Package ‘frequencyConnectedness’

February 24, 2023

Type Package
Title Spectral Decomposition of Connectedness Measures
Version 0.2.4
Date 2023-02-23
Description Accompanies a paper (Barunik, Krehlik (2018) <doi:10.1093/jjfinec/nby001>) dedicated to spectral decomposition of connectedness measures and their interpretation. We implement all the developed estimators as well as the historical counterparts. For more information, see the help or GitHub page (<https://github.com/tomaskrehlik/frequencyConnectedness>) for relevant information.
Depends vars, urca, knitr, pbapply
Suggests testthat, stringr, mAr, reshape2, ggplot2, parallel, zoo, BigVAR
Imports methods
License GPL-2
RoxygenNote 7.2.3
BugReports https://github.com/tomaskrehlik/frequencyConnectedness/issues
URL https://github.com/tomaskrehlik/frequencyConnectedness
NeedsCompilation no
Author Tomas Krehlik [aut, cre]
Maintainer Tomas Krehlik <tomas.krehlik@gmail.com>
Repository CRAN
Date/Publication 2023-02-24 21:50:02 UTC

R topics documented:
collapseBounds .. 3
collapseBounds.list_of_spills .. 3
collapseBounds.spillover_table 4
eexampleSim .. 4
fevd ... 5
R topics documented:

fftFEVD ... 5
fftGenFEVD .. 6
from .. 7
from.list_of_spills .. 7
from.spillover_table 8
genFEVD .. 9
getIndeces .. 9
getPartition ... 10
net ... 11
net.list_of_spills ... 11
net.spillover_table 12
overall .. 13
overall.list_of_spills 13
overall.spillover_table 14
pairwise ... 15
pairwise.list_of_spills 15
pairwise.spillover_table 16
plotFrom ... 17
plotFrom.list_of_spills 17
plotNet ... 18
plotNet.list_of_spills 19
plotOverall ... 19
plotOverall.list_of_spills 20
plotPairwise ... 21
plotPairwise.list_of_spills 21
plotSpecific ... 22
plotSpecific.list_of_spills 23
plotTo ... 23
plotTo.list_of_spills 24
print.list_of_spills 25
print.spillover_table 25
spillover .. 26
spilloverBK09 .. 26
spilloverBK12 .. 27
spilloverDY09 .. 28
spilloverDY12 .. 28
spilloverFft .. 29
spilloverRolling .. 30
spilloverRollingBK09 30
spilloverRollingBK12 31
spilloverRollingDY09 32
spilloverRollingDY12 33
to ... 34
to.list_of_spills .. 35
to.spillover_table .. 36
volatilities .. 36

Index .. 37
Description

Method for for collapsing bound for frequency spillovers

Usage

collapseBounds(spillover_table, which)

Arguments

spillover_table

the output of spillover estimation function or rolling spillover estimation function

which

integer vector indicating which of the frequency bounds we want to have collapsed

Value

New spillover object with collapsed bounds

Author(s)

Tomas Krehlik <tomas.krehlik@gmail.com>

collapseBounds.list_of_spills

Function to collapse bounds

Description

Taking in list_of_spills, if the individual spillover_tables are frequency based, it allows you to collapse several frequency bands into one.

Usage

S3 method for class 'list_of_spills'
collapseBounds(spillover_table, which)

Arguments

spillover_table

a list_of_spills object, ideally from the provided estimation functions

which

which frequency bands to collapse. Should be a sequence like 1:2 or 1:5, etc.
collapseBounds.spillover_table

Function to collapse bounds

Description
Taking in spillover_table, if the spillover_table is frequency based, it allows you to collapse several frequency bands into one.

Usage
```r
## S3 method for class 'spillover_table'
collapseBounds(spillover_table, which)
```

Arguments
- `spillover_table`:
a spillover_table object, ideally from the provided estimation functions
- `which`:
which frequency bands to collapse. Should be a sequence like 1:2 or 1:5, etc.

Value
spillover_table with less frequency bands.

Author(s)
Tomas Krehlik <tomas.krehlik@gmail.com>

exampleSim

The simulated time-series

Description
The dataset includes three simulated processes with spillover dynamics.

