_tbl_graph_centrality(),
layout_tbl_graph_dendrogram(), layout_tbl_graph_eigen(), layout_tbl_graph_fabric(),
layout_tbl_graph_focus(), layout_tbl_graph_hive(), layout_tbl_graph_igraph(), layout_tbl_graph_linear(),
layout_tbl_graph_manual(), layout_tbl_graph_matrix(), layout_tbl_graph_partition(),
layout_tbl_graph_pmds(), layout_tbl_graph_stress(), layout_tbl_graph_treemap(), layout_tbl_graph_unrooted()

layout_tbl_graph_dendrogram

Apply a dendrogram layout to layout_tbl_graph

Description

This layout mimics the igraph::layout_as_tree() algorithm supplied by igraph, but puts all
leaves at 0 and builds it up from there, instead of starting from the root and building it from there.
The height of branch points are related to the maximum distance to an edge from the branch node,
or read from a node variable.

98 layout_tbl_graph_dendrogram

Usage

layout_tbl_graph_dendrogram(
graph,
circular = FALSE,
offset = pi/2,
height = NULL,
length = NULL,
repel = FALSE,
ratio = 1,
direction = "out"

)

Arguments

graph A tbl_graph object

circular Logical. Should the layout be transformed to a circular representation. Defaults
to FALSE.

offset If circular = TRUE, where should it begin. Defaults to pi/2 which is equivalent
to 12 o’clock.

height The node variable holding the height of each node in the dendrogram. If NULL it
will be calculated as the maximal distance to a leaf.

length An edge parameter giving the length of each edge. The node height will be
calculated from the maximal length to the root node (ignored if height does not
evaluate to NULL)

repel Should leafs repel each other relative to the height of their common ancestor.
Will emphasize clusters

ratio The strength of repulsion if repel = TRUE. Higher values will give more defined
clusters

direction The direction to the leaves. Defaults to ’out’

Value

A data.frame with the columns x, y, circular, depth and leaf as well as any information stored
as node variables on the tbl_graph

Note

This function is not intended to be used directly but by setting layout = 'dendrogram' in create_layout()

See Also

Other layout_tbl_graph_*: layout_tbl_graph_auto(), layout_tbl_graph_backbone(), layout_tbl_graph_centrality(),
layout_tbl_graph_circlepack(), layout_tbl_graph_eigen(), layout_tbl_graph_fabric(),
layout_tbl_graph_focus(), layout_tbl_graph_hive(), layout_tbl_graph_igraph(), layout_tbl_graph_linear(),
layout_tbl_graph_manual(), layout_tbl_graph_matrix(), layout_tbl_graph_partition(),
layout_tbl_graph_pmds(), layout_tbl_graph_stress(), layout_tbl_graph_treemap(), layout_tbl_graph_unrooted()

layout_tbl_graph_eigen 99

layout_tbl_graph_eigen

Place nodes according to their eigenvalues

Description

This layout is based on the idea of spectral layouts where node coordinates are calculated directly
by decomposing a matrix representation of the graph and extracting the eigenvectors.

Usage

layout_tbl_graph_eigen(
graph,
type = "laplacian",
eigenvector = "smallest",
circular = FALSE

)

Arguments

graph A tbl_graph object

type The type of matrix to extract the eigenvectors from. Either 'laplacian' or
'adjacency'

eigenvector The eigenvector to use for coordinates. Either 'smallest' or 'largest'

circular ignored

Value

A data.frame with the columns x, y, circular as well as any information stored as node variables
in the tbl_graph object.

Author(s)

The underlying algorithm is implemented in the graphlayouts package by David Schoch

See Also

Other layout_tbl_graph_*: layout_tbl_graph_auto(), layout_tbl_graph_backbone(), layout_tbl_graph_centrality(),
layout_tbl_graph_circlepack(), layout_tbl_graph_dendrogram(), layout_tbl_graph_fabric(),
layout_tbl_graph_focus(), layout_tbl_graph_hive(), layout_tbl_graph_igraph(), layout_tbl_graph_linear(),
layout_tbl_graph_manual(), layout_tbl_graph_matrix(), layout_tbl_graph_partition(),
layout_tbl_graph_pmds(), layout_tbl_graph_stress(), layout_tbl_graph_treemap(), layout_tbl_graph_unrooted()

100 layout_tbl_graph_fabric

layout_tbl_graph_fabric

Create a fabric layout

Description

This layout is a bit unusual in that it shows nodes as horizontal line ranges end edges as evenly
spaced vertical spans connecting the nodes. As with the matrix layout the strength comes from
better scalability but its use require some experience recognising the patterns that different connec-
tivity features gives rise to. As with matrix layouts the ordering of nodes have huge power over
the look of the plot. The node_rank_fabric() mimics the default ordering from the original Bio-
Fabric implementation, but other ranking algorithms from tidygraph can be used with the sort.by
argument as well. Fabric layouts tend to become quite wide as the graph grows which is something
that should be handled with care - e.g. by only zooming in on a specific region.

Usage

layout_tbl_graph_fabric(
graph,
circular = FALSE,
sort.by = NULL,
shadow.edges = FALSE

)

node_rank_fabric()

Arguments

graph An tbl_graph object

circular Ignored

sort.by An expression providing the sorting of the nodes. If NULL the nodes will be
ordered by their index in the graph.

shadow.edges Should shadow edges be shown.

Value

A data.frame with the columns x, xmin, xmax, y, circular as well as any information stored as
node variables in the tbl_graph object. Further, the edges of the graph will gain a edge_x variable
giving the horizontal position of the edge as well as a shadow_edge variable denoting whether the
edge is a shadow edge added by the layout.

References

BioFabric website: http://www.biofabric.org

Longabaugh, William J.R. (2012). Combing the hairball with BioFabric: a new approach for
visualization of large networks. BMC Bioinformatics, 13: 275. doi:10.1186/1471210513275

http://www.biofabric.org
https://doi.org/10.1186/1471-2105-13-275

layout_tbl_graph_focus 101

See Also

Other layout_tbl_graph_*: layout_tbl_graph_auto(), layout_tbl_graph_backbone(), layout_tbl_graph_centrality(),
layout_tbl_graph_circlepack(), layout_tbl_graph_dendrogram(), layout_tbl_graph_eigen(),
layout_tbl_graph_focus(), layout_tbl_graph_hive(), layout_tbl_graph_igraph(), layout_tbl_graph_linear(),
layout_tbl_graph_manual(), layout_tbl_graph_matrix(), layout_tbl_graph_partition(),
layout_tbl_graph_pmds(), layout_tbl_graph_stress(), layout_tbl_graph_treemap(), layout_tbl_graph_unrooted()

layout_tbl_graph_focus

Place nodes in circles based on distance to a specific node

Description

This layout constrains node placement to a radius relative to its distance to a given node. It then
uses stress majorisation to find an optimal node distribution according to this constraint.

Usage

layout_tbl_graph_focus(
graph,
focus,
weights = NULL,
niter = 500,
tolerance = 1e-04,
circular = TRUE

)

Arguments

graph a tbl_graph object

focus An expression evaluating to a selected node. Can either be a single integer or a
logical vector with a single TRUE element.

weights An expression evaluated on the edge data to provide edge weights for the layout.
Currently ignored for the sparse version

niter number of iterations during stress optimization

tolerance stopping criterion for stress optimization

circular ignored

Value

A data.frame with the columns x, y, circular, distance as well as any information stored as node
variables in the tbl_graph object.

Author(s)

The underlying algorithm is implemented in the graphlayouts package by David Schoch

102 layout_tbl_graph_hive

References

Brandes, U., & Pich, C. (2011). More flexible radial layout. Journal of Graph Algorithms and
Applications, 15(1), 157-173.

See Also

Other layout_tbl_graph_*: layout_tbl_graph_auto(), layout_tbl_graph_backbone(), layout_tbl_graph_centrality(),
layout_tbl_graph_circlepack(), layout_tbl_graph_dendrogram(), layout_tbl_graph_eigen(),
layout_tbl_graph_fabric(), layout_tbl_graph_hive(), layout_tbl_graph_igraph(), layout_tbl_graph_linear(),
layout_tbl_graph_manual(), layout_tbl_graph_matrix(), layout_tbl_graph_partition(),
layout_tbl_graph_pmds(), layout_tbl_graph_stress(), layout_tbl_graph_treemap(), layout_tbl_graph_unrooted()

layout_tbl_graph_hive Place nodes in a Hive Plot layout

Description

Hive plots were invented by Martin Krzywinski as a perceptually uniform and scalable alternative
to standard node-edge layouts. In hive plots nodes are positioned on axes radiating out from a
center based on their own information e.g. membership of a class, size of neighborhood, etc. Edges
are then drawn between nodes as bezier curves. As the placement of nodes is not governed by
convoluted algorithms but directly reflects the qualities of the nodes itself the resulting plot can be
easier to interpret as well as compare to other graphs.

Usage

layout_tbl_graph_hive(
graph,
axis,
axis.pos = NULL,
sort.by = NULL,
divide.by = NULL,
divide.order = NULL,
normalize = TRUE,
center.size = 0.1,
divide.size = 0.05,
use.numeric = FALSE,
offset = pi/2,
split.axes = "none",
split.angle = pi/6,
circular = FALSE

)

layout_tbl_graph_hive 103

Arguments

graph An tbl_graph object

axis The node attribute to use for assigning nodes to axes

axis.pos The relative distance to the prior axis. Default (NULL) places axes equidistant.

sort.by The node attribute to use for placing nodes along their axis. Defaults (NULL)
places nodes sequentially.

divide.by An optional node attribute to subdivide each axis by.

divide.order The order the axis subdivisions should appear in

normalize Logical. Should axis lengths be equal or reflect the number of nodes in each
axis. Defaults to TRUE.

center.size The size of the blank center, that is, the start position of the axes.

divide.size The distance between subdivided axis segments.

use.numeric Logical, If the sort.by attribute is numeric, should these values be used di-
rectly in positioning the nodes along the axes. Defaults to FALSE which sorts the
numeric values and positions them equidistant from each other.

offset Change the overall rotation of the hive plot by changing the offset of the first
axis.

split.axes Should axes be split to show edges between nodes on the same axis? One of:

’none’ Do not split axes and show in-between edges
’loops’ Only split axes that contain in-between edges
’all’ Split all axes

split.angle The angular distance between the two axes resulting from a split.

circular Ignored.

Details

In order to be able to draw all edges without edges crossing axes you should not assign nodes to
axes based on a variable with more than three levels.

Value

A data.frame with the columns x, y, r, center_size, split, axis, section, angle, circular as
well as any information stored as node variables in the tbl_graph object.

References

Krzywinski, M., Birol, I., Jones, SJM., and Marra, MA. (2012). Hive plots-rational approach to
visualizing networks. Brief Bioinform 13 (5): 627-644. https://doi.org/10.1093/bib/bbr069

http://www.hiveplot.net

http://www.hiveplot.net

104 layout_tbl_graph_igraph

See Also

Other layout_tbl_graph_*: layout_tbl_graph_auto(), layout_tbl_graph_backbone(), layout_tbl_graph_centrality(),
layout_tbl_graph_circlepack(), layout_tbl_graph_dendrogram(), layout_tbl_graph_eigen(),
layout_tbl_graph_fabric(), layout_tbl_graph_focus(), layout_tbl_graph_igraph(), layout_tbl_graph_linear(),
layout_tbl_graph_manual(), layout_tbl_graph_matrix(), layout_tbl_graph_partition(),
layout_tbl_graph_pmds(), layout_tbl_graph_stress(), layout_tbl_graph_treemap(), layout_tbl_graph_unrooted()

layout_tbl_graph_igraph

Use igraph layout algorithms for layout_tbl_graph

Description

This layout function makes it easy to apply one of the layout algorithms supplied in igraph when
plotting with ggraph. Layout names are auto completed so there is no need to write layout_with_graphopt
or layout_as_tree, just graphopt and tree (though the former will also work if you want to be
super explicit). Circular layout is only supported for tree-like layout (tree and sugiyama) and will
throw an error when applied to other layouts.

Usage

layout_tbl_graph_igraph(
graph,
algorithm,
circular,
offset = pi/2,
use.dummy = FALSE,
...

)

Arguments

graph A tbl_graph object.

algorithm The type of layout algorithm to apply. See Details or igraph::layout_() for
links to the layouts supplied by igraph.

circular Logical. Should the layout be transformed to a circular representation. Defaults
to FALSE. Only applicable to algorithm = 'tree' and algorithm = 'sugiyama'.

offset If circular = TRUE, where should it begin. Defaults to pi/2 which is equivalent
to 12 o’clock.

use.dummy Logical. In the case of algorithm = 'sugiyama' should the dummy-infused
graph be used rather than the original. Defaults to FALSE.

