Package ‘gamsel’

April 1, 2018

Type Package

Title Fit Regularization Path for Generalized Additive Models

Version 1.8-1

Date 2018-03-31

Author Alexandra Chouldechova [aut, cre],
 Trevor Hastie [aut, cre],
 Vitalie Spinu [ctb]

Maintainer Trevor Hastie <hastie@stanford.edu>

Description Using overlap grouped-lasso penalties, 'gamsel' selects whether a term in a 'gam' is nonzero, linear, or a non-linear spline (up to a specified max df per variable). It fits the entire regularization path on a grid of values for the overall penalty lambda, both for gaussian and binomial families.

License GPL-2

Depends foreach, mda

URL http://arxiv.org/abs/1506.03850

NeedsCompilation yes

Repository CRAN

Date/Publication 2018-04-01 03:23:38 UTC

R topics documented:

- gamsel-package .. 2
- basis.gen .. 2
- cv.gamsel .. 4
- gamsel ... 6
- getActive .. 8
- plot.cv.gamsel .. 9
- plot.gamsel ... 10
- predict.gamsel ... 11
- print.gamsel ... 12
- summary.gamsel ... 13

Index 15
gamsel-package gamsel

Description
Using overlap grouped lasso penalties, gamsel selects whether a term in a gam is nonzero, linear, or a non-linear spline (up to a specified max df per variable). It fits the entire regularization path on a grid of values for the overall penalty lambda, both for gaussian and binomial families.

Details

Package: gamsel
Type: Package
Version: 1.0
Date: 2015-06-05
License: What license is it under?

Accepts x, y data and complexity/tuning parameters. Key functions: gamsel predict.gamsel plot.gamsel print.gamsel summary.gamsel cv.gamsel plot.cv.gamsel

Author(s)
Alexandra Chouldechova, Trevor Hastie Maintainer: Trevor Hastie <hastie@stanford.edu>

basis.gen Generate pseudo-spline bases

Description
Generate an approximation to the Demmler-Reinsch orthonormal bases for smoothing splines, using orthogonal polynomials. basis.gen generates a basis for a single x, and pseudo.bases generates a list of bases for each column of the matrix x.

Usage
basis.gen(x, df = 6, thresh = 0.01, degree = 8, parms = NULL,...) pseudo.bases(x, degree = 8, df = 6, parallel=FALSE, ...)
Arguments

- **x**
 A vector of values for `basis.gen`, or a matrix for `pseudo.bases`
- **df**
 The degrees of freedom of the smoothing spline.
- **thresh**
 If the next eigenvector improves the approximation by less than threshold, a truncated bases is returned. For `pseudo.bases` this can be a single value or a vector of values, which are recycled sequentially for each column of x.
- **degree**
 The nominal number of basis elements. The basis returned has no more than degree columns. For `pseudo.bases` this can be a single value or a vector of values, which are recycled sequentially for each column of x.
- **parms**
 A parameter set. If included in the call, these are used to define the basis. This is used for prediction.
- **parallel**
 For `pseudo.bases`, allows for parallel bases computation in multiple cores.
- **...**
 Other arguments for `basis.gen` can be passed through `pseudo.bases`

Details

`basis.gen` starts with a basis of orthogonal polynomials of total degree. These are each smoothed using a smoothing spline, which allows for a one-step approximation to the Demmler-Reinsch basis for a smoothing spline of rank equal to the degree. See the reference for details. The function also approximates the appropriate diagonal penalty matrix for this basis, so that the approximate smoothing spline (generalized ridge regression) has the target df.

Value

An orthonormal basis is returned (a list for `pseudo.bases`). This has an attribute `parms`, which has elements:
- `coefs`: Coefficients needed to generate the orthogonal polynomials
- `rotate`: Transformation matrix for transforming the polynomial basis
- `d`: Penalty values for the diagonal penalty
- `df`: df used

Author(s)

Alexandra Chouldechova and Trevor Hastie
Maintainer: Trevor Hastie <hastie@stanford.edu>

References

Examples

```r
data=gendata(n=500,p=12,k.lin=3,k.nonlin=3,deg=8,sigma=0.5)
attach(data)
bases=pseudo.bases(X,degree=10,df=6)
## Not run:
require(doMC)
registerDoMC(cores=4)
bases=pseudo.bases(X,degree=10,df=6,parallel=TRUE)
```
cv.gamsel

Cross-validation Routine for Gamsel

Description
A routine for performing K-fold cross-validation for gamsel.

