Package ‘gesso’

June 16, 2021

Type Package
Title Hierarchical GxE Interactions in a Regularized Regression Model
Version 1.0.1
Date 2021-06-14
Author Natalia Zemlianskaia
Maintainer Natalia Zemlianskaia <natasha.zemlianskaia@gmail.com>
Description The method focuses on a single environmental exposure and induces
a main-effect-before-interaction hierarchical structure for the joint selection of interaction terms
in a regularized regression model. For details see Zemlianskaia et al. (2021) <arxiv:2103.13510>.
License MIT + file LICENSE
Imports Rcpp (>= 1.0.3), Matrix, bigmemory, methods
Depends dplyr, R (>= 3.5)
Suggests glmnet, testthat, knitr, markdown, ggplot2
LinkingTo Rcpp, RcppEigen, RcppThread, BH, bigmemory
VignetteBuilder knitr
NeedsCompilation yes
Repository CRAN
Date/Publication 2021-06-16 09:00:07 UTC

R topics documented:

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>gesso-package</td>
<td>2</td>
</tr>
<tr>
<td>data.gen</td>
<td>2</td>
</tr>
<tr>
<td>gesso.coef</td>
<td>4</td>
</tr>
<tr>
<td>gesso.coefnum</td>
<td>5</td>
</tr>
<tr>
<td>gesso.cv</td>
<td>6</td>
</tr>
<tr>
<td>gesso.fit</td>
<td>7</td>
</tr>
<tr>
<td>gesso.predict</td>
<td>9</td>
</tr>
<tr>
<td>selection.metrics</td>
<td>10</td>
</tr>
</tbody>
</table>

Index 12
Hierarchical GxE Interactions in a Regularized Regression Model

Description

The method focuses on a single environmental exposure and induces a main-effect-before-interaction hierarchical structure for the joint selection of interaction terms in a regularized regression model. For details see Zemlianskaia et al. (2021) <arxiv:2103.13510>.

Author(s)

Natalia Zemlianskaia

Maintainer: Natalia Zemlianskaia <natasha.zemlianskaia@gmail.com>

References

Data Generation

Description

Generates genotypes data matrix G (sample_size by p), vector of environmental measuremments E, and an outcome vector Y of size sample_size. Simulates training, validation, and test datasets.

Usage

data.gen(sample_size = 100, p = 20, n_g_non_zero = 15, n_gxe_non_zero = 10, family = "gaussian", mode = "strong_hierarchical", normalize = FALSE, normalize_response = FALSE, seed = 1, pG = 0.2, pE = 0.3, n_confounders = NULL)

Arguments

- sample_size: sample size of the data
- p: total number of main effects
- n_g_non_zero: number of non-zero main effects to generate
- n_gxe_non_zero: number of non-zero interaction effects to generate
- family: "gaussian" for continuous outcome Y and "binomial" for binary 0/1 outcome
mode either "strong_hierarchical", "hierarchical", or "anti_hierarchical". In the strong hierarchical mode the hierarchical structure is maintained (beta_g = 0 then beta_gxe = 0) and also |beta_g| >= |beta_gxe|. In the hierarchical mode the hierarchical structure is maintained, but |beta_g| < |beta_gxe|. In the anti_hierarchical mode the hierarchical structure is violated (beta_g = 0 then beta_gxe != 0).

normalize TRUE to normalize matrix G and vector E
normalize_response TRUE to normalize vector Y
pG genotypes prevalence, value from 0 to 1
pE environment prevalence, value from 0 to 1
seed random seed
n_confounders number of confounders to generate, either NULL or >1

Value
A list of simulated datasets and generating coefficients
G_train, G_valid, G_test generated genotypes matrices
E_train, E_valid, E_test generated vectors of environmental values
Y_train, Y_valid, Y_test generated outcome vectors
C_train, C_valid, C_test generated confounders matrices
GxE_train, GxE_valid, GxE_test generated GxE matrix
Beta_G main effect coefficients vector
Beta_GxE interaction coefficients vector
beta_0 intercept coefficient value
beta_E environment coefficient value
Beta_C confounders coefficient values
index_beta_non_zero, index_beta_gxe_non_zero, index_beta_zero, index_beta_gxe_zero inner data generation variables
n_g_non_zero number of non-zero main effects generated
n_gxe_non_zero number of non-zero interactions generated
n_total_non_zero total number of non-zero variables
SNR_g signal-to-noise ratio for the main effects
SNR_gxe signal-to-noise ratio for the interactions
family, p, sample_size, mode, seed input simulation parameters
Examples

```r
data = data.gen(sample_size=100, p=100)
G = data$G_train; GxE = data$GxE_train
E = data$E_train; Y = data$Y_train
```

gesso.coef Get model coefficients

Description

A function to obtain coefficients from the model fit object corresponding to the desired pair of tuning parameters \(\lambda = (\lambda_1, \lambda_2) \).