... Arguments passed on to the respective layout functions

layout_tbl_graph_igraph 105

Details

igraph provides a huge amount of possible layouts. They are all briefly described below:

Hierarchical layouts

tree Uses the Reingold-Tilford algorithm to place the nodes below their parent with the parent
centered above its children. See igraph::as_tree()

sugiyama Designed for directed acyclic graphs (that is, hierarchies where multiple parents are
allowed) it minimizes the number of crossing edges. See igraph::with_sugiyama()

Standard layouts

bipartite Minimize edge-crossings in a simple two-row (or column) layout for bipartite graphs.
See igraph::as_bipartite()

star Place one node in the center and the rest equidistantly around it. See igraph::as_star()

circle Place nodes in a circle in the order of their index. Consider using layout_tbl_graph_linear()
with circular=TRUE for more control. See igraph::in_circle()

nicely Tries to pick an appropriate layout. See igraph::nicely() for a description of the simple
decision tree it uses

dh Uses Davidson and Harels simulated annealing algorithm to place nodes. See igraph::with_dh()

gem Place nodes on the plane using the GEM force-directed layout algorithm. See igraph::with_gem()

graphopt Uses the Graphopt algorithm based on alternating attraction and repulsion to place
nodes. See igraph::with_graphopt()

grid Place nodes on a rectangular grid. See igraph::on_grid()

mds Perform a multidimensional scaling of nodes using either the shortest path or a user supplied
distance. See igraph::with_mds()

sphere Place nodes uniformly on a sphere - less relevant for 2D visualizations of networks. See
igraph::on_sphere()

randomly Places nodes uniformly random. See igraph::randomly()

fr Places nodes according to the force-directed algorithm of Fruchterman and Reingold. See
igraph::with_fr()

kk Uses the spring-based algorithm by Kamada and Kawai to place nodes. See igraph::with_kk()

drl Uses the force directed algorithm from the DrL toolbox to place nodes. See igraph::with_drl()

lgl Uses the algorithm from Large Graph Layout to place nodes. See igraph::with_lgl()

Value

A data.frame with the columns x, y, circular as well as any information stored as node variables
in the tbl_graph object.

Note

This function is not intended to be used directly but by setting layout = 'igraph' in create_layout()

106 layout_tbl_graph_linear

See Also

Other layout_tbl_graph_*: layout_tbl_graph_auto(), layout_tbl_graph_backbone(), layout_tbl_graph_centrality(),
layout_tbl_graph_circlepack(), layout_tbl_graph_dendrogram(), layout_tbl_graph_eigen(),
layout_tbl_graph_fabric(), layout_tbl_graph_focus(), layout_tbl_graph_hive(), layout_tbl_graph_linear(),
layout_tbl_graph_manual(), layout_tbl_graph_matrix(), layout_tbl_graph_partition(),
layout_tbl_graph_pmds(), layout_tbl_graph_stress(), layout_tbl_graph_treemap(), layout_tbl_graph_unrooted()

layout_tbl_graph_linear

Place nodes on a line or circle

Description

This layout puts all nodes on a line, possibly sorted by a node attribute. If circular = TRUE the
nodes will be laid out on the unit circle instead. In the case where the sort.by attribute is numeric,
the numeric values will be used as the x-position and it is thus possible to have uneven spacing
between the nodes.

Usage

layout_tbl_graph_linear(
graph,
circular,
sort.by = NULL,
use.numeric = FALSE,
offset = pi/2

)

Arguments

graph An tbl_graph object

circular Logical. Should the layout be transformed to a circular representation. Defaults
to FALSE.

sort.by The name of a node variable to sort the nodes by.

use.numeric Logical. Should a numeric sort.by attribute be used as the actual x-coordinates
in the layout. May lead to overlapping nodes. Defaults to FALSE

offset If circular = TRUE, where should it begin. Defaults to pi/2 which is equivalent
to 12 o’clock.

Value

A data.frame with the columns x, y, circular as well as any information stored as node variables
in the tbl_graph object.

layout_tbl_graph_manual 107

See Also

Other layout_tbl_graph_*: layout_tbl_graph_auto(), layout_tbl_graph_backbone(), layout_tbl_graph_centrality(),
layout_tbl_graph_circlepack(), layout_tbl_graph_dendrogram(), layout_tbl_graph_eigen(),
layout_tbl_graph_fabric(), layout_tbl_graph_focus(), layout_tbl_graph_hive(), layout_tbl_graph_igraph(),
layout_tbl_graph_manual(), layout_tbl_graph_matrix(), layout_tbl_graph_partition(),
layout_tbl_graph_pmds(), layout_tbl_graph_stress(), layout_tbl_graph_treemap(), layout_tbl_graph_unrooted()

layout_tbl_graph_manual

Manually specify a layout for layout_tbl_graph

Description

This layout function lets you pass the node positions in manually. The supplied positions must
match the order of the nodes in the tbl_graph

Usage

layout_tbl_graph_manual(graph, x, y, circular)

Arguments

graph An tbl_graph object

x, y Expressions with the x and y positions of the nodes

circular Ignored

Value

A data.frame with the columns x, y, circular as well as any information stored as node variables
in the tbl_graph.

See Also

Other layout_tbl_graph_*: layout_tbl_graph_auto(), layout_tbl_graph_backbone(), layout_tbl_graph_centrality(),
layout_tbl_graph_circlepack(), layout_tbl_graph_dendrogram(), layout_tbl_graph_eigen(),
layout_tbl_graph_fabric(), layout_tbl_graph_focus(), layout_tbl_graph_hive(), layout_tbl_graph_igraph(),
layout_tbl_graph_linear(), layout_tbl_graph_matrix(), layout_tbl_graph_partition(),
layout_tbl_graph_pmds(), layout_tbl_graph_stress(), layout_tbl_graph_treemap(), layout_tbl_graph_unrooted()

108 layout_tbl_graph_matrix

layout_tbl_graph_matrix

Place nodes on a diagonal

Description

This layout puts all nodes on a diagonal, thus preparing the layout for use with geom_edge_point()
resulting in a matrix layout. While matrix layouts excel in scalability, the interpretation of the visual
is very dependent on the sorting of the nodes. Different sorting algorithms have been implemented
in tidygraph and these can be used directly. Behrisch et al. (2016) have provided a nice overview
of some of the different sorting algorithms and what insight they might bring, along with a rundown
of different patterns to look out for.

Usage

layout_tbl_graph_matrix(graph, circular = FALSE, sort.by = NULL)

Arguments

graph An tbl_graph object

circular Ignored

sort.by An expression providing the sorting of the nodes. If NULL the nodes will be
ordered by their index in the graph.

Value

A data.frame with the columns x, y, circular as well as any information stored as node variables
in the tbl_graph object.

References

Behrisch, M., Bach, B., Riche, N. H., Schreck, T., Fekete, J.-D. (2016). Matrix Reordering Meth-
ods for Table and Network Visualization. Computer Graphics Forum, 35: 693–716. doi:10.1111/
cgf.12935

See Also

Other layout_tbl_graph_*: layout_tbl_graph_auto(), layout_tbl_graph_backbone(), layout_tbl_graph_centrality(),
layout_tbl_graph_circlepack(), layout_tbl_graph_dendrogram(), layout_tbl_graph_eigen(),
layout_tbl_graph_fabric(), layout_tbl_graph_focus(), layout_tbl_graph_hive(), layout_tbl_graph_igraph(),
layout_tbl_graph_linear(), layout_tbl_graph_manual(), layout_tbl_graph_partition(),
layout_tbl_graph_pmds(), layout_tbl_graph_stress(), layout_tbl_graph_treemap(), layout_tbl_graph_unrooted()

https://doi.org/10.1111/cgf.12935
https://doi.org/10.1111/cgf.12935

layout_tbl_graph_partition 109

layout_tbl_graph_partition

Calculate nodes as areas dividing their parent

Description

The partition layout is a way to show hierarchical data in the same way as layout_tbl_graph_treemap().
Instead of subdividing the parent area the partition layout shows the division of a nodes children
next to the area of the node itself. As such the node positions will be very reminiscent of a reingold-
tilford tree layout but by plotting nodes as areas it better communicate the total weight of a node by
summing up all its children. Often partition layouts are called icicle plots or sunburst diagrams (in
case a radial transform is applied).

Usage

layout_tbl_graph_partition(
graph,
weight = NULL,
circular = FALSE,
height = NULL,
sort.by = NULL,
direction = "out",
offset = pi/2,
const.area = TRUE

)

Arguments

graph An tbl_graph object

weight An optional node variable to use as weight. Will only affect the weight of leaf
nodes as the weight of non-leaf nodes are derived from their children.

circular Logical. Should the layout be transformed to a circular representation. If TRUE
the resulting layout will be a sunburst diagram.

height An optional node variable to use as height. If NULL all nodes will be given a
height of 1.

sort.by The name of a node variable to sort the nodes by.

direction The direction of the tree in the graph. 'out' (default) means that parents point
towards their children, while 'in' means that children point towards their par-
ent.

offset If circular = TRUE, where should it begin. Defaults to pi/2 which is equivalent
to 12 o’clock.

const.area Logical. Should ’height’ be scaled for area proportionality when using circular
= TRUE. Defaults to TRUE.

110 layout_tbl_graph_pmds

Value

If circular = FALSE A data.frame with the columns x, y, width, height, leaf, depth, circular
as well as any information stored as node variables in the tbl_graph object. If circular = TRUE
A data.frame with the columns x, y, r0, r, start, end, leaf, depth, circular as well as any
information stored as node variables in the tbl_graph object.

Note

partition is a layout intended for trees, that is, graphs where nodes only have one parent and zero
or more children. If the provided graph does not fit this format an attempt to convert it to such a
format will be made.

References

Kruskal, J. B., Landwehr, J. M. (1983). Icicle Plots: Better Displays for Hierarchical Clustering.
American Statistician Vol 37(2), 162-168. https://doi.org/10.2307/2685881

See Also

Other layout_tbl_graph_*: layout_tbl_graph_auto(), layout_tbl_graph_backbone(), layout_tbl_graph_centrality(),
layout_tbl_graph_circlepack(), layout_tbl_graph_dendrogram(), layout_tbl_graph_eigen(),
layout_tbl_graph_fabric(), layout_tbl_graph_focus(), layout_tbl_graph_hive(), layout_tbl_graph_igraph(),
layout_tbl_graph_linear(), layout_tbl_graph_manual(), layout_tbl_graph_matrix(), layout_tbl_graph_pmds(),
layout_tbl_graph_stress(), layout_tbl_graph_treemap(), layout_tbl_graph_unrooted()

layout_tbl_graph_pmds Place nodes based on a multidimensional scaling of a set of pivot
nodes

Description

This layout is similar to the ’mds’ layout but uses only a subset of pivot nodes for the mds calcula-
tion, making it considerably faster and thus suited for large graphs

Usage

layout_tbl_graph_pmds(graph, pivots, weights = NULL, circular = FALSE)

Arguments

graph A tbl_graph object

pivots The number of pivot nodes

weights An expression evaluated on the edge data to provide edge weights for the layout.
Currently ignored for the sparse version

circular ignored

layout_tbl_graph_stress 111

Value

A data.frame with the columns x, y, circular as well as any information stored as node variables
in the tbl_graph object.

Author(s)

The underlying algorithm is implemented in the graphlayouts package by David Schoch

References

Brandes, U. and Pich, C. (2006). Eigensolver Methods for Progressive Multidimensional Scaling of
Large Data. In International Symposium on Graph Drawing (pp. 42-53). Springer

See Also

Other layout_tbl_graph_*: layout_tbl_graph_auto(), layout_tbl_graph_backbone(), layout_tbl_graph_centrality(),
layout_tbl_graph_circlepack(), layout_tbl_graph_dendrogram(), layout_tbl_graph_eigen(),
layout_tbl_graph_fabric(), layout_tbl_graph_focus(), layout_tbl_graph_hive(), layout_tbl_graph_igraph(),
layout_tbl_graph_linear(), layout_tbl_graph_manual(), layout_tbl_graph_matrix(), layout_tbl_graph_partition(),
layout_tbl_graph_stress(), layout_tbl_graph_treemap(), layout_tbl_graph_unrooted()

layout_tbl_graph_stress

Place nodes using stress majorisation

Description

This layout is related to the stress-minimization algorithm known as Kamada-Kawai (available as
the ’kk’ layout), but uses another optimization strategy. It generally have better runtime, quality,
and stability compared to the Kamada-Kawai layout and is thus generally preferred. The sparse
version of the layout have better performance (especially on larger networks) at the expense of
layout quality, but will generally outperform many other algorithms for large graphs in both runtime
and quality (e.g. the ’drl’ layout from igraph).

Usage

layout_tbl_graph_stress(
graph,
weights = NULL,
niter = 500,
tolerance = 1e-04,
mds = TRUE,
bbox = 50,
circular = FALSE

)

layout_tbl_graph_sparse_stress(

112 layout_tbl_graph_stress

graph,
pivots,
weights = NULL,
niter = 500,
circular = FALSE

)

Arguments

graph a tbl_graph object

weights An expression evaluated on the edge data to provide edge weights for the layout.
Currently ignored for the sparse version

niter number of iterations during stress optimization

tolerance stopping criterion for stress optimization

mds should an MDS layout be used as initial layout (default: TRUE)

bbox constrain dimension of output. Only relevant to determine the placement of
disconnected graphs.

circular ignored

pivots The number of pivot nodes.