Usage
cv.gamsel(x, y, lambda, family, degrees, dfs, bases,
 type.measure = c("mse", "mae", "deviance", "class"),
 nfolds = 10, foldid, keep = FALSE, parallel = FALSE, ...)

Arguments

x matrix as in gamsel
y response y as in gamsel
lambda Optional use-supplied lambda sequence. If NULL, default behaviour is for gamsel routine to automatically select a good lambda sequence.
family family as in gamsel
degrees degrees as in gamsel
dfs dfs as in gamsel
bases bases as in gamsel
type.measure Loss function for cross-validated error calculation. Currently there are four options: mse (mean squared error), mae (mean absolute error), deviance (deviance, same as mse for family="gaussian"), class (misclassification error, for use with family="binomial").
nfolds Numer of folds (default is 10). Maximum value is nobs. Small values of nfolds are recommended for large data sets.
foldid Optional vector of length nobs with values between 1 and nfolds specifying what fold each observation is in.
keep If keep=TRUE, a prevalidated array is returned containing fitted values for each observation and each value of lambda. This means these fits are computed with this observation and the rest of its fold omitted. The foldid vector is also returned. Default is keep=FALSE
parallel If TRUE, use parallel foreach to fit each fold. See the example below for usage details.
...

Other arguments that can be passed to gamsel.
cv.gamsel

Details
This function has the effect of running gamsel nfolds+1 times. The initial run uses all the data and gets the lambda sequence. The remaining runs fit the data with each of the folds omitted in turn. The error is accumulated, and the average error and standard deviation over the folds is computed. Note that cv.gamsel does NOT search for values for alpha. A specific value should be supplied, else alpha=1 is assumed by default. If users would like to cross-validate alpha as well, they should call cv.gamsel with a pre-computed vector foldid, and then use this same fold vector in separate calls to cv.gamsel with different values of alpha. Note also that the results of cv.gamsel are random, since the folds are selected at random. Users can reduce this randomness by running cv.gamsel many times, and averaging the error curves.

Value
an object of class "cv.gamsel" is returned, which is a list with the ingredients of the cross-validation fit.

lambda the values of lambda used in the fits.
cvm The mean cross-validated error - a vector of length length(lambda).
cvsd estimate of standard error of cvm.
cvup upper curve = cvm+cvsd.
cvlo lower curve = cvm-cvsd.
nzero number of non-zero coefficients at each lambda.
name a text string indicating type of measure (for plotting purposes).
gamsel.fit a fitted gamsel object for the full data.
lambda.min value of lambda that gives minimum cvm.
lambda.1se largest value of lambda such that error is within 1 standard error of the minimum.
fit.preval if keep=TRUE, this is the array of prevalidated fits. Some entries can be NA, if that and subsequent values of lambda are not reached for that fold
foldid if keep=TRUE, the fold assignments used
index.min the sequence number of the minimum lambda.
index.1se the sequence number of the 1se lambda value.

Author(s)
Alexandra Chouldechova and Trevor Hastie
Maintainer: Trevor Hastie <hastie@stanford.edu>

References

See Also
gamsel, plot function for cv.gamsel object.
gamsel

Fit Regularization Path for Gaussian or Binomial Generalized Additive Model

Description

Using overlap grouped lasso penalties, gamsel selects whether a term in a gam is nonzero, linear, or a non-linear spline (up to a specified max df per variable). It fits the entire regularization path on a grid of values for the overall penalty lambda, both for gaussian and binomial families.

Usage

gamsel(x, y, num_lambda = 50, lambda = NULL, family = c("gaussian", "binomial"), degrees = rep(10, p), gamma = 0.4, dfs = rep(5, p), bases = pseudo.bases(x, degrees, dfs, parallel=parallel, ...), tol = 1e-04, max_iter = 2000, traceit = FALSE, parallel=FALSE, ...)