Author(s)
Tomas Krehlik <tomas.krehlik@gmail.com>
fevd

Compute a forecast error vector decomposition in recursive identification scheme

Description

This function computes the standard forecast error vector decomposition given the estimate of the VAR.

Usage

```
fevd(est, n.ahead = 100, no.corr = F)
```

Arguments

- `est`: the VAR estimate from the vars package
- `n.ahead`: how many periods ahead should be taken into account
- `no.corr`: boolean if the off-diagonal elements should be set to 0.

Value

a matrix that corresponds to contribution of ith variable to jth variance of forecast

Author(s)

Tomas Krehlik <tomas.krehlik@gmail.com>

fftFEVD

Compute a FFT transform of forecast error vector decomposition in recursive identification scheme

Description

This function computes the decomposition of standard forecast error vector decomposition given the estimate of the VAR. The decomposition is done according to the Stiassny (1996)

Usage

```
fftFEVD(est, n.ahead = 100, no.corr = F, range)
```

Arguments

- `est`: the VAR estimate from the vars package
- `n.ahead`: how many periods ahead should be taken into account
- `no.corr`: boolean if the off-diagonal elements should be set to 0.
- `range`: defines the frequency partitions to which the spillover should be decomposed
Value

a list of matrices that corresponds to contribution of ith variable to jth variance of forecast

Author(s)

Tomas Krehlik <tomas.krehlik@gmail.com>

fftGenFEVD

Compute a FFT transform of forecast error vector decomposition in generalised VAR scheme.

Description

This function computes the decomposition of standard forecast error vector decomposition given the estimate of the VAR. The decomposition is done according to the Stiassny (1996)

Usage

fftGenFEVD(est, n.ahead = 100, no.corr = F, range)

Arguments

est the VAR estimate from the vars package
n.ahead how many periods ahead should be taken into account
no.corr boolean if the off-diagonal elements should be set to 0.
range defines the frequency partitions to which the spillover should be decomposed

Value

a list of matrices that corresponds to contribution of ith variable to jth variance of forecast

Author(s)

Tomas Krehlik <tomas.krehlik@gmail.com>
Method for computing FROM spillovers

Description
Method for computing FROM spillovers

Usage
from(spillover_table, ...)

Arguments
spillover_table
the output of spillover estimation function or rolling spillover estimation function

... other arguments like whether it is within or absolute spillover in case of the frequency spillovers

Value
Value for FROM spillover

Author(s)
Tomas Krehlik <tomas.krehlik@gmail.com>

Function to compute from spillovers

Description
Taking in list_of_spills, the function computes the from spillovers for all the individual spillover_table.

Usage
S3 method for class 'list_of_spills'
from(spillover_table, within = F, ...)

Arguments
spillover_table
a list_of_spills object, ideally from rolling window estimation

within whether to compute the within spillovers if the spillover tables are frequency based.

... for the sake of CRAN not to complain
from.spillover_table

Value

a list containing the from spillovers

Author(s)

Tomas Krehlik <tomas.krehlik@gmail.com>

Description

Taking in spillover_table, the function computes the from spillover.

Usage

S3 method for class 'spillover_table'
from(spillover_table, within = F, ...)

Arguments

spillover_table

a spillover_table object, ideally from the provided estimation functions

within

whether to compute the within spillovers if the spillover tables are frequency based.

...

for the sake of CRAN not to complain

Value

a list containing the from spillover

Author(s)

Tomas Krehlik <tomas.krehlik@gmail.com>
Description

This function computes the standard forecast error vector decomposition given the estimate of the VAR. There are common complaints and requests whether the computation is ok and why it does not follow the original Pesaran Shin (1998) article. So let me clear two things out. First, the σ in the equation on page 20 refers to elements of Σ, not standard deviation. Second, the indexing is wrong, it should be $\sigma_{j,j}$ not $\sigma_{i,i}$. Look, for example, to Diebold and Yilmaz (2012) or ECB WP by Dees, Holly, Pesaran, and Smith (2007) for the correct version.