Usage

```r
gesso.coef(fit, lambda)
```

Arguments

- `fit` model fit object obtained either by using function `gesso.fit` or `gesso.cv`
- `lambda` a pair of tuning parameters organized in a tibble (ex: `lambda = tibble(lambda_1=grid[1], lambda_2=grid[1])`)

Value

A list of model coefficients corresponding to \(\lambda \) values of tuning parameters

- `beta_0` estimated intercept value
- `beta_e` estimated environmental coefficient value
- `beta_g` a vector of estimated main effect coefficients
- `beta_c` a vector of estimated confounders coefficients
- `beta_gxe` a vector of estimated interaction coefficients

Examples

```r
data = data.gen()
model = gesso.cv(data$G_train, data$E_train, data$Y_train, grid_size=20, parallel=TRUE, nfolds=3)
gxe_coefficients = gesso.coef(model$fit, model$lambda_min)$beta_gxe
g_coefficients = gesso.coef(model$fit, model$lambda_min)$beta_g
```
gesso.coefnum

Get model coefficients with specified number of non-zero interactions

Description
A function to obtain coefficients with target_b_gxe_non_zero specified to control the desired sparsity of interactions in the model.

Usage

```r
gesso.coefnum(cv_model, target_b_gxe_non_zero, less_than = TRUE)
```

Arguments

- **cv_model**: cross-validated model fit object obtained by using function `gesso.cv`
- **target_b_gxe_non_zero**: number of non-zero interactions we want to include in the model
- **less_than**: TRUE if we want to control a number of at most non-zero interactions, FALSE if we want to control a number of at least non-zero interactions

Value

A list of model coefficients corresponding to the best model that contains at most or at least target_b_gxe_non_zero non-zero interaction terms.

The target model is selected based on the averaged cross-validation (cv) results: for each pair of parameters lambda=(lambda_1, lambda_2) in the grid and each cv fold we obtain a number of non-zero estimated interaction terms, then average cv results by lambda and choose the tuning parameters corresponding to the minimum average cv loss that have at most or at least target_b_gxe_non_zero non-zero interaction terms. Returned coefficients are obtained by fitting the model on the full data with the selected tuning parameters.

Note that the number of estimated non-zero interactions will only approximately reflect the numbers obtained on cv datasets.

- **beta_0**: estimated intercept value
- **beta_e**: estimated environmental coefficient value
- **beta_g**: a vector of estimated main effect coefficients
- **beta_gxe**: a vector of estimated interaction coefficients
- **beta_c**: a vector of estimated confounders coefficients

Examples

```r
data = data.gen()
model = gesso.cv(data$G_train, data$E_train, data$Y_train)
model_coefficients = gesso.coefnum(model, 5)
gxe_coefficients = model_coefficients$beta_gxe; sum(gxe_coefficients!=0)
```
Cross-Validation

Description

Performs nfolds-fold cross-validation to tune hyperparameters λ_1 and λ_2 for the gesso model.

Usage

gesso.cv(G, E, Y, C = NULL, normalize = TRUE, normalize_response = FALSE, grid = NULL, grid_size = 20, grid_min_ratio = NULL, alpha = NULL, family = "gaussian", type_measure = "loss", fold_ids = NULL, nfolds = 4, parallel = TRUE, seed = 42, tolerance = 1e-3, max_iterations = 5000, min_working_set_size = 100, verbose = TRUE)