Value

A data.frame with the columns x, y, circular as well as any information stored as node variables
in the tbl_graph object.

Author(s)

The underlying algorithm is implemented in the graphlayouts package by David Schoch

References

Gansner, E. R., Koren, Y., & North, S. (2004). Graph drawing by stress majorization. In Interna-
tional Symposium on Graph Drawing (pp. 239-250). Springer, Berlin, Heidelberg.

Ortmann, M. and Klimenta, M. and Brandes, U. (2016). A Sparse Stress Model. https://arxiv.org/pdf/1608.08909.pdf

See Also

Other layout_tbl_graph_*: layout_tbl_graph_auto(), layout_tbl_graph_backbone(), layout_tbl_graph_centrality(),
layout_tbl_graph_circlepack(), layout_tbl_graph_dendrogram(), layout_tbl_graph_eigen(),
layout_tbl_graph_fabric(), layout_tbl_graph_focus(), layout_tbl_graph_hive(), layout_tbl_graph_igraph(),
layout_tbl_graph_linear(), layout_tbl_graph_manual(), layout_tbl_graph_matrix(), layout_tbl_graph_partition(),
layout_tbl_graph_pmds(), layout_tbl_graph_treemap(), layout_tbl_graph_unrooted()

layout_tbl_graph_treemap 113

layout_tbl_graph_treemap

Calculate nodes as rectangles subdividing that of their parent

Description

A treemap is a space filling hierarchical layout that maps nodes to rectangles. The rectangles of
the children of a node is packed into the rectangle of the node so that the size of a rectangle is a
function of the size of the children. The size of the leaf nodes can be mapped arbitrarily (defaults to
1). Many different algorithms exists for dividing a rectangle into smaller bits, some optimizing the
aspect ratio and some focusing on the ordering of the rectangles. See details for more discussions
on this. The treemap layout was first developed by Ben Shneiderman for visualizing disk usage in
the early ’90 and has seen many improvements since.

Usage

layout_tbl_graph_treemap(
graph,
algorithm = "split",
weight = NULL,
circular = FALSE,
sort.by = NULL,
direction = "out",
height = 1,
width = 1

)

Arguments

graph A tbl_graph object

algorithm The name of the tiling algorithm to use. Defaults to ’split’

weight An optional node variable to use as weight. Will only affect the weight of leaf
nodes as the weight of non-leaf nodes are derived from their children.

circular Logical. Should the layout be transformed to a circular representation. Ignored.

sort.by The name of a node variables to sort the nodes by.

direction The direction of the tree in the graph. 'out' (default) means that parents point
towards their children, while 'in' means that children point towards their par-
ent.

height The height of the bounding rectangle

width The width of the bounding rectangle

114 layout_tbl_graph_unrooted

Details

Different approaches to dividing the rectangles in a treemap exists; all with their strengths and
weaknesses. Currently only the split algorithm is implemented which strikes a good balance be-
tween aspect ratio and order preservation, but other, more well-known, algorithms such as squarify
and slice-and-dice will eventually be implemented.

Algorithms

Split (default)

The Split algorithm was developed by Bjorn Engdahl in order to address the downsides of both the
original slice-and-dice algorithm (poor aspect ratio) and the popular squarify algorithm (no ordering
of nodes). It works by finding the best cut in the ordered list of children in terms of making sure
that the two rectangles associated with the split will have optimal aspect ratio.

Value

A data.frame with the columns x, y, width, height, leaf, depth, circular as well as any infor-
mation stored as node variables in the tbl_graph object.

Note

Treemap is a layout intended for trees, that is, graphs where nodes only have one parent and zero
or more children. If the provided graph does not fit this format an attempt to convert it to such a
format will be made.

References

Engdahl, B. (2005). Ordered and unordered treemap algorithms and their applications on handheld
devices. Master’s Degree Project.

Johnson, B., & Ben Shneiderman. (1991). Tree maps: A Space-Filling Approach to the Vi-
sualization of Hierarchical Information Structures. IEEE Visualization, 284-291. doi:10.1109/
VISUAL.1991.175815

See Also

Other layout_tbl_graph_*: layout_tbl_graph_auto(), layout_tbl_graph_backbone(), layout_tbl_graph_centrality(),
layout_tbl_graph_circlepack(), layout_tbl_graph_dendrogram(), layout_tbl_graph_eigen(),
layout_tbl_graph_fabric(), layout_tbl_graph_focus(), layout_tbl_graph_hive(), layout_tbl_graph_igraph(),
layout_tbl_graph_linear(), layout_tbl_graph_manual(), layout_tbl_graph_matrix(), layout_tbl_graph_partition(),
layout_tbl_graph_pmds(), layout_tbl_graph_stress(), layout_tbl_graph_unrooted()

layout_tbl_graph_unrooted

Create an unrooted layout using equal-angle or equal-daylight

https://doi.org/10.1109/VISUAL.1991.175815
https://doi.org/10.1109/VISUAL.1991.175815

layout_tbl_graph_unrooted 115

Description

When drawing unrooted trees the standard dendrogram layout is a bad fit as it implicitly creates
a visual root node. Instead it is possible to spread the leafs out on the plane without putting any
special emphasis on a particular node using an unrooted layout. The standard algorithm is the equal
angle algorithm, but it can struggle with optimising the leaf distribution for large trees trees with
very uneven branch length. The equal daylight algorithm modifies the output of the equal angle
algorithm to better disperse the leaves, at the cost of higher computational cost and the possibility
of edge crossings for very large unbalanced trees. For standard sized trees the daylight algorithm is
far superior and not too heavy so it is the default.

Usage

layout_tbl_graph_unrooted(
graph,
daylight = TRUE,
length = NULL,
tolerance = 0.05,
rotation_mod = 1,
maxiter = 100,
circular = FALSE

)

Arguments

graph A tbl_graph object

daylight Should equal-daylight adjustments be made

length An expression evaluating to the branch length of each edge

tolerance The threshold for mean angular adjustment before terminating the daylight ad-
justment

rotation_mod A modifier for the angular adjustment of each branch. Set it below 1 to let the
daylight adjustment progress more slowly

maxiter The maximum number of iterations in the the daylight adjustment

circular ignored

Value

A data.frame with the columns x, y, circular, leaf as well as any information stored as node
variables in the tbl_graph object.

Note

Unrooted is a layout intended for undirected trees, that is, graphs with no cycles. If the provided
graph does not fit this format an attempt to convert it to such a format will be made.

References

Felsenstein, J. (2004) Drawing Trees, in Inferring Phylogenies. Sinauer Assoc., pp 573-584

116 node_angle

See Also

Other layout_tbl_graph_*: layout_tbl_graph_auto(), layout_tbl_graph_backbone(), layout_tbl_graph_centrality(),
layout_tbl_graph_circlepack(), layout_tbl_graph_dendrogram(), layout_tbl_graph_eigen(),
layout_tbl_graph_fabric(), layout_tbl_graph_focus(), layout_tbl_graph_hive(), layout_tbl_graph_igraph(),
layout_tbl_graph_linear(), layout_tbl_graph_manual(), layout_tbl_graph_matrix(), layout_tbl_graph_partition(),
layout_tbl_graph_pmds(), layout_tbl_graph_stress(), layout_tbl_graph_treemap()

node_angle Get the angle of nodes and edges

Description

These helper functions makes it easy to calculate the angle associated with nodes and edges. For
nodes the angle is defined as the angle of the vector pointing towards the node position, and is thus
mainly suited for circular layouts where it can be used to calculate the angle of labels. For edges it
is simply the angle of the vector describing the edge.

Usage

node_angle(x, y, degrees = TRUE)

edge_angle(x, y, xend, yend, degrees = TRUE)

Arguments

x, y A vector of positions

degrees Logical. Should the angle be returned in degree (TRUE) or radians (FALSE).
Defaults to TRUE.

xend, yend The end position of the edge

Value

A vector with the angle of each node/edge

Examples

require(tidygraph)
flareGraph <- tbl_graph(flare$vertices, flare$edges)

ggraph(flareGraph, 'dendrogram', circular = TRUE) +
geom_edge_diagonal0() +
geom_node_text(aes(filter = leaf, angle = node_angle(x, y), label = shortName),

hjust = 'outward', size = 2
) +
expand_limits(x = c(-1.3, 1.3), y = c(-1.3, 1.3))

pack_circles 117

pack_circles Pack circles together

Description

This function is a direct interface to the circle packing algorithm used by layout_tbl_graph_circlepack.
It takes a vector of sizes and returns the x and y position of each circle as a two-column matrix.

Usage

pack_circles(areas)

Arguments

areas A vector of circle areas

Value

A matrix with two columns and the same number of rows as the length of the "areas" vector. The
matrix has the following attributes added: "enclosing_radius" giving the radius of the smallest
enclosing circle, and "front_chain" giving the terminating members of the front chain (see Wang et
al. 2006).

References

Wang, W., Wang, H. H., Dai, G., & Wang, H. (2006). Visualization of large hierarchical data by
circle packing. Chi, 517-520.

Examples

library(ggforce)
sizes <- sample(10, 100, TRUE)

position <- pack_circles(sizes)
data <- data.frame(x = position[,1], y = position[,2], r = sqrt(sizes/pi))

ggplot() +
geom_circle(aes(x0 = x, y0 = y, r = r), data = data, fill = 'steelblue') +
geom_circle(aes(x0 = 0, y0 = 0, r = attr(position, 'enclosing_radius'))) +
geom_polygon(aes(x = x, y = y),

data = data[attr(position, 'front_chain'),],
fill = NA,
colour = 'black')

118 scale_edge_alpha

scale_edge_alpha Edge alpha scales

Description

This set of scales defines new alpha scales for edge geoms equivalent to the ones already defined
by ggplot2. See ggplot2::scale_alpha() for more information. The different geoms will know
whether to use edge scales or the standard scales so it is not necessary to write edge_alpha in the
call to the geom - just use alpha.

Usage

scale_edge_alpha(..., range = c(0.1, 1))

scale_edge_alpha_continuous(..., range = c(0.1, 1))

scale_edge_alpha_discrete(..., range = c(0.1, 1))

scale_edge_alpha_binned(..., range = c(0.1, 1))

scale_edge_alpha_manual(..., values, breaks = waiver(), na.value = NA)

scale_edge_alpha_identity(..., guide = "none")

Arguments

... Other arguments passed on to continuous_scale(), binned_scale(), or discrete_scale()
as appropriate, to control name, limits, breaks, labels and so forth.

range Output range of alpha values. Must lie between 0 and 1.

values a set of aesthetic values to map data values to. The values will be matched
in order (usually alphabetical) with the limits of the scale, or with breaks if
provided. If this is a named vector, then the values will be matched based on the
names instead. Data values that don’t match will be given na.value.

breaks One of:

• NULL for no breaks
• waiver() for the default breaks (the scale limits)
• A character vector of breaks
• A function that takes the limits as input and returns breaks as output

na.value The aesthetic value to use for missing (NA) values

guide Guide to use for this scale. Defaults to "none".

Value

A ggproto object inheriting from Scale

scale_edge_colour 119

See Also

Other scale_edge_*: scale_edge_colour, scale_edge_fill, scale_edge_linetype(), scale_edge_shape(),
scale_edge_size(), scale_edge_width(), scale_label_size()

scale_edge_colour Edge colour scales

Description

This set of scales defines new colour scales for edge geoms equivalent to the ones already defined
by ggplot2. The parameters are equivalent to the ones from ggplot2 so there is nothing new under
the sun. The different geoms will know whether to use edge scales or the standard scales so it is not
necessary to write edge_colour in the call to the geom - just use colour.