Usage

```r
genFEVD(est, n.ahead = 100, no.corr = F)
```

Arguments

- `est`: the VAR estimate from the vars package
- `n.ahead`: how many periods ahead should be taken into account
- `no.corr`: boolean if the off-diagonal elements should be set to 0.

Value

a matrix that corresponds to contribution of ith variable to jth variance of forecast

Author(s)

Tomas Krehlik <tomas.krehlik@gmail.com>

getIndeces

Get the indeces for the individual intervals

Description

This function returns the indeces of the vector coming from DFT of time series of length n.ahead that correspond to frequencies in the interval (up, down).

Usage

```r
getIndeces(n.ahead, up, down)
```
getPartition

Arguments

- `n.ahead` the length of the vector coming out of the DFT
- `up` the upper boundary of the interval
- `down` the lower boundary of the interval

Author(s)

Tomas Krehlik <tomas.krehlik@sorgmail.com>

getPartition

Get a list of indeces corresponding to parts of frequency partition

Description

This function takes in a vector of numbers denoting the breaks in partition of an interval and returns a list of indeces that correspond to indeces that are contained within an individual intervals. The individual parts then contain (a,b] for all pairs in the interval. Hence if you want pi to be included, the partition should start with something slightly bigger than pi.

Usage

```r
getPartition(partition, n.ahead)
```

Arguments

- `partition` breaking points of partition of frequency interval, should be ordered decreasingly.
- `n.ahead` how many observations is the FFT done on.

Value

a list of vectors of indeces corresponding to individual partitions

Author(s)

Tomas Krehlik <tomas.krehlik@sorgmail.com>
net
Method for computing NET spillovers

Description
Method for computing NET spillovers

Usage

```r
net(spillover_table, ...)  
```

Arguments

- `spillover_table`
 the output of spillover estimation function or rolling spillover estimation function

- `...`
 other arguments like whether it is within or absolute spillover in case of the frequency spillovers

Value
Value for NET spillover

Author(s)
Tomas Krehlik <tomas.krehlik@gmail.com>

net.list_of_spills
Function to compute net spillovers

Description
Taking in list_of_spillovers, the function computes the net spillovers for all the individual spillover_table.

Usage

```r
## S3 method for class 'list_of_spills'
net(spillover_table, within = F, ...)
```

Arguments

- `spillover_table`
 a list_of_spills object, ideally from rolling window estimation

- `within`
 whether to compute the within spillovers if the spillover tables are frequency based.

- `...`
 for the sake of CRAN not to complain
Value

a list containing the net spillovers

Author(s)

Tomas Krehlik <tomas.krehlik@gmail.com>

net.spillover_table

Function to compute net spillovers

Description

Taking in `spillover_table`, the function computes the net spillover.

Usage

```r
## S3 method for class 'spillover_table'
net(spillover_table, within = F, ...)
```

Arguments

- `spillover_table`
 - a `spillover_table` object, ideally from the provided estimation functions
- `within`
 - whether to compute the within spillovers if the spillover tables are frequency based.
- `...`
 - for the sake of CRAN not to complain

Value

a list containing the net spillover

Author(s)

Tomas Krehlik <tomas.krehlik@gmail.com>
overall

Method for computing overall spillovers

Description

Method for computing overall spillovers

Usage

```r
overall(spillover_table, ...)  # S3 method for class 'spillover'
overall(spillover_table, within = F, ...)  # S3 method for class 'spillover'
```

Arguments

- `spillover_table`: the output of spillover estimation function or rolling spillover estimation function
- `...`: other arguments like whether it is within or absolute spillover in case of the frequency spillovers

Value

Value for overall spillover

Author(s)

Tomas Krehlik <tomas.krehlik@gmail.com>

overall.list_of_spills

Function to compute overall spillovers

Description

Taking in `list_of_spillovers`, the function computes the overall spillovers for all the individual `spillover_table`.