Arguments

- **x** Input (predictor) matrix of dimension nobs x nvars. Each observation is a row.
- **y** Response variable. Quantitative for family="gaussian" and with values in \(\{0, 1\} \) for family="binomial"
- **num_lambda** Number of lambda values to use. (Length of lambda sequence.)
- **lambda** User-supplied lambda sequence. For best performance, leave as NULL and allow the routine to automatically select lambda. Otherwise, supply a (preferably gradually) decreasing sequence.
- **family** Response type. "gaussian" for linear model (default). "binomial" for logistic model.
- **degrees** An integer vector of length nvars specifying the maximum number of spline basis functions to use for each variable.
- **gamma** Penalty mixing parameter \(0 \leq \gamma \leq 1 \). Values \(\gamma < 0.5 \) penalize linear fit less than non-linear fit. The default is \(\gamma = 0.4 \), which encourages a linear term over a nonlinear term.

Examples

data=gendata(n=500,p=12,k.lin=3,k.nonlin=3,deg=8,sigma=0.5)
attach(data)
bases=pseudo.bases(x,degree=10,df=6)
 # Gaussian gam
gamsel.out=gamsel(x,y,bases=bases)
 par(mfrow=c(1,2),mar=c(5,4,3,1))
 summary(gamsel.out)
gamsel.cv=cv.gamsel(x,y,bases=bases)
 par(mfrow=c(1,1))
 plot(gamsel.cv)
 par(mfrow=c(3,4))
 plot(gamsel.out,newx=X,index=20)
gamsel

- `dfs`: Numeric vector of length `nvars` specifying the maximum (end-of-path) degrees of freedom for each variable.
- `bases`: A list of orthonormal bases for the non-linear terms for each variable. The function `pseudo.bases` generates these, using the parameters `dfs` and `degrees`. See the documentation for `pseudo.bases`.
- `tol`: Convergence threshold for coordinate descent. The coordinate descent loop continues until the total change in objective after a pass over all variables is less than `tol`. Default is `1e-4`.
- `max_iter`: Maximum number of coordinate descent iterations over all the variables for each lambda value. Default is 2000.
- `traceit`: If TRUE, various information is printed during the fitting process.
- `parallel`: Passed on to the `pseudo.bases()` function. Uses multiple process if available.
- `...`: Additional arguments passed on to `pseudo.bases()`

Details

The sequence of models along the lambda path is fit by (block) coordinate descent. In the case of logistic regression the fitting routine may terminate before all `num.lambda` values of lambda have been used. This occurs when the fraction of null deviance explained by the model gets too close to 1, at which point the fit becomes numerically unstable. Each of the smooth terms is computed using an approximation to the Demmler-Reinsch smoothing spline basis for that variable, and the accompanying diagonal penalty matrix.

Value

An object with S3 class `gamsel`.

- `intercept`: Intercept sequence of length `num.lambda`
- `alphas`: `nvars` x `num.lambda` matrix of linear coefficient estimates
- `betas`: `sum(degrees)` x `num.lambda` matrix of non-linear coefficient estimates
- `lambdas`: The sequence of lambda values used
- `degrees`: Number of basis functions used for each variable
- `parms`: A set of parameters that capture the bases used. This allows for efficient generation of the bases elements for `predict.gamsel`

, the predict method for this class.

- `family`: "gaussian" or "binomial"
- `nulldev`: Null deviance (deviance of the intercept model)
- `dev.ratio`: Vector of length `num.lambda` giving fraction of (null) deviance explained by each model along the lambda sequence
- `call`: The call that produced this object

Author(s)

Alexandra Chouldechova and Trevor Hastie

Maintainer: Trevor Hastie <hastie@stanford.edu>
getActive

Returns active variables

Description

Extract active variables of different kinds from a gamsel object

Usage

getActive(object, index, type = , EPS = 0)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>object</td>
<td>gamsel object</td>
</tr>
<tr>
<td>index</td>
<td>index or vector of indices at which to obtain active information. NULL returns all.</td>
</tr>
<tr>
<td>type</td>
<td>type of active variables to report. One of c("nonzero", "linear", "nonlinear")</td>
</tr>
<tr>
<td>EPS</td>
<td>threshold for what is nonzero; default is 0</td>
</tr>
</tbody>
</table>