Usage

scale_edge_colour_hue(
...,
h = c(0, 360) + 15,
c = 100,
l = 65,
h.start = 0,
direction = 1,
na.value = "grey50",
aesthetics = "edge_colour"

)

scale_edge_colour_brewer(
...,
type = "seq",
palette = 1,
direction = 1,
aesthetics = "edge_colour"

)

scale_edge_colour_distiller(
...,
type = "seq",
palette = 1,
direction = -1,
values = NULL,
space = "Lab",
na.value = "grey50",
guide = "edge_colourbar",
aesthetics = "edge_colour"

)

120 scale_edge_colour

scale_edge_colour_gradient(
...,
low = "#132B43",
high = "#56B1F7",
space = "Lab",
na.value = "grey50",
guide = "edge_colourbar",
aesthetics = "edge_colour"

)

scale_edge_colour_gradient2(
...,
low = muted("red"),
mid = "white",
high = muted("blue"),
midpoint = 0,
space = "Lab",
na.value = "grey50",
guide = "edge_colourbar",
aesthetics = "edge_colour"

)

scale_edge_colour_gradientn(
...,
colours,
values = NULL,
space = "Lab",
na.value = "grey50",
guide = "edge_colourbar",
aesthetics = "edge_colour",
colors

)

scale_edge_colour_grey(
...,
start = 0.2,
end = 0.8,
na.value = "red",
aesthetics = "edge_colour"

)

scale_edge_colour_identity(..., guide = "none", aesthetics = "edge_colour")

scale_edge_colour_manual(
...,
values,
aesthetics = "edge_colour",

scale_edge_colour 121

breaks = waiver(),
na.value = "grey50"

)

scale_edge_colour_viridis(
...,
alpha = 1,
begin = 0,
end = 1,
direction = 1,
discrete = FALSE,
option = "D",
aesthetics = "edge_colour"

)

scale_edge_colour_steps(
...,
low = "#132B43",
high = "#56B1F7",
space = "Lab",
na.value = "grey50",
guide = "edge_coloursteps",
aesthetics = "edge_colour"

)

scale_edge_colour_steps2(
...,
low = muted("red"),
mid = "white",
high = muted("blue"),
midpoint = 0,
space = "Lab",
na.value = "grey50",
guide = "edge_coloursteps",
aesthetics = "edge_colour"

)

scale_edge_colour_stepsn(
...,
colours,
values = NULL,
space = "Lab",
na.value = "grey50",
guide = "edge_coloursteps",
aesthetics = "edge_colour",
colors

)

122 scale_edge_colour

scale_edge_colour_fermenter(
...,
type = "seq",
palette = 1,
direction = -1,
na.value = "grey50",
guide = "edge_coloursteps",
aesthetics = "edge_colour"

)

scale_edge_colour_continuous(
...,
low = "#132B43",
high = "#56B1F7",
space = "Lab",
na.value = "grey50",
guide = "edge_colourbar",
aesthetics = "edge_colour"

)

scale_edge_colour_discrete(
...,
h = c(0, 360) + 15,
c = 100,
l = 65,
h.start = 0,
direction = 1,
na.value = "grey50",
aesthetics = "edge_colour"

)

scale_edge_colour_binned(
...,
low = "#132B43",
high = "#56B1F7",
space = "Lab",
na.value = "grey50",
guide = "edge_coloursteps",
aesthetics = "edge_colour"

)

scale_edge_color_hue(
...,
h = c(0, 360) + 15,
c = 100,
l = 65,
h.start = 0,
direction = 1,

scale_edge_colour 123

na.value = "grey50",
aesthetics = "edge_colour"

)

scale_edge_color_brewer(
...,
type = "seq",
palette = 1,
direction = 1,
aesthetics = "edge_colour"

)

scale_edge_color_distiller(
...,
type = "seq",
palette = 1,
direction = -1,
values = NULL,
space = "Lab",
na.value = "grey50",
guide = "edge_colourbar",
aesthetics = "edge_colour"

)

scale_edge_color_gradient(
...,
low = "#132B43",
high = "#56B1F7",
space = "Lab",
na.value = "grey50",
guide = "edge_colourbar",
aesthetics = "edge_colour"

)

scale_edge_color_gradient2(
...,
low = muted("red"),
mid = "white",
high = muted("blue"),
midpoint = 0,
space = "Lab",
na.value = "grey50",
guide = "edge_colourbar",
aesthetics = "edge_colour"

)

scale_edge_color_gradientn(
...,

124 scale_edge_colour

colours,
values = NULL,
space = "Lab",
na.value = "grey50",
guide = "edge_colourbar",
aesthetics = "edge_colour",
colors

)

scale_edge_color_grey(
...,
start = 0.2,
end = 0.8,
na.value = "red",
aesthetics = "edge_colour"

)

scale_edge_color_identity(..., guide = "none", aesthetics = "edge_colour")

scale_edge_color_manual(
...,
values,
aesthetics = "edge_colour",
breaks = waiver(),
na.value = "grey50"

)

scale_edge_color_continuous(
...,
low = "#132B43",
high = "#56B1F7",
space = "Lab",
na.value = "grey50",
guide = "edge_colourbar",
aesthetics = "edge_colour"

)

scale_edge_color_discrete(
...,
h = c(0, 360) + 15,
c = 100,
l = 65,
h.start = 0,
direction = 1,
na.value = "grey50",
aesthetics = "edge_colour"

)

scale_edge_colour 125

scale_edge_color_viridis(
...,
alpha = 1,
begin = 0,
end = 1,
direction = 1,
discrete = FALSE,
option = "D",
aesthetics = "edge_colour"

)

scale_edge_color_steps(
...,
low = "#132B43",
high = "#56B1F7",
space = "Lab",
na.value = "grey50",
guide = "edge_coloursteps",
aesthetics = "edge_colour"

)

scale_edge_color_steps2(
...,
low = muted("red"),
mid = "white",
high = muted("blue"),
midpoint = 0,
space = "Lab",
na.value = "grey50",
guide = "edge_coloursteps",
aesthetics = "edge_colour"

)

scale_edge_color_stepsn(
...,
colours,
values = NULL,
space = "Lab",
na.value = "grey50",
guide = "edge_coloursteps",
aesthetics = "edge_colour",
colors

)

scale_edge_color_fermenter(
...,
type = "seq",
palette = 1,

126 scale_edge_colour

direction = -1,
na.value = "grey50",
guide = "edge_coloursteps",
aesthetics = "edge_colour"

)

scale_edge_color_binned(
...,
low = "#132B43",
high = "#56B1F7",
space = "Lab",
na.value = "grey50",
guide = "edge_coloursteps",
aesthetics = "edge_colour"

)

Arguments

... Arguments passed on to discrete_scale

palette A palette function that when called with a single integer argument (the
number of levels in the scale) returns the values that they should take (e.g.,
scales::hue_pal()).

breaks One of:
• NULL for no breaks
• waiver() for the default breaks (the scale limits)
• A character vector of breaks
• A function that takes the limits as input and returns breaks as output.

Also accepts rlang lambda function notation.
limits One of:

• NULL to use the default scale values
• A character vector that defines possible values of the scale and their

order
• A function that accepts the existing (automatic) values and returns new

ones. Also accepts rlang lambda function notation.
drop Should unused factor levels be omitted from the scale? The default, TRUE,

uses the levels that appear in the data; FALSE uses all the levels in the factor.
na.translate Unlike continuous scales, discrete scales can easily show miss-

ing values, and do so by default. If you want to remove missing values from
a discrete scale, specify na.translate = FALSE.

scale_name The name of the scale that should be used for error messages as-
sociated with this scale.

name The name of the scale. Used as the axis or legend title. If waiver(), the
default, the name of the scale is taken from the first mapping used for that
aesthetic. If NULL, the legend title will be omitted.

labels One of:
• NULL for no labels

scale_edge_colour 127

• waiver() for the default labels computed by the transformation object
• A character vector giving labels (must be same length as breaks)
• An expression vector (must be the same length as breaks). See ?plot-

math for details.
• A function that takes the breaks as input and returns labels as output.

Also accepts rlang lambda function notation.
guide A function used to create a guide or its name. See guides() for more

information.
expand For position scales, a vector of range expansion constants used to add

some padding around the data to ensure that they are placed some distance
away from the axes. Use the convenience function expansion() to gen-
erate the values for the expand argument. The defaults are to expand the
scale by 5% on each side for continuous variables, and by 0.6 units on each
side for discrete variables.

position For position scales, The position of the axis. left or right for y
axes, top or bottom for x axes.

super The super class to use for the constructed scale

h range of hues to use, in [0, 360]

c chroma (intensity of colour), maximum value varies depending on combination
of hue and luminance.

l luminance (lightness), in [0, 100]

h.start hue to start at

direction direction to travel around the colour wheel, 1 = clockwise, -1 = counter-clockwise

na.value Colour to use for missing values

aesthetics Character string or vector of character strings listing the name(s) of the aes-
thetic(s) that this scale works with. This can be useful, for example, to ap-
ply colour settings to the colour and fill aesthetics at the same time, via
aesthetics = c("colour", "fill").

type One of "seq" (sequential), "div" (diverging) or "qual" (qualitative)

palette If a string, will use that named palette. If a number, will index into the list
of palettes of appropriate type. The list of available palettes can found in the
Palettes section.

values if colours should not be evenly positioned along the gradient this vector gives
the position (between 0 and 1) for each colour in the colours vector. See
rescale() for a convenience function to map an arbitrary range to between
0 and 1.

space colour space in which to calculate gradient. Must be "Lab" - other values are
deprecated.

guide Type of legend. Use "colourbar" for continuous colour bar, or "legend" for
discrete colour legend.

low, high Colours for low and high ends of the gradient.

mid colour for mid point

midpoint The midpoint (in data value) of the diverging scale. Defaults to 0.

128 scale_edge_fill

colours, colors

Vector of colours to use for n-colour gradient.

start grey value at low end of palette

end grey value at high end of palette

breaks One of:

• NULL for no breaks
• waiver() for the default breaks (the scale limits)
• A character vector of breaks
• A function that takes the limits as input and returns breaks as output

alpha The alpha transparency, a number in [0,1], see argument alpha in hsv.

begin The (corrected) hue in [0,1] at which the color map begins.

discrete Generate a discrete palette? (default: FALSE - generate continuous palette).

option A character string indicating the color map option to use. Eight options are
available:

• "magma" (or "A")
• "inferno" (or "B")
• "plasma" (or "C")
• "viridis" (or "D")
• "cividis" (or "E")
• "rocket" (or "F")
• "mako" (or "G")
• "turbo" (or "H")

Value

A ggproto object inheriting from Scale

See Also

Other scale_edge_*: scale_edge_alpha(), scale_edge_fill, scale_edge_linetype(), scale_edge_shape(),
scale_edge_size(), scale_edge_width(), scale_label_size()

scale_edge_fill Edge fill scales

Description

This set of scales defines new fill scales for edge geoms equivalent to the ones already defined by
ggplot2. The parameters are equivalent to the ones from ggplot2 so there is nothing new under the
sun. The different geoms will know whether to use edge scales or the standard scales so it is not
necessary to write edge_fill in the call to the geom - just use fill.

scale_edge_fill 129

Usage

scale_edge_fill_hue(
...,
h = c(0, 360) + 15,
c = 100,
l = 65,
h.start = 0,
direction = 1,
na.value = "grey50",
aesthetics = "edge_fill"

)

scale_edge_fill_brewer(
...,
type = "seq",
palette = 1,
direction = 1,
aesthetics = "edge_fill"

)

scale_edge_fill_distiller(
...,
type = "seq",
palette = 1,
direction = -1,
values = NULL,
space = "Lab",
na.value = "grey50",
guide = "edge_colourbar",
aesthetics = "edge_fill"

)

scale_edge_fill_gradient(
...,
low = "#132B43",
high = "#56B1F7",
space = "Lab",
na.value = "grey50",
guide = "edge_colourbar",
aesthetics = "edge_fill"

)

scale_edge_fill_gradient2(
...,
low = muted("red"),
mid = "white",
high = muted("blue"),
midpoint = 0,

130 scale_edge_fill

space = "Lab",
na.value = "grey50",
guide = "edge_colourbar",
aesthetics = "edge_fill"

)

scale_edge_fill_gradientn(
...,
colours,
values = NULL,
space = "Lab",
na.value = "grey50",
guide = "edge_colourbar",
aesthetics = "edge_fill",
colors

)

scale_edge_fill_grey(
...,
start = 0.2,
end = 0.8,
na.value = "red",
aesthetics = "edge_fill"

)

scale_edge_fill_identity(..., guide = "none", aesthetics = "edge_fill")

scale_edge_fill_manual(
...,
values,
aesthetics = "edge_fill",
breaks = waiver(),
na.value = "grey50"

)

scale_edge_fill_viridis(
...,
alpha = 1,
begin = 0,
end = 1,
direction = 1,
discrete = FALSE,
option = "D",
aesthetics = "edge_fill"

)

scale_edge_fill_steps(
...,

scale_edge_fill 131

low = "#132B43",
high = "#56B1F7",
space = "Lab",
na.value = "grey50",
guide = "edge_coloursteps",
aesthetics = "edge_fill"

)

scale_edge_fill_steps2(
...,
low = muted("red"),
mid = "white",
high = muted("blue"),
midpoint = 0,
space = "Lab",
na.value = "grey50",
guide = "edge_coloursteps",
aesthetics = "edge_fill"

)

scale_edge_fill_stepsn(
...,
colours,
values = NULL,
space = "Lab",
na.value = "grey50",
guide = "edge_coloursteps",
aesthetics = "edge_fill",
colors

)

scale_edge_fill_fermenter(
...,
type = "seq",
palette = 1,
direction = -1,
na.value = "grey50",
guide = "edge_coloursteps",
aesthetics = "edge_fill"

)

scale_edge_fill_continuous(
...,
low = "#132B43",
high = "#56B1F7",
space = "Lab",
na.value = "grey50",
guide = "edge_colourbar",

132 scale_edge_fill

aesthetics = "edge_fill"
)

scale_edge_fill_discrete(
...,
h = c(0, 360) + 15,
c = 100,
l = 65,
h.start = 0,
direction = 1,
na.value = "grey50",
aesthetics = "edge_fill"

)

scale_edge_fill_binned(
...,
low = "#132B43",
high = "#56B1F7",
space = "Lab",
na.value = "grey50",
guide = "edge_coloursteps",
aesthetics = "edge_fill"

)

Arguments

... Arguments passed on to discrete_scale

palette A palette function that when called with a single integer argument (the
number of levels in the scale) returns the values that they should take (e.g.,
scales::hue_pal()).

breaks One of:
• NULL for no breaks
• waiver() for the default breaks (the scale limits)
• A character vector of breaks
• A function that takes the limits as input and returns breaks as output.