Arguments

- **G**: matrix of main effects of size $n \times p$, variables organized by columns
- **E**: vector of environmental measurements
- **Y**: outcome vector. Set family="gaussian" for the continuous outcome and family="binomial" for the binary outcome with 0/1 levels
- **C**: matrix of confounders of size $n \times m$, variables organized by columns
- **normalize**: TRUE to normalize matrix G and vector E
- **normalize_response**: TRUE to normalize vector Y (for family="gaussian")
- **grid**: grid sequence for tuning hyperparameters, we use the same grid for λ_1 and λ_2
- **grid_size**: specify grid_size to generate grid automatically. Grid is generated by calculating max_lambda from the data (smallest lambda such that all the coefficients are zero). min_lambda is calculated as a product of max_lambda and grid_min_ratio. The program then generates grid_size values equidistant on the log10 scale from min_lambda to max_lambda
- **grid_min_ratio**: parameter to determine min_lambda (smallest value for the grid of lambdas), default is 0.1 for $p > n$, 0.01 otherwise
- **alpha**: if NULL independent 2D grid is used for (λ_1, λ_2), else 1D grid is used where $\lambda_2 = \alpha \times \lambda_1$, i.e. ($\lambda_1$, $\alpha \times \lambda_1$)
- **family**: "gaussian" for continuous outcome and "binomial" for binary
- **type_measure**: loss to use for cross-validation. Specify type_measure="loss" for negative log likelihood or type_measure="auc" for AUC (for family="binomial" only)
- **fold_ids**: option to input custom folds assignments
- **tolerance**: tolerance for the dual gap convergence criterion
- **max_iterations**: maximum number of iterations
min_working_set_size
 minimum size of the working set
n folds
 number of cross-validation splits
parallel
 TRUE to enable parallel cross-validation
seed
 set random seed to control random folds assignments
verbose
 TRUE to print messages

Value
A list of objects
cv_result
 a tibble with cross-validation results: averaged across folds loss and the number of non-zero coefficients for each value of (lambda_1, lambda_2) path. Could be used for custom parameters tuning (ex: select (lambda_1, lambda_2) with a certain number of non-zero main effects and/or a certain number of interactions).
 • mean_loss averaged across folds loss value, vector of size lambda_1*lambda_2
 • mean_beta_g_nonzero averaged across folds number of non-zero main effects, vector of size lambda_1*lambda_2
 • mean_beta_gxe_nonzero averaged across folds number of non-zero interactions, vector of size lambda_1*lambda_2
 • lambda_1 lambda_1 pass, decreasing
 • lambda_2 lambda_2 pass, oscillating
lambda_min
 a tibble of optimal (lambda_1, lambda_2) values, tuning parameter values that give minimum cross-validation loss (mean_loss)
fit
 list, return of the function gesso.fit on the full data
grid
 vector of values used for hyperparameters tuning
full_cv_result
 inner variables

Examples

data = data.gen()
tune_model = gesso.cv(data$G_train, data$E_train, data$Y_train,
 grid_size=20, parallel=TRUE, nfolds=3)
gxe_coefficients = gesso.coef(tune_model$fit, tune_model$lambda_min)$beta_gxe
g_coefficients = gesso.coef(tune_model$fit, tune_model$lambda_min)$beta_g

Description
Fits gesso model over the two dimensional grid of hyperparameters lambda_1 and lambda_2, returns estimated coefficients for each pair of hyperparameters.
Usage

```r
gesso.fit(G, E, Y, C = NULL, normalize = TRUE, normalize_response = FALSE,
  grid = NULL, grid_size = 20, grid_min_ratio = NULL,
  alpha = NULL, family = "gaussian", weights = NULL,
  tolerance = 1e-3, max_iterations = 5000,
  min_working_set_size = 100,
  verbose = FALSE)
```

Arguments

- **G**: matrix of main effects of size \(n \times p\), variables organized by columns
- **E**: vector of environmental measurements
- **Y**: outcome vector. Set `family="gaussian"` for the continuous outcome and `family="binomial"` for the binary outcome with 0/1 levels
- **C**: matrix of confounders of size \(n \times m\), variables organized by columns
- **normalize**: TRUE to normalize matrix \(G\) and vector \(E\)
- **normalize_response**: TRUE to normalize vector \(Y\)
- **grid**: grid sequence for tuning hyperparameters, we use the same grid for \(\lambda_1\) and \(\lambda_2\)
- **grid_size**: specify `grid_size` to generate grid automatically. Grid is generated by calculating `max_lambda` from the data (smallest lambda such that all the coefficients are zero). `min_lambda` is calculated as a product of `max_lambda` and `grid_min_ratio`. The program then generates `grid_size` values equidistant on the log10 scale from `min_lambda` to `max_lambda`
- **grid_min_ratio**: parameter to determine `min_lambda` (smallest value for the grid of lambdas), default is 0.1 for \(p > n\), 0.01 otherwise
- **alpha**: if NULL independent 2D grid is used for (\(\lambda_1\), \(\lambda_2\)), else 1D grid is used where \(\lambda_2 = \alpha \times \lambda_1\), i.e. (\(\lambda_1\), \(\alpha \times \lambda_1\))
- **family**: "gaussian" for continuous outcome and "binomial" for binary
- **tolerance**: tolerance for the dual gap convergence criterion
- **max_iterations**: maximum number of iterations
- **min_working_set_size**: minimum size of the working set
- **weights**: inner fitting parameter
- **verbose**: TRUE to print messages