Examples

data=gendata(n=500,p=12,k.lin=3,k.nonlin=3,deg=8,sigma=0.5)
attach(data)
bases=pseudo.bases(X,degree=10,df=6)
Gaussian gam
gamsel.out=gamsel(X,y,bases)
par(mfrow=c(1,2),mar=c(5,4,3,1))
summary(gamsel.out)
gamsel.cv=cv.gamsel(X,y,bases)
par(mfrow=c(1,1))
plot(gamsel.cv)
par(mfrow=c(3,4))
plot(gamsel.out,newx=X,index=20)
Binomial model
gamsel.out=gamsel(X,yb,family="binomial")
par(mfrow=c(1,2),mar=c(5,4,3,1))
summary(gamsel.out)
par(mfrow=c(3,4))
plot(gamsel.out,newx=X,index=30)
Details

Returns a vector of variables indices of variables having the desired properties.

Value

vector of indices

plot.cv.gamsel

Plotting Routine for Gamsel Cross-Validation Object

Description

Produces a cross-validation curve with standard errors for a fitted gamsel object.

Usage

S3 method for class 'cv.gamsel'
plot(x, sign.lambda = 1, ...)

Arguments

x cv.gamsel object
sign.lambda Either plot against log(lambda) (default) against -lambda if sign.lambda=-1.
... Optional graphical parameters to plot.

Details

A plot showing cross-validation error is produced. Nothing is returned.

Author(s)

Alexandra Chouldechova and Trevor Hastie
Maintainer: Trevor Hastie <hastie@stanford.edu>

References

Examples

data=gendata(n=500,p=12,k.lin=3,k.nonlin=3,deg=8,sigma=0.5)
attach(data)
bases=pseudo.bases(X,degree=10,df=6)
Gaussian gam
gamsel.out=gamsel(X,y,bases=bases)
gamsel.cv=cv.gamsel(X,y,bases=bases)
par(mfrow=c(1,1))
plot(gamsel.cv)
plot.gamsel

Plotting Routine gamsel Object

Description

Produces plots of the estimated functions for specified variables at a given value of lambda.

Usage

S3 method for class 'gamsel'

plot(x, newx, index, which = 1:p, rugplot = TRUE, ylims, ...)

Arguments

- **x**: Fitted gamsel object.
- **newx**: nobs_new x p matrix giving values of each predictor at which to plot.
- **index**: Index of lambda value (i.e., model) for which plotting is desired.
- **which**: Which values to plot. Default is all variables, i.e. \{1,2,...,nvars\}. Besides indices, which can take two special values: "nonzero" will plot only the nonzero functions, and "nonlinear" only the nonlinear functions.
- **rugplot**: If TRUE, a rugplot showing values of x is shown at the bottom of each fitted function plot.
- **ylims**: ylim argument for plotting each curve, which overrides the default which is the range of all the functions.
- **...**: Optional graphical parameters to plot.

Details

A plot of the specified fitted functions is produced. Nothing is returned.

Author(s)

Alexandra Chouldechova and Trevor Hastie
Maintainer: Trevor Hastie <hastie@stanford.edu>

References

See Also

gamsel, and print.gamsel, summary.gamsel
Examples

```r
set.seed(1211)
data=gendata(n=500,p=12,k.lin=3,k.nonlin=3,deg=8,sigma=0.8)
attach(data)
bases=pseudo.bases(X,degree=10,df=6)
# Gaussian gam
gamsel.out=gamsel(xL,yL,bases=bases)
par(mfrow=c(3,4))
plot(gamsel.out,newx=X,index=20)
```

predict.gamsel
Gamsel Prediction Routine

Description

Make predictions from a gamsel object.

Usage

```r
# S3 method for class 'gamsel'
predict(object, newdata, index = NULL,
        type = c("link", "response", "terms", "nonzero"), ...)
```

Arguments

- `object`
 Fitted gamsel object.

- `newdata`
 'nobs_new' x 'p' matrix of new data values at which to predict.

- `index`
 Index of model in the sequence for which plotting is desired. Note, this is NOT a lambda value.