Also accepts rlang lambda function notation.
limits One of:

• NULL to use the default scale values
• A character vector that defines possible values of the scale and their

order
• A function that accepts the existing (automatic) values and returns new

ones. Also accepts rlang lambda function notation.
drop Should unused factor levels be omitted from the scale? The default, TRUE,

uses the levels that appear in the data; FALSE uses all the levels in the factor.
na.translate Unlike continuous scales, discrete scales can easily show miss-

ing values, and do so by default. If you want to remove missing values from
a discrete scale, specify na.translate = FALSE.

scale_edge_fill 133

scale_name The name of the scale that should be used for error messages as-
sociated with this scale.

name The name of the scale. Used as the axis or legend title. If waiver(), the
default, the name of the scale is taken from the first mapping used for that
aesthetic. If NULL, the legend title will be omitted.

labels One of:
• NULL for no labels
• waiver() for the default labels computed by the transformation object
• A character vector giving labels (must be same length as breaks)
• An expression vector (must be the same length as breaks). See ?plot-

math for details.
• A function that takes the breaks as input and returns labels as output.

Also accepts rlang lambda function notation.
guide A function used to create a guide or its name. See guides() for more

information.
expand For position scales, a vector of range expansion constants used to add

some padding around the data to ensure that they are placed some distance
away from the axes. Use the convenience function expansion() to gen-
erate the values for the expand argument. The defaults are to expand the
scale by 5% on each side for continuous variables, and by 0.6 units on each
side for discrete variables.

position For position scales, The position of the axis. left or right for y
axes, top or bottom for x axes.

super The super class to use for the constructed scale

h range of hues to use, in [0, 360]

c chroma (intensity of colour), maximum value varies depending on combination
of hue and luminance.

l luminance (lightness), in [0, 100]

h.start hue to start at

direction direction to travel around the colour wheel, 1 = clockwise, -1 = counter-clockwise

na.value Colour to use for missing values

aesthetics Character string or vector of character strings listing the name(s) of the aes-
thetic(s) that this scale works with. This can be useful, for example, to ap-
ply colour settings to the colour and fill aesthetics at the same time, via
aesthetics = c("colour", "fill").

type One of "seq" (sequential), "div" (diverging) or "qual" (qualitative)

palette If a string, will use that named palette. If a number, will index into the list
of palettes of appropriate type. The list of available palettes can found in the
Palettes section.

values if colours should not be evenly positioned along the gradient this vector gives
the position (between 0 and 1) for each colour in the colours vector. See
rescale() for a convenience function to map an arbitrary range to between
0 and 1.

134 scale_edge_fill

space colour space in which to calculate gradient. Must be "Lab" - other values are
deprecated.

guide Type of legend. Use "colourbar" for continuous colour bar, or "legend" for
discrete colour legend.

low, high Colours for low and high ends of the gradient.

mid colour for mid point

midpoint The midpoint (in data value) of the diverging scale. Defaults to 0.

colours, colors

Vector of colours to use for n-colour gradient.

start grey value at low end of palette

end grey value at high end of palette

breaks One of:

• NULL for no breaks
• waiver() for the default breaks (the scale limits)
• A character vector of breaks
• A function that takes the limits as input and returns breaks as output

alpha The alpha transparency, a number in [0,1], see argument alpha in hsv.

begin The (corrected) hue in [0,1] at which the color map begins.

discrete Generate a discrete palette? (default: FALSE - generate continuous palette).

option A character string indicating the color map option to use. Eight options are
available:

• "magma" (or "A")
• "inferno" (or "B")
• "plasma" (or "C")
• "viridis" (or "D")
• "cividis" (or "E")
• "rocket" (or "F")
• "mako" (or "G")
• "turbo" (or "H")

Value

A ggproto object inheriting from Scale

See Also

Other scale_edge_*: scale_edge_alpha(), scale_edge_colour, scale_edge_linetype(), scale_edge_shape(),
scale_edge_size(), scale_edge_width(), scale_label_size()

scale_edge_linetype 135

scale_edge_linetype Edge linetype scales

Description

This set of scales defines new linetype scales for edge geoms equivalent to the ones already defined
by ggplot2. See ggplot2::scale_linetype() for more information. The different geoms will
know whether to use edge scales or the standard scales so it is not necessary to write edge_linetype
in the call to the geom - just use linetype.

Usage

scale_edge_linetype(..., na.value = "blank")

scale_edge_linetype_continuous(...)

scale_edge_linetype_discrete(..., na.value = "blank")

scale_edge_linetype_binned(..., na.value = "blank")

scale_edge_linetype_manual(..., values, breaks = waiver(), na.value = "blank")

scale_edge_linetype_identity(..., guide = "none")

Arguments

... Arguments passed on to discrete_scale

palette A palette function that when called with a single integer argument (the
number of levels in the scale) returns the values that they should take (e.g.,
scales::hue_pal()).

breaks One of:
• NULL for no breaks
• waiver() for the default breaks (the scale limits)
• A character vector of breaks
• A function that takes the limits as input and returns breaks as output.

Also accepts rlang lambda function notation.
limits One of:

• NULL to use the default scale values
• A character vector that defines possible values of the scale and their

order
• A function that accepts the existing (automatic) values and returns new

ones. Also accepts rlang lambda function notation.
drop Should unused factor levels be omitted from the scale? The default, TRUE,

uses the levels that appear in the data; FALSE uses all the levels in the factor.

136 scale_edge_linetype

na.translate Unlike continuous scales, discrete scales can easily show miss-
ing values, and do so by default. If you want to remove missing values from
a discrete scale, specify na.translate = FALSE.

aesthetics The names of the aesthetics that this scale works with.
scale_name The name of the scale that should be used for error messages as-

sociated with this scale.
name The name of the scale. Used as the axis or legend title. If waiver(), the

default, the name of the scale is taken from the first mapping used for that
aesthetic. If NULL, the legend title will be omitted.

labels One of:
• NULL for no labels
• waiver() for the default labels computed by the transformation object
• A character vector giving labels (must be same length as breaks)
• An expression vector (must be the same length as breaks). See ?plot-

math for details.
• A function that takes the breaks as input and returns labels as output.

Also accepts rlang lambda function notation.
guide A function used to create a guide or its name. See guides() for more

information.
super The super class to use for the constructed scale

na.value The linetype to use for NA values.

values a set of aesthetic values to map data values to. The values will be matched
in order (usually alphabetical) with the limits of the scale, or with breaks if
provided. If this is a named vector, then the values will be matched based on the
names instead. Data values that don’t match will be given na.value.

breaks One of:

• NULL for no breaks
• waiver() for the default breaks (the scale limits)
• A character vector of breaks
• A function that takes the limits as input and returns breaks as output

guide Guide to use for this scale. Defaults to "none".

Value

A ggproto object inheriting from Scale

See Also

Other scale_edge_*: scale_edge_alpha(), scale_edge_colour, scale_edge_fill, scale_edge_shape(),
scale_edge_size(), scale_edge_width(), scale_label_size()

scale_edge_shape 137

scale_edge_shape Edge shape scales

Description

This set of scales defines new shape scales for edge geoms equivalent to the ones already defined
by ggplot2. See ggplot2::scale_shape() for more information. The different geoms will know
whether to use edge scales or the standard scales so it is not necessary to write edge_shape in the
call to the geom - just use shape.

Usage

scale_edge_shape(..., solid = TRUE)

scale_edge_shape_discrete(..., solid = TRUE)

scale_edge_shape_continuous(...)

scale_edge_shape_binned(..., solid = TRUE)

scale_edge_shape_manual(..., values, breaks = waiver(), na.value = NA)

scale_edge_shape_identity(..., guide = "none")

Arguments

... Arguments passed on to discrete_scale

palette A palette function that when called with a single integer argument (the
number of levels in the scale) returns the values that they should take (e.g.,
scales::hue_pal()).

breaks One of:
• NULL for no breaks
• waiver() for the default breaks (the scale limits)
• A character vector of breaks
• A function that takes the limits as input and returns breaks as output.

Also accepts rlang lambda function notation.
limits One of:

• NULL to use the default scale values
• A character vector that defines possible values of the scale and their

order
• A function that accepts the existing (automatic) values and returns new

ones. Also accepts rlang lambda function notation.
drop Should unused factor levels be omitted from the scale? The default, TRUE,

uses the levels that appear in the data; FALSE uses all the levels in the factor.

138 scale_edge_shape

na.translate Unlike continuous scales, discrete scales can easily show miss-
ing values, and do so by default. If you want to remove missing values from
a discrete scale, specify na.translate = FALSE.

na.value If na.translate = TRUE, what aesthetic value should the missing
values be displayed as? Does not apply to position scales where NA is al-
ways placed at the far right.

aesthetics The names of the aesthetics that this scale works with.
scale_name The name of the scale that should be used for error messages as-

sociated with this scale.
name The name of the scale. Used as the axis or legend title. If waiver(), the

default, the name of the scale is taken from the first mapping used for that
aesthetic. If NULL, the legend title will be omitted.

labels One of:
• NULL for no labels
• waiver() for the default labels computed by the transformation object
• A character vector giving labels (must be same length as breaks)
• An expression vector (must be the same length as breaks). See ?plot-

math for details.
• A function that takes the breaks as input and returns labels as output.

Also accepts rlang lambda function notation.
guide A function used to create a guide or its name. See guides() for more

information.
super The super class to use for the constructed scale

solid Should the shapes be solid, TRUE, or hollow, FALSE?

values a set of aesthetic values to map data values to. The values will be matched
in order (usually alphabetical) with the limits of the scale, or with breaks if
provided. If this is a named vector, then the values will be matched based on the
names instead. Data values that don’t match will be given na.value.

breaks One of:

• NULL for no breaks
• waiver() for the default breaks (the scale limits)
• A character vector of breaks
• A function that takes the limits as input and returns breaks as output

na.value The aesthetic value to use for missing (NA) values

guide Guide to use for this scale.

Value

A ggproto object inheriting from Scale

See Also

Other scale_edge_*: scale_edge_alpha(), scale_edge_colour, scale_edge_fill, scale_edge_linetype(),
scale_edge_size(), scale_edge_width(), scale_label_size()

scale_edge_size 139

scale_edge_size Edge size scales

Description

This set of scales defines new size scales for edge geoms equivalent to the ones already defined
by ggplot2. See ggplot2::scale_size() for more information. The different geoms will know
whether to use edge scales or the standard scales so it is not necessary to write edge_size in the
call to the geom - just use size.

Usage

scale_edge_size_continuous(
name = waiver(),
breaks = waiver(),
labels = waiver(),
limits = NULL,
range = c(1, 6),
trans = "identity",
guide = "legend"

)

scale_edge_radius(
name = waiver(),
breaks = waiver(),
labels = waiver(),
limits = NULL,
range = c(1, 6),
trans = "identity",
guide = "legend"

)

scale_edge_size(
name = waiver(),
breaks = waiver(),
labels = waiver(),
limits = NULL,
range = c(1, 6),
trans = "identity",
guide = "legend"

)

scale_edge_size_discrete(...)

scale_edge_size_binned(
name = waiver(),
breaks = waiver(),

140 scale_edge_size

labels = waiver(),
limits = NULL,
range = c(1, 6),
n.breaks = NULL,
nice.breaks = TRUE,
trans = "identity",
guide = "bins"

)

scale_edge_size_area(..., max_size = 6)

scale_edge_size_binned_area(..., max_size = 6)

scale_edge_size_manual(..., values, breaks = waiver(), na.value = NA)

scale_edge_size_identity(..., guide = "none")

Arguments

name The name of the scale. Used as the axis or legend title. If waiver(), the default,
the name of the scale is taken from the first mapping used for that aesthetic. If
NULL, the legend title will be omitted.

breaks One of:

• NULL for no breaks
• waiver() for the default breaks computed by the transformation object
• A numeric vector of positions
• A function that takes the limits as input and returns breaks as output (e.g.,

a function returned by scales::extended_breaks()). Also accepts rlang
lambda function notation.

labels One of:

• NULL for no labels
• waiver() for the default labels computed by the transformation object
• A character vector giving labels (must be same length as breaks)
• An expression vector (must be the same length as breaks). See ?plotmath

for details.
• A function that takes the breaks as input and returns labels as output. Also

accepts rlang lambda function notation.

limits One of:

• NULL to use the default scale range
• A numeric vector of length two providing limits of the scale. Use NA to

refer to the existing minimum or maximum
• A function that accepts the existing (automatic) limits and returns new

limits. Also accepts rlang lambda function notation. Note that setting
limits on positional scales will remove data outside of the limits. If the
purpose is to zoom, use the limit argument in the coordinate system (see
coord_cartesian()).

scale_edge_size 141

range a numeric vector of length 2 that specifies the minimum and maximum size of
the plotting symbol after transformation.

trans For continuous scales, the name of a transformation object or the object itself.
Built-in transformations include "asn", "atanh", "boxcox", "date", "exp", "hms",
"identity", "log", "log10", "log1p", "log2", "logit", "modulus", "probability",
"probit", "pseudo_log", "reciprocal", "reverse", "sqrt" and "time".
A transformation object bundles together a transform, its inverse, and methods
for generating breaks and labels. Transformation objects are defined in the scales
package, and are called <name>_trans (e.g., scales::boxcox_trans()). You
can create your own transformation with scales::trans_new().

guide A function used to create a guide or its name. See guides() for more informa-
tion.