Value

A list of estimated coefficients and other model fit metrics for each pair of hyperparameters (\(\lambda_1\), \(\lambda_2\))

- **beta_0**: vector of estimated intercept values of size \(\lambda_1 \times \lambda_2\)
- **beta_e**: vector of estimated environment coefficients of size \(\lambda_1 \times \lambda_2\)
gesso.predict

Predict new outcome vector

Description

Predict new outcome vector based on the new data and estimated model coefficients.

Usage

gesso.predict(beta_0, beta_e, beta_g, beta_gxe, new_G, new_E,
 beta_c=NULL, new_C=NULL, family = "gaussian")
Arguments

beta_0 estimated intercept value
beta_e estimated environmental coefficient value
beta_g a vector of estimated main effect coefficients
beta_gxe a vector of estimated interaction coefficients
new_G matrix of main effects, variables organized by columns
new_E vector of environmental measurements
beta_c a vector of estimated confounders coefficients
new_C matrix of confounders, variables organized by columns
family set family="gaussian" for the continuous outcome and family="binomial" for the binary outcome with 0/1 levels

Value

Returns a vector of predicted values

Examples

data = data.gen()
tune_model = gesso.cv(data$G_train, data$E_train, data$Y_train)
coefficients = gesso.coef(tune_model$fit, tune_model$lambda_min)
beta_0 = coefficients$beta_0; beta_e = coefficients$beta_e
beta_g = coefficients$beta_g; beta_gxe = coefficients$beta_gxe

new_G = data$G_test; new_E = data$E_test
new_Y = gesso.predict(beta_0, beta_e, beta_g, beta_gxe, new_G, new_E)
cor(new_Y, data$Y_test)^2

selection.metrics Selection metrics

Description

Calculates principal selection metrics for the binary zero/non-zero classification problem (sensitivity, specificity, precision, auc).

Usage

selection.metrics(true_b_g, true_b_gxe, estimated_b_g, estimated_b_gxe)

Arguments

true_b_g vector of true main effect coefficients
true_b_gxe vector of true interaction coefficients
estimated_b_g vector of estimated main effect coefficients
estimated_b_gxe vector of estimated interaction coefficients
Value

A list of principal selection metrics

- **b_g_non_zero**: number of non-zero main effects
- **b_gxe_non_zero**: number of non-zero interactions
- **mse_b_g**: mean squared error for estimation of main effects effect sizes
- **mse_b_gxe**: mean squared error for estimation of interactions effect sizes
- **sensitivity_g**: recall of the non-zero main effects
- **specificity_g**: recall of the zero main effects
- **precision_g**: precision with respect to non-zero main effects
- **sensitivity_gxe**: recall of the non-zero interactions
- **specificity_gxe**: recall of the zero interactions
- **precision_gxe**: precision with respect to non-zero interactions
- **auc_g**: area under the curve for zero/non-zero binary classification problem for main effects
- **auc_gxe**: area under the curve for zero/non-zero binary classification problem for interactions

Examples

```r
data = data.gen()
model = gesso.cv(data$G_train, data$E_train, data$Y_train)
gxe_coefficients = gesso.coef(model$fit, model$lambda_min)$beta_gxe
g_coefficients = gesso.coef(model$fit, model$lambda_min)$beta_g
selection.metrics(data$Beta_G, data$Beta_GxE, g_coefficients, gxe_coefficients)
```
Index

* package
 gesso-package, 2

data.gen, 2

gesso (gesso-package), 2
gesso-package, 2
gesso.coef, 4
gesso.coefnum, 5
gesso.cv, 6
gesso.fit, 7
gesso.predict, 9

selection.metrics, 10