Usage

```r
## S3 method for class 'list_of_spills'
overall(spillover_table, within = F, ...)  # S3 method for class 'spillover'
```
Overall Spillover Table

Function to Compute Overall Spillovers

Arguments

- `spillover_table`
 a list of spills object, ideally from rolling window estimation
- `within`
 whether to compute the within spillovers if the spillover tables are frequency based.
- `...`
 for the sake of CRAN not to complain

Value

a list containing the overall spillovers

Author(s)

Tomas Krehlik <tomas.krehlik@gmail.com>

Description

Taking in `spillover_table`, the function computes the overall spillover.

Usage

```r
## S3 method for class 'spillover_table'
overall(spillover_table, within = F, ...)
```

Arguments

- `spillover_table`
 a spillover_table object, ideally from the provided estimation functions
- `within`
 whether to compute the within spillovers if the spillover tables are frequency based.
- `...`
 for the sake of CRAN not to complain

Value

a list containing the overall spillover

Author(s)

Tomas Krehlik <tomas.krehlik@gmail.com>
pairwise

Method for computing PAIRWISE spillovers

Description

Method for computing PAIRWISE spillovers

Usage

pairwise(spillover_table, ...)

Arguments

- spillover_table
 - the output of spillover estimation function or rolling spillover estimation function
- ... (other arguments like whether it is within or absolute spillover in case of the frequency spillovers)

Value

Value for PAIRWISE spillover

Author(s)

Tomas Krehlik <tomas.krehlik@gmail.com>

pairwise.list_of_spills

Function to compute pairwise spillovers

Description

Taking in list_of_spillovers, the function computes the pairwise spillovers for all the individual spillover_table.

Usage

S3 method for class 'list_of_spills'
pairwise(spillover_table, within = F, ...)

pairwise

Method for computing PAIRWISE spillovers

Description

Method for computing PAIRWISE spillovers

Usage

pairwise(spillover_table, ...)

Arguments

- spillover_table
 - the output of spillover estimation function or rolling spillover estimation function
- ... (other arguments like whether it is within or absolute spillover in case of the frequency spillovers)

Value

Value for PAIRWISE spillover

Author(s)

Tomas Krehlik <tomas.krehlik@gmail.com>

pairwise.list_of_spills

Function to compute pairwise spillovers

Description

Taking in list_of_spillovers, the function computes the pairwise spillovers for all the individual spillover_table.

Usage

S3 method for class 'list_of_spills'
pairwise(spillover_table, within = F, ...)

pairwise.spillover_table

Description

Taking in spillover_table, the function computes the pairwise spillover.

Usage

```r
## S3 method for class 'spillover_table'
pairwise(spillover_table, within = F, ...)```

**Arguments**

- `spillover_table`  
  a spillover_table object, ideally from the provided estimation functions

- `within`  
  whether to compute the within spillovers if the spillover tables are frequency based.

- `...`  
  for the sake of CRAN not to complain

**Value**

a list containing the pairwise spillover

**Author(s)**

Tomas Krehlik <tomas.krehlik@gmail.com>
plotFrom

Method for plotting FROM spillovers

Description

Method for plotting FROM spillovers

Usage

plotFrom(spillover_table, ...)

Arguments

spillover_table
the output of rolling spillover estimation function

... other arguments like whether it is within or absolute spillover in case of the frequency spillovers

Value

The plot

Author(s)

Tomas Krehlik <tomas.krehlik@gmail.com>

plotFrom.list_of_spills

Function to plot from spillovers

Description

Taking in list_of_spillovers, the function plots the from spillovers using the zoo::plot.zoo function

Usage

## S3 method for class 'list_of_spills'
plotFrom(
  spillover_table,
  within = F,
  which = 1:nrow(spillover_table$list_of_tables[[1]]$tables[[1]]),
  ...
)
**Arguments**

- `spillover_table`: a list_of_spills object, ideally from rolling window estimation.
- `within`: whether to compute the within spillovers if the spillover tables are frequency based.
- `which`: a vector with indices specifying which plots to plot.
- `...`: for the sake of CRAN not to complain.

**Value**

a plot of from spillovers.

**Author(s)**

Tomas Krehlik <tomas.krehlik@gmail.com>

---

**plotNet**

*Method for plotting NET spillovers*

**Description**

Method for plotting NET spillovers.

**Usage**

`plotNet(spillover_table, ...)`

**Arguments**

- `spillover_table`: the output of rolling spillover estimation function.
- `...`: other arguments like whether it is within or absolute spillover in case of the frequency spillovers.

**Value**

The plot.

**Author(s)**

Tomas Krehlik <tomas.krehlik@gmail.com>
Function to plot net spillovers

Description
Taking in list_of_spillovers, the function plots the net spillovers using the zoo::plot.zoo function

Usage