... Arguments passed on to continuous_scale

minor_breaks One of:
• NULL for no minor breaks
• waiver() for the default breaks (one minor break between each major

break)
• A numeric vector of positions
• A function that given the limits returns a vector of minor breaks. Also

accepts rlang lambda function notation.
oob One of:

• Function that handles limits outside of the scale limits (out of bounds).
Also accepts rlang lambda function notation.

• The default (scales::censor()) replaces out of bounds values with
NA.

• scales::squish() for squishing out of bounds values into range.
• scales::squish_infinite() for squishing infinite values into range.

na.value Missing values will be replaced with this value.
expand For position scales, a vector of range expansion constants used to add

some padding around the data to ensure that they are placed some distance
away from the axes. Use the convenience function expansion() to gen-
erate the values for the expand argument. The defaults are to expand the
scale by 5% on each side for continuous variables, and by 0.6 units on each
side for discrete variables.

position For position scales, The position of the axis. left or right for y
axes, top or bottom for x axes.

super The super class to use for the constructed scale

n.breaks An integer guiding the number of major breaks. The algorithm may choose a
slightly different number to ensure nice break labels. Will only have an effect if
breaks = waiver(). Use NULL to use the default number of breaks given by the
transformation.

nice.breaks Logical. Should breaks be attempted placed at nice values instead of exactly
evenly spaced between the limits. If TRUE (default) the scale will ask the trans-
formation object to create breaks, and this may result in a different number of
breaks than requested. Ignored if breaks are given explicitly.

142 scale_edge_width

max_size Size of largest points.

values a set of aesthetic values to map data values to. The values will be matched
in order (usually alphabetical) with the limits of the scale, or with breaks if
provided. If this is a named vector, then the values will be matched based on the
names instead. Data values that don’t match will be given na.value.

na.value The aesthetic value to use for missing (NA) values

Value

A ggproto object inheriting from Scale

Note

In ggplot2 size conflates both line width and point size into one scale. In ggraph there is also a
width scale (scale_edge_width()) that is used for linewidth. As edges are often represented by
lines the width scale is the most common.

See Also

Other scale_edge_*: scale_edge_alpha(), scale_edge_colour, scale_edge_fill, scale_edge_linetype(),
scale_edge_shape(), scale_edge_width(), scale_label_size()

scale_edge_width Edge width scales

Description

This set of scales defines width scales for edge geoms. Of all the new edge scales defined in ggraph,
this is the only one not having an equivalent in ggplot2. In essence it mimics the use of size in
ggplot2::geom_line() and related. As almost all edge representations are lines of some sort,
edge_width will be used much more often than edge_size. It is not necessary to spell out that it is
an edge scale as the geom knows if it is drawing an edge. Just write width and not edge_width in
the call to geoms.

Usage

scale_edge_width_continuous(
name = waiver(),
breaks = waiver(),
labels = waiver(),
limits = NULL,
range = c(1, 6),
trans = "identity",
guide = "legend"

)

scale_edge_width(

scale_edge_width 143

name = waiver(),
breaks = waiver(),
labels = waiver(),
limits = NULL,
range = c(1, 6),
trans = "identity",
guide = "legend"

)

scale_edge_width_discrete(...)

scale_edge_width_binned(
name = waiver(),
breaks = waiver(),
labels = waiver(),
limits = NULL,
range = c(1, 6),
n.breaks = NULL,
nice.breaks = TRUE,
trans = "identity",
guide = "bins"

)

scale_edge_width_manual(..., values, breaks = waiver(), na.value = NA)

scale_edge_width_identity(..., guide = "none")

Arguments

name The name of the scale. Used as the axis or legend title. If waiver(), the default,
the name of the scale is taken from the first mapping used for that aesthetic. If
NULL, the legend title will be omitted.

breaks One of:

• NULL for no breaks
• waiver() for the default breaks computed by the transformation object
• A numeric vector of positions
• A function that takes the limits as input and returns breaks as output (e.g.,

a function returned by scales::extended_breaks()). Also accepts rlang
lambda function notation.

labels One of:

• NULL for no labels
• waiver() for the default labels computed by the transformation object
• A character vector giving labels (must be same length as breaks)
• An expression vector (must be the same length as breaks). See ?plotmath

for details.
• A function that takes the breaks as input and returns labels as output. Also

accepts rlang lambda function notation.

144 scale_edge_width

limits One of:

• NULL to use the default scale range
• A numeric vector of length two providing limits of the scale. Use NA to

refer to the existing minimum or maximum
• A function that accepts the existing (automatic) limits and returns new

limits. Also accepts rlang lambda function notation. Note that setting
limits on positional scales will remove data outside of the limits. If the
purpose is to zoom, use the limit argument in the coordinate system (see
coord_cartesian()).

range a numeric vector of length 2 that specifies the minimum and maximum size of
the plotting symbol after transformation.

trans For continuous scales, the name of a transformation object or the object itself.
Built-in transformations include "asn", "atanh", "boxcox", "date", "exp", "hms",
"identity", "log", "log10", "log1p", "log2", "logit", "modulus", "probability",
"probit", "pseudo_log", "reciprocal", "reverse", "sqrt" and "time".
A transformation object bundles together a transform, its inverse, and methods
for generating breaks and labels. Transformation objects are defined in the scales
package, and are called <name>_trans (e.g., scales::boxcox_trans()). You
can create your own transformation with scales::trans_new().

guide A function used to create a guide or its name. See guides() for more informa-
tion.

... Arguments passed on to continuous_scale

minor_breaks One of:
• NULL for no minor breaks
• waiver() for the default breaks (one minor break between each major

break)
• A numeric vector of positions
• A function that given the limits returns a vector of minor breaks. Also

accepts rlang lambda function notation.
oob One of:

• Function that handles limits outside of the scale limits (out of bounds).
Also accepts rlang lambda function notation.

• The default (scales::censor()) replaces out of bounds values with
NA.

• scales::squish() for squishing out of bounds values into range.
• scales::squish_infinite() for squishing infinite values into range.

na.value Missing values will be replaced with this value.
expand For position scales, a vector of range expansion constants used to add

some padding around the data to ensure that they are placed some distance
away from the axes. Use the convenience function expansion() to gen-
erate the values for the expand argument. The defaults are to expand the
scale by 5% on each side for continuous variables, and by 0.6 units on each
side for discrete variables.

position For position scales, The position of the axis. left or right for y
axes, top or bottom for x axes.

scale_label_size 145

super The super class to use for the constructed scale

n.breaks An integer guiding the number of major breaks. The algorithm may choose a
slightly different number to ensure nice break labels. Will only have an effect if
breaks = waiver(). Use NULL to use the default number of breaks given by the
transformation.

nice.breaks Logical. Should breaks be attempted placed at nice values instead of exactly
evenly spaced between the limits. If TRUE (default) the scale will ask the trans-
formation object to create breaks, and this may result in a different number of
breaks than requested. Ignored if breaks are given explicitly.

values a set of aesthetic values to map data values to. The values will be matched
in order (usually alphabetical) with the limits of the scale, or with breaks if
provided. If this is a named vector, then the values will be matched based on the
names instead. Data values that don’t match will be given na.value.

na.value The aesthetic value to use for missing (NA) values

Value

A ggproto object inheriting from Scale

See Also

Other scale_edge_*: scale_edge_alpha(), scale_edge_colour, scale_edge_fill, scale_edge_linetype(),
scale_edge_shape(), scale_edge_size(), scale_label_size()

scale_label_size Edge label size scales

Description

This set of scales defines new size scales for edge labels in order to allow for separate sizing of
edges and their labels.

Usage

scale_label_size_continuous(
name = waiver(),
breaks = waiver(),
labels = waiver(),
limits = NULL,
range = c(1, 6),
trans = "identity",
guide = "legend"

)

scale_label_size(
name = waiver(),

146 scale_label_size

breaks = waiver(),
labels = waiver(),
limits = NULL,
range = c(1, 6),
trans = "identity",
guide = "legend"

)

scale_label_size_discrete(...)

scale_label_size_binned(
name = waiver(),
breaks = waiver(),
labels = waiver(),
limits = NULL,
range = c(1, 6),
n.breaks = NULL,
nice.breaks = TRUE,
trans = "identity",
guide = "bins"

)

scale_label_size_manual(..., values, breaks = waiver(), na.value = NA)

scale_label_size_identity(..., guide = "none")

Arguments

name The name of the scale. Used as the axis or legend title. If waiver(), the default,
the name of the scale is taken from the first mapping used for that aesthetic. If
NULL, the legend title will be omitted.

breaks One of:

• NULL for no breaks
• waiver() for the default breaks computed by the transformation object
• A numeric vector of positions
• A function that takes the limits as input and returns breaks as output (e.g.,

a function returned by scales::extended_breaks()). Also accepts rlang
lambda function notation.

labels One of:

• NULL for no labels
• waiver() for the default labels computed by the transformation object
• A character vector giving labels (must be same length as breaks)
• An expression vector (must be the same length as breaks). See ?plotmath

for details.
• A function that takes the breaks as input and returns labels as output. Also

accepts rlang lambda function notation.

scale_label_size 147

limits One of:

• NULL to use the default scale range
• A numeric vector of length two providing limits of the scale. Use NA to

refer to the existing minimum or maximum
• A function that accepts the existing (automatic) limits and returns new

limits. Also accepts rlang lambda function notation. Note that setting
limits on positional scales will remove data outside of the limits. If the
purpose is to zoom, use the limit argument in the coordinate system (see
coord_cartesian()).

range a numeric vector of length 2 that specifies the minimum and maximum size of
the plotting symbol after transformation.

trans For continuous scales, the name of a transformation object or the object itself.
Built-in transformations include "asn", "atanh", "boxcox", "date", "exp", "hms",
"identity", "log", "log10", "log1p", "log2", "logit", "modulus", "probability",
"probit", "pseudo_log", "reciprocal", "reverse", "sqrt" and "time".
A transformation object bundles together a transform, its inverse, and methods
for generating breaks and labels. Transformation objects are defined in the scales
package, and are called <name>_trans (e.g., scales::boxcox_trans()). You
can create your own transformation with scales::trans_new().

guide A function used to create a guide or its name. See guides() for more informa-
tion.

... Arguments passed on to continuous_scale

minor_breaks One of:
• NULL for no minor breaks
• waiver() for the default breaks (one minor break between each major

break)
• A numeric vector of positions
• A function that given the limits returns a vector of minor breaks. Also

accepts rlang lambda function notation.
oob One of:

• Function that handles limits outside of the scale limits (out of bounds).
Also accepts rlang lambda function notation.

• The default (scales::censor()) replaces out of bounds values with
NA.

• scales::squish() for squishing out of bounds values into range.
• scales::squish_infinite() for squishing infinite values into range.

na.value Missing values will be replaced with this value.
expand For position scales, a vector of range expansion constants used to add

some padding around the data to ensure that they are placed some distance
away from the axes. Use the convenience function expansion() to gen-
erate the values for the expand argument. The defaults are to expand the
scale by 5% on each side for continuous variables, and by 0.6 units on each
side for discrete variables.

position For position scales, The position of the axis. left or right for y
axes, top or bottom for x axes.