- `type`
 Type of prediction desired. Type 'link' gives the linear predictors for "binomial", and fitted values for "gaussian". Type 'response' gives fitted probabilities for "binomial" and fitted values for "gaussian". Type 'terms' returns a matrix of fitted functions, with as many columns as there are variables. Type 'nonzero' returns a list of the indices of nonzero coefficients at the given lambda index.

- `...`
 Not used

Value

Either a vector or a matrix is returned, depending on type.

Author(s)

Alexandra Chouldechova and Trevor Hastie
Maintainer: Trevor Hastie <hastie@stanford.edu>
References

See Also

gamsel, cv.gamsel, summary.gamsel, basis.gen, gendata,

Examples

data=gendata(n=500, p=12, k.lin=3, k.nonlin=3, deg=8, sigma=0.5)
attach(data)
bases=pseudo.bases(x, degree=10, df=6)
Gaussian gam
gamsel.out=gamsel(X, y, bases=bases)
preds=predict(gamsel.out, X, index=20, type="terms")

print.gamsel

print.gamsel

print a gamsel object

Description

Print a summary of the gamsel path at each step along the path

Usage

S3 method for class 'gamsel'
print(x, digits = max(3, getOption("digits") - 3), ...)

Arguments

x fitted gamsel object
digits significant digits in printout
...
additional print arguments

Details

The call that produced the object x is printed, followed by a five-column matrix with columns NonZero, Lin, NonLin, %Dev and Lambda. The first three columns say how many nonzero, linear and nonlinear terms there are. %Dev is the percent deviance explained (relative to the null deviance).

Value

The matrix above is silently returned

Author(s)

Alexandra Chouldechova and Trevor Hastie
Maintainer: Trevor Hastie <hastie@stanford.edu>
summary.gamsel

References

See Also
`predict.gamsel, cv.gamsel, plot.gamsel, summary.gamsel, basis.gen, gendata`,

Description
This makes a two-panel plot of the gamsel object.

Usage
```r
## S3 method for class 'gamsel'
summary(object, label = FALSE, ...)  
```

Arguments
- `object`: gamsel object
- `label`: if TRUE, annotate the plot with variable labels. Default is FALSE
- `...`: additional arguments to summary

Details
A two panel plot is produced, that summarizes the linear components and the nonlinear components, as a function of lambda. For the linear components, it is the coefficient for each variable. For the nonlinear, we see the norm of the nonlinear coefficients.

Value
Nothing is returned.

Author(s)
Alexandra Chouldechova and Trevor Hastie
Maintainer: Trevor Hastie `<hastie@stanford.edu>`

References

See Also
gamsel, and methods plot, print and predict for cv.gamsel object
Examples

```r
data = gendata(n=500, p=12, k.lin=3, k.nonlin=3, deg=8, sigma=0.5)
attach(data)
bases = pseudo.bases(X, degree=10, df=6)
# Gaussian gam
gamsel.out = gamsel(X, y, bases=bases)
par(mfrow=c(1, 2), mar=c(5, 4, 3, 1))
summary(gamsel.out)
```
Index

*Topic **generalized additive models**
gamsel-package, 2

*Topic **nonparametric**
basis.gen, 2
cv.gamsel, 4
gamsel, 6
plot.cv.gamsel, 9
plot.gamsel, 10
predict.gamsel, 11
print.gamsel, 12
summary.gamsel, 13

*Topic **package**
gamsel-package, 2

*Topic **regression**
basis.gen, 2
cv.gamsel, 4
gamsel, 6
gamsel-package, 2
plot.cv.gamsel, 9
plot.gamsel, 10
predict.gamsel, 11
print.gamsel, 12
summary.gamsel, 13

*Topic **smooth**
basis.gen, 2
cv.gamsel, 4
gamsel, 6
plot.cv.gamsel, 9
plot.gamsel, 10
predict.gamsel, 11
print.gamsel, 12
summary.gamsel, 13

basis.gen, 2, 8, 12, 13
cv.gamsel, 4, 8, 12, 13
gamsel, 6, 12
gamsel-package, 2
gendata, 8, 12, 13

getActive, 8
plot.cv.gamsel, 9
plot.gamsel, 8, 10, 13
predict.gamsel, 8, 11, 13
print.gamsel, 12
pseudo.bases, 7
pseudo.bases(basis.gen), 2
summary.gamsel, 8, 12, 13, 13