148 theme_graph

super The super class to use for the constructed scale

n.breaks An integer guiding the number of major breaks. The algorithm may choose a
slightly different number to ensure nice break labels. Will only have an effect if
breaks = waiver(). Use NULL to use the default number of breaks given by the
transformation.

nice.breaks Logical. Should breaks be attempted placed at nice values instead of exactly
evenly spaced between the limits. If TRUE (default) the scale will ask the trans-
formation object to create breaks, and this may result in a different number of
breaks than requested. Ignored if breaks are given explicitly.

values a set of aesthetic values to map data values to. The values will be matched
in order (usually alphabetical) with the limits of the scale, or with breaks if
provided. If this is a named vector, then the values will be matched based on the
names instead. Data values that don’t match will be given na.value.

na.value The aesthetic value to use for missing (NA) values

Value

A ggproto object inheriting from Scale

See Also

Other scale_edge_*: scale_edge_alpha(), scale_edge_colour, scale_edge_fill, scale_edge_linetype(),
scale_edge_shape(), scale_edge_size(), scale_edge_width()

theme_graph A theme tuned for graph visualizations

Description

When plotting graphs, networks, and trees the coordinate values are often of no importance and axes
are thus a distraction. ggraph comes with a build-in theme that removes redundant elements in order
to put focus on the data. Furthermore the default behaviour is to use a narrow font so text takes up
less space. Theme colour is defined by a background and foreground colour where the background
defines the colour of the whole graphics area and the foreground defines the colour of the strip and
border. By default strip and border is turned off as it is an unnecessary element unless facetting is
used. To add a foreground colour to a plot that is already using theme_graph the th_foreground
helper is provided. In order to use this appearance as default use the set_graph_style function.
An added benefit of this is that it also changes the default text-related values in the different geoms
for a completely coherent look. unset_graph_style can be used to revert the defaults back to their
default settings (that is, they are not necessarily reverted back to what they were prior to calling
set_graph_style). The th_no_axes() helper is provided to modify an existing theme so that grid
and axes are removed.

theme_graph 149

Usage

theme_graph(
base_family = "Arial Narrow",
base_size = 11,
background = "white",
foreground = NULL,
border = TRUE,
text_colour = "black",
bg_text_colour = text_colour,
fg_text_colour = text_colour,
title_family = base_family,
title_size = 18,
title_face = "bold",
title_margin = 10,
title_colour = bg_text_colour,
subtitle_family = base_family,
subtitle_size = 12,
subtitle_face = "plain",
subtitle_margin = 15,
subtitle_colour = bg_text_colour,
strip_text_family = base_family,
strip_text_size = 10,
strip_text_face = "bold",
strip_text_colour = fg_text_colour,
caption_family = base_family,
caption_size = 9,
caption_face = "italic",
caption_margin = 10,
caption_colour = bg_text_colour,
plot_margin = margin(30, 30, 30, 30)

)

th_foreground(foreground = "grey80", fg_text_colour = NULL, border = FALSE)

th_no_axes()

set_graph_style(
family = "Arial Narrow",
face = "plain",
size = 11,
text_size = 11,
text_colour = "black",
...

)

unset_graph_style()

150 whigs

Arguments

base_size, size, text_size, title_size, subtitle_size, strip_text_size, caption_size

The size to use for the various text elements. text_size will be used as geom
defaults

background The colour to use for the background. This theme sets all background elements
except for plot.background to element_blank so this controls the background
for all elements of the plot. Set to NA to remove the background (thus making
the plot transparent)

foreground The colour of foreground elements, specifically strip and border. Set to NA to
remove.

border Logical. Should border be drawn if a foreground colour is provided?

text_colour, bg_text_colour, fg_text_colour, title_colour, subtitle_colour, strip_text_colour, caption_colour

The colour of the text in the various text elements
title_margin, subtitle_margin, caption_margin

The margin to use between the text elements and the plot area

plot_margin The plot margin

family, base_family, title_family, subtitle_family, strip_text_family, caption_family

The font to use for the different elements
face, title_face, subtitle_face, strip_text_face, caption_face

The fontface to use for the various text elements

... Parameters passed on the theme_graph

Examples

library(tidygraph)
graph <- as_tbl_graph(highschool)

ggraph(graph) + geom_edge_link() + geom_node_point() + theme_graph()

whigs Membership network of American Whigs

Description

This dataset shows the membership of 136 colonial Americans in 5 whig organization and is a
bipartite graph. The data appeared in the appendix to David Hackett Fischer’s Paul Revere’s Ride
(Oxford University Press, 1995) and compiled by Kieran Healy for the blog post Using Metadata
to Find Paul Revere.

Usage

whigs

https://kieranhealy.org/blog/archives/2013/06/09/using-metadata-to-find-paul-revere/
https://kieranhealy.org/blog/archives/2013/06/09/using-metadata-to-find-paul-revere/

whigs 151

Format

The data is stored as an incidence matrix with persons as rows and organizations as columns. A 0
means no membership while a one means membership.

Source

https://github.com/kjhealy/revere/blob/master/data/PaulRevereAppD.csv adapted from:

Fischer, David H. (1995) Paul Revere’s Ride. Oxford University Press

https://github.com/kjhealy/revere/blob/master/data/PaulRevereAppD.csv

Index

∗ datasets
flare, 9
highschool, 92
whigs, 150

∗ extractors
get_con, 82
get_edges, 83
get_nodes, 84

∗ geom_conn_*
geom_conn_bundle, 13

∗ geom_edge_*
geom_edge_arc, 16
geom_edge_bend, 21
geom_edge_density, 26
geom_edge_diagonal, 28
geom_edge_elbow, 32
geom_edge_fan, 37
geom_edge_hive, 42
geom_edge_link, 47
geom_edge_loop, 51
geom_edge_parallel, 55
geom_edge_point, 60
geom_edge_span, 62
geom_edge_tile, 67

∗ geom_node_*
geom_node_arc_bar, 69
geom_node_circle, 70
geom_node_point, 72
geom_node_range, 74
geom_node_text, 75
geom_node_tile, 78
geom_node_voronoi, 80

∗ ggraph-facets
facet_edges, 4
facet_graph, 6
facet_nodes, 8

∗ graph
ggraph, 85

∗ hierarchy

ggraph, 85
∗ layout_tbl_graph_*

layout_tbl_graph_auto, 93
layout_tbl_graph_backbone, 94
layout_tbl_graph_centrality, 95
layout_tbl_graph_circlepack, 96
layout_tbl_graph_dendrogram, 97
layout_tbl_graph_eigen, 99
layout_tbl_graph_fabric, 100
layout_tbl_graph_focus, 101
layout_tbl_graph_hive, 102
layout_tbl_graph_igraph, 104
layout_tbl_graph_linear, 106
layout_tbl_graph_manual, 107
layout_tbl_graph_matrix, 108
layout_tbl_graph_partition, 109
layout_tbl_graph_pmds, 110
layout_tbl_graph_stress, 111
layout_tbl_graph_treemap, 113
layout_tbl_graph_unrooted, 114

∗ layout
ggraph, 85

∗ network
ggraph, 85

∗ scale_edge_*
scale_edge_alpha, 118
scale_edge_colour, 119
scale_edge_fill, 128
scale_edge_linetype, 135
scale_edge_shape, 137
scale_edge_size, 139
scale_edge_width, 142
scale_label_size, 145

∗ visualisation
ggraph, 85

aes(), 12
autograph, 3

binned_scale(), 118

152

INDEX 153

circle (geometry), 10
continuous_scale, 141, 144, 147
continuous_scale(), 118
coord_cartesian(), 140, 144, 147
create_layout (ggraph), 85
create_layout(), 98, 105

discrete_scale, 126, 132, 135, 137
discrete_scale(), 118

edge_angle (node_angle), 116
element_text(), 87, 88, 90, 92
ellipsis (geometry), 10
expansion(), 127, 133, 141, 144, 147

fabric, 62, 74
facet_edges, 4, 7, 9
facet_graph, 6, 6, 9
facet_nodes, 6, 7, 8
flare, 9
fortify(), 12, 69, 71, 72, 74, 76, 78, 80

geom_axis_hive, 11
geom_conn_bundle, 13
geom_conn_bundle0 (geom_conn_bundle), 13
geom_conn_bundle2 (geom_conn_bundle), 13
geom_edge_arc, 16, 25, 27, 32, 37, 42, 46, 51,

55, 60, 62, 66, 68
geom_edge_arc0 (geom_edge_arc), 16
geom_edge_arc2 (geom_edge_arc), 16
geom_edge_bend, 21, 21, 27, 32, 37, 42, 46,

51, 55, 60, 62, 66, 68
geom_edge_bend0 (geom_edge_bend), 21
geom_edge_bend2 (geom_edge_bend), 21
geom_edge_density, 21, 25, 26, 32, 37, 42,

46, 51, 55, 60, 62, 66, 68
geom_edge_diagonal, 21, 25, 27, 28, 37, 42,

46, 51, 55, 60, 62, 66, 68
geom_edge_diagonal0

(geom_edge_diagonal), 28
geom_edge_diagonal2

(geom_edge_diagonal), 28
geom_edge_elbow, 21, 25, 27, 32, 32, 42, 46,

51, 55, 60, 62, 66, 68
geom_edge_elbow(), 84
geom_edge_elbow0 (geom_edge_elbow), 32
geom_edge_elbow2 (geom_edge_elbow), 32
geom_edge_fan, 21, 25, 27, 32, 37, 37, 46, 51,

55, 60, 62, 66, 68

geom_edge_fan0 (geom_edge_fan), 37
geom_edge_fan2 (geom_edge_fan), 37
geom_edge_hive, 21, 25, 27, 32, 37, 42, 42,

51, 55, 60, 62, 66, 68
geom_edge_hive0 (geom_edge_hive), 42
geom_edge_hive2 (geom_edge_hive), 42
geom_edge_link, 21, 25, 27, 32, 37, 42, 46,

47, 55, 60, 62, 66, 68
geom_edge_link0 (geom_edge_link), 47
geom_edge_link2 (geom_edge_link), 47
geom_edge_loop, 21, 25, 27, 32, 37, 42, 46,

51, 51, 60, 62, 66, 68
geom_edge_loop0 (geom_edge_loop), 51
geom_edge_parallel, 21, 25, 27, 32, 37, 42,

46, 51, 55, 55, 62, 66, 68
geom_edge_parallel0

(geom_edge_parallel), 55
geom_edge_parallel2

(geom_edge_parallel), 55
geom_edge_point, 21, 25, 27, 32, 37, 42, 46,

51, 55, 60, 60, 66, 68
geom_edge_point(), 86, 108
geom_edge_span, 21, 25, 27, 32, 37, 42, 46,

51, 55, 60, 62, 62, 68
geom_edge_span0 (geom_edge_span), 62
geom_edge_span2 (geom_edge_span), 62
geom_edge_tile, 21, 25, 27, 32, 37, 42, 46,

51, 55, 60, 62, 66, 67
geom_node_arc_bar, 69, 72, 73, 75, 77, 79, 82
geom_node_circle, 70, 70, 73, 75, 77, 79, 82
geom_node_label (geom_node_text), 75
geom_node_point, 70, 72, 72, 75, 77, 79, 82
geom_node_range, 70, 72, 73, 74, 77, 79, 82
geom_node_text, 70, 72, 73, 75, 75, 79, 82
geom_node_tile, 70, 72, 73, 75, 77, 78, 82
geom_node_voronoi, 70, 72, 73, 75, 77, 79, 80
geometry, 10
geometry(), 20, 25, 31, 36, 41, 46, 49, 54, 59,

66
get_con, 82, 84, 85
get_con(), 14, 87
get_edges, 83, 83, 85
get_edges(), 18, 20, 23, 25, 26, 29, 31, 34,

36, 39, 41, 44, 46, 48, 49, 52, 54, 57,
59, 61, 64, 66, 67, 84, 87

get_nodes, 83, 84, 84
ggforce::geom_arc_bar(), 69
ggforce::geom_circle(), 70

154 INDEX

ggforce::geom_voronoi_tile(), 80
ggplot(), 12, 69, 71, 72, 74, 76, 78, 80
ggplot2::aes(), 14, 18, 23, 26, 29, 34, 39,

44, 48, 52, 57, 61, 63, 67, 69, 71, 72,
74, 76, 78, 80

ggplot2::aes_(), 14, 18, 23, 26, 29, 34, 39,
44, 48, 52, 57, 61, 63, 67, 69, 71, 72,
74, 76, 78, 80

ggplot2::coord_fixed(), 70, 81
ggplot2::facet_grid(), 6
ggplot2::facet_wrap(), 4, 8
ggplot2::geom_label(), 75
ggplot2::geom_line(), 142
ggplot2::geom_point(), 64, 72
ggplot2::geom_segment(), 84
ggplot2::geom_text(), 75
ggplot2::ggplot(), 85
ggplot2::guide_colourbar, 87, 89
ggplot2::guide_colourbar(), 87
ggplot2::guide_coloursteps(), 89
ggplot2::margin(), 11
ggplot2::scale_alpha(), 118
ggplot2::scale_linetype(), 135
ggplot2::scale_shape(), 137
ggplot2::scale_size(), 139
ggraph, 85
ggraph(), 93
grDevices::plotmath(), 18, 23, 30, 34, 39,

44, 49, 53, 57, 64
grid::arrow(), 14, 18, 23, 29, 34, 39, 44, 48,

53, 57, 64
grid::gpar(), 11
grid::unit(), 18, 23, 30, 35, 39, 40, 44, 49,

53, 57, 64, 88, 90, 92
guide_edge_colorbar

(guide_edge_colourbar), 87
guide_edge_colorsteps

(guide_edge_coloursteps), 89
guide_edge_colourbar, 87
guide_edge_coloursteps, 89
guide_edge_direction, 91
guides(), 127, 133, 136, 138, 141, 144, 147

highschool, 92
hsv, 128, 134

igraph::as_bipartite(), 105
igraph::as_star(), 105
igraph::as_tree(), 105

igraph::in_circle(), 105
igraph::layout_(), 104
igraph::layout_as_tree(), 97
igraph::nicely(), 105
igraph::on_grid(), 105
igraph::on_sphere(), 105
igraph::plot.igraph(), 37
igraph::randomly(), 105
igraph::with_dh(), 105
igraph::with_drl(), 105
igraph::with_fr(), 105
igraph::with_gem(), 105
igraph::with_graphopt(), 105
igraph::with_kk(), 105
igraph::with_lgl(), 105
igraph::with_mds(), 105
igraph::with_sugiyama(), 105
is.geometry (geometry), 10

label_parsed(), 5, 7, 9
label_rect (geometry), 10
label_value(), 5, 7, 9
labeller(), 5, 7, 9
labs(), 87, 89, 91
lambda, 126, 127, 132, 133, 135–138, 140,

141, 143, 144, 146, 147
layer(), 12, 15, 19, 23, 27, 30, 35, 40, 44, 49,

53, 58, 61, 64, 68, 69, 71, 73, 74, 77,
79, 81

layout_ggraph (ggraph), 85
layout_tbl_graph (ggraph), 85
layout_tbl_graph_auto, 93, 95–99, 101,

102, 104, 106–108, 110–112, 114,
116

layout_tbl_graph_auto(), 86
layout_tbl_graph_backbone, 94, 94, 96–99,

101, 102, 104, 106–108, 110–112,
114, 116

layout_tbl_graph_centrality, 94, 95, 95,
97–99, 101, 102, 104, 106–108,
110–112, 114, 116

layout_tbl_graph_circlepack, 94–96, 96,
98, 99, 101, 102, 104, 106–108,
110–112, 114, 116, 117

layout_tbl_graph_circlepack(), 86
layout_tbl_graph_dendrogram, 94–97, 97,

99, 101, 102, 104, 106–108,
110–112, 114, 116

layout_tbl_graph_dendrogram(), 33, 86

INDEX 155

layout_tbl_graph_eigen, 94–98, 99, 101,
102, 104, 106–108, 110–112, 114,
116

layout_tbl_graph_fabric, 94–99, 100, 102,
104, 106–108, 110–112, 114, 116

layout_tbl_graph_focus, 94–99, 101, 101,
104, 106–108, 110–112, 114, 116

layout_tbl_graph_hive, 94–99, 101, 102,
102, 106–108, 110–112, 114, 116

layout_tbl_graph_hive(), 86
layout_tbl_graph_igraph, 94–99, 101, 102,

104, 104, 107, 108, 110–112, 114,
116

layout_tbl_graph_igraph(), 33, 86
layout_tbl_graph_linear, 94–99, 101, 102,

104, 106, 106, 107, 108, 110–112,
114, 116

layout_tbl_graph_linear(), 16, 86, 105
layout_tbl_graph_manual, 94–99, 101, 102,

104, 106, 107, 107, 108, 110–112,
114, 116

layout_tbl_graph_manual(), 86
layout_tbl_graph_matrix, 94–99, 101, 102,

104, 106, 107, 108, 110–112, 114,
116

layout_tbl_graph_matrix(), 60, 67, 86
layout_tbl_graph_partition, 94–99, 101,

102, 104, 106–108, 109, 111, 112,
114, 116

layout_tbl_graph_partition(), 33, 86
layout_tbl_graph_pmds, 94–99, 101, 102,

104, 106–108, 110, 110, 112, 114,
116

layout_tbl_graph_sparse_stress
(layout_tbl_graph_stress), 111

layout_tbl_graph_stress, 94–99, 101, 102,
104, 106–108, 110, 111, 111, 114,
116

layout_tbl_graph_treemap, 94–99, 101,
102, 104, 106–108, 110–112, 113,
116

layout_tbl_graph_treemap(), 86, 109
layout_tbl_graph_unrooted, 94–99, 101,

102, 104, 106–108, 110–112, 114,
114

node_angle, 116
node_rank_fabric

(layout_tbl_graph_fabric), 100

pack_circles, 117

rectangle (geometry), 10
rescale(), 127, 133

scale_edge_alpha, 118, 128, 134, 136, 138,
142, 145, 148

scale_edge_alpha_binned
(scale_edge_alpha), 118

scale_edge_alpha_continuous
(scale_edge_alpha), 118

scale_edge_alpha_discrete
(scale_edge_alpha), 118

scale_edge_alpha_identity
(scale_edge_alpha), 118

scale_edge_alpha_manual
(scale_edge_alpha), 118

scale_edge_color_binned
(scale_edge_colour), 119

scale_edge_color_brewer
(scale_edge_colour), 119

scale_edge_color_continuous
(scale_edge_colour), 119

scale_edge_color_discrete
(scale_edge_colour), 119

scale_edge_color_distiller
(scale_edge_colour), 119

scale_edge_color_fermenter
(scale_edge_colour), 119

scale_edge_color_gradient
(scale_edge_colour), 119

scale_edge_color_gradient2
(scale_edge_colour), 119

scale_edge_color_gradientn
(scale_edge_colour), 119

scale_edge_color_grey
(scale_edge_colour), 119

scale_edge_color_hue
(scale_edge_colour), 119

scale_edge_color_identity
(scale_edge_colour), 119

scale_edge_color_manual
(scale_edge_colour), 119

scale_edge_color_steps
(scale_edge_colour), 119

scale_edge_color_steps2
(scale_edge_colour), 119

scale_edge_color_stepsn
(scale_edge_colour), 119

156 INDEX

scale_edge_color_viridis
(scale_edge_colour), 119

scale_edge_colour, 119, 119, 134, 136, 138,
142, 145, 148

scale_edge_colour_binned
(scale_edge_colour), 119

scale_edge_colour_brewer
(scale_edge_colour), 119

scale_edge_colour_continuous
(scale_edge_colour), 119

scale_edge_colour_discrete
(scale_edge_colour), 119

scale_edge_colour_distiller
(scale_edge_colour), 119

scale_edge_colour_fermenter
(scale_edge_colour), 119

scale_edge_colour_gradient
(scale_edge_colour), 119

scale_edge_colour_gradient2
(scale_edge_colour), 119

scale_edge_colour_gradientn
(scale_edge_colour), 119

scale_edge_colour_grey
(scale_edge_colour), 119

scale_edge_colour_hue
(scale_edge_colour), 119

scale_edge_colour_identity
(scale_edge_colour), 119

scale_edge_colour_manual
(scale_edge_colour), 119

scale_edge_colour_steps
(scale_edge_colour), 119

scale_edge_colour_steps2
(scale_edge_colour), 119

scale_edge_colour_stepsn
(scale_edge_colour), 119

scale_edge_colour_viridis
(scale_edge_colour), 119

scale_edge_fill, 119, 128, 128, 136, 138,
142, 145, 148

scale_edge_fill_binned
(scale_edge_fill), 128

scale_edge_fill_brewer
(scale_edge_fill), 128

scale_edge_fill_continuous
(scale_edge_fill), 128

scale_edge_fill_discrete
(scale_edge_fill), 128

scale_edge_fill_distiller
(scale_edge_fill), 128

scale_edge_fill_fermenter
(scale_edge_fill), 128

scale_edge_fill_gradient
(scale_edge_fill), 128

scale_edge_fill_gradient2
(scale_edge_fill), 128

scale_edge_fill_gradientn
(scale_edge_fill), 128

scale_edge_fill_grey (scale_edge_fill),
128

scale_edge_fill_hue (scale_edge_fill),
128

scale_edge_fill_identity
(scale_edge_fill), 128

scale_edge_fill_manual
(scale_edge_fill), 128

scale_edge_fill_steps
(scale_edge_fill), 128

scale_edge_fill_steps2
(scale_edge_fill), 128

scale_edge_fill_stepsn
(scale_edge_fill), 128

scale_edge_fill_viridis
(scale_edge_fill), 128

scale_edge_linetype, 119, 128, 134, 135,
138, 142, 145, 148

scale_edge_linetype_binned
(scale_edge_linetype), 135

scale_edge_linetype_continuous
(scale_edge_linetype), 135

scale_edge_linetype_discrete
(scale_edge_linetype), 135

scale_edge_linetype_identity
(scale_edge_linetype), 135

scale_edge_linetype_manual
(scale_edge_linetype), 135

scale_edge_radius (scale_edge_size), 139
scale_edge_shape, 119, 128, 134, 136, 137,

142, 145, 148
scale_edge_shape_binned

(scale_edge_shape), 137
scale_edge_shape_continuous

(scale_edge_shape), 137
scale_edge_shape_discrete

(scale_edge_shape), 137
scale_edge_shape_identity

INDEX 157

(scale_edge_shape), 137
scale_edge_shape_manual

(scale_edge_shape), 137
scale_edge_size, 119, 128, 134, 136, 138,

139, 145, 148
scale_edge_size_area (scale_edge_size),

139
scale_edge_size_binned

(scale_edge_size), 139
scale_edge_size_binned_area

(scale_edge_size), 139
scale_edge_size_continuous

(scale_edge_size), 139
scale_edge_size_discrete

(scale_edge_size), 139
scale_edge_size_identity

(scale_edge_size), 139
scale_edge_size_manual

(scale_edge_size), 139
scale_edge_width, 119, 128, 134, 136, 138,

142, 142, 148
scale_edge_width(), 142
scale_edge_width_binned

(scale_edge_width), 142
scale_edge_width_continuous

(scale_edge_width), 142
scale_edge_width_discrete

(scale_edge_width), 142
scale_edge_width_identity

(scale_edge_width), 142
scale_edge_width_manual

(scale_edge_width), 142
scale_label_size, 119, 128, 134, 136, 138,

142, 145, 145
scale_label_size_binned

(scale_label_size), 145
scale_label_size_continuous

(scale_label_size), 145
scale_label_size_discrete

(scale_label_size), 145
scale_label_size_identity

(scale_label_size), 145
scale_label_size_manual

(scale_label_size), 145
scales::boxcox_trans(), 141, 144, 147
scales::censor(), 141, 144, 147
scales::extended_breaks(), 140, 143, 146
scales::hue_pal(), 126, 132, 135, 137

scales::squish(), 141, 144, 147
scales::squish_infinite(), 141, 144, 147
scales::trans_new(), 141, 144, 147
set_graph_style (theme_graph), 148
square (geometry), 10

th_foreground (theme_graph), 148
th_no_axes (theme_graph), 148
theme(), 87, 88, 90, 92
theme_graph, 148
transformation object, 140, 143, 146

unset_graph_style (theme_graph), 148

vars(), 5, 8

waiver(), 87, 89, 91
whigs, 150

	autograph
	facet_edges
	facet_graph
	facet_nodes
	flare
	geometry
	geom_axis_hive
	geom_conn_bundle
	geom_edge_arc
	geom_edge_bend
	geom_edge_density
	geom_edge_diagonal
	geom_edge_elbow
	geom_edge_fan
	geom_edge_hive
	geom_edge_link
	geom_edge_loop
	geom_edge_parallel
	geom_edge_point
	geom_edge_span
	geom_edge_tile
	geom_node_arc_bar
	geom_node_circle
	geom_node_point
	geom_node_range
	geom_node_text
	geom_node_tile
	geom_node_voronoi
	get_con
	get_edges
	get_nodes
	ggraph
	guide_edge_colourbar
	guide_edge_coloursteps
	guide_edge_direction
	highschool
	layout_tbl_graph_auto
	layout_tbl_graph_backbone
	layout_tbl_graph_centrality
	layout_tbl_graph_circlepack
	layout_tbl_graph_dendrogram
	layout_tbl_graph_eigen
	layout_tbl_graph_fabric
	layout_tbl_graph_focus
	layout_tbl_graph_hive
	layout_tbl_graph_igraph
	layout_tbl_graph_linear
	layout_tbl_graph_manual
	layout_tbl_graph_matrix
	layout_tbl_graph_partition
	layout_tbl_graph_pmds
	layout_tbl_graph_stress
	layout_tbl_graph_treemap
	layout_tbl_graph_unrooted
	node_angle
	pack_circles
	scale_edge_alpha
	scale_edge_colour
	scale_edge_fill
	scale_edge_linetype
	scale_edge_shape
	scale_edge_size
	scale_edge_width
	scale_label_size
	theme_graph
	whigs
	Index