```r
S3 method for class 'list_of_spills'
plotNet(
 spillover_table,
 within = F,
 which = 1:nrow(spillover_table$list_of_tables[[1]]$tables[[1]]),
 ...)
```

Arguments

- `spillover_table`:
  a list_of_spills object, ideally from rolling window estimation
- `within`:
  whether to compute the within spillovers if the spillover tables are frequency based.
- `which`:
  a vector with indices specifying which plots to plot.
- `...`:
  for the sake of CRAN not to complain

Value

a plot of net spillovers

Author(s)

Tomas Krehlik <tomas.krehlik@gmail.com>

Method for plotting overall spillovers

Description

Method for plotting overall spillovers

Usage

```r
plotOverall(spillover_table, ...)
```
Arguments

spillover_table
the output of rolling spillover estimation function

... other arguments like whether it is within or absolute spillover in case of the frequency spillovers

Value

The plot

Author(s)

Tomas Krehlik <tomas.krehlik@gmail.com>

plotOverall.list_of_spills

Function to plot overall spillovers

Description

Taking in list_of_spillovers, the function plots the overall spillovers using the zoo::plot.zoo function

Usage

## S3 method for class 'list_of_spills'
plotOverall(spillover_table, within = F, ...)

Arguments

spillover_table
a list_of_spills object, ideally from rolling window estimation

within whether to compute the within spillovers if the spillover tables are frequency based.

... for the sake of CRAN not to complain

Value

a plot of overall spillovers

Author(s)

Tomas Krehlik <tomas.krehlik@gmail.com>
plotPairwise  

Method for plotting PAIRWISE spillovers

Description

Method for plotting PAIRWISE spillovers

Usage

plotPairwise(spillover_table, ...)

Arguments

spillover_table
the output of rolling spillover estimation function

... other arguments like whether it is within or absolute spillover in case of the frequency spillovers

Value

The plot

Author(s)

Tomas Krehlik <tomas.krehlik@gmail.com>

plotPairwise.list_of_spills

Function to plot pairwise spillovers

Description

Taking in list_of_spillovers, the function plots the pairwise spillovers using the zoo::plot.zoo function

Usage

## S3 method for class 'list_of_spills'
plotPairwise(
  spillover_table,
  within = F,
  which = 1:ncol(utils::combn(nrow(spillover_table$list_of_tables[[1]]$tables[[1]]), 2)),
  ...)
)
plotSpecific

Arguments

spillover_table
   a list_of_spills object, ideally from rolling window estimation
within
   whether to compute the within spillovers if the spillover tables are frequency based.
which
   a vector with indices specifying which plots to plot.
...
   for the sake of CRAN not to complain

Value

a plot of pairwise spillovers

Author(s)

Tomas Krehlik <tomas.krehlik@gmail.com>

plotSpecific Method for plotting specific pair spillover

Description

Method for plotting specific pair spillover

Usage

plotSpecific(spillover_table, ...)

Arguments

spillover_table
   the output of rolling spillover estimation function
...
   other arguments like which specific pair to plot.

Value

The plot

Author(s)

Tomas Krehlik <tomas.krehlik@gmail.com>
Function to plot specific spillover from i to j

Description
Taking in list_of_spillos, the function plots the spillover from i to j using the zoo::plot.zoo function

Usage
## S3 method for class 'list_of_spills'
plotSpecific(spillover_table, i, j, ...)

Arguments
- spillover_table: a list_of_spills object, ideally from rolling window estimation
- i: from variable
- j: to variable
- ...: for the sake of CRAN not to complain

Value
a plot of pairwise spillovers

Author(s)
Tomas Krehlik <tomas.krehlik@gmail.com>

Method for plotting TO spillovers

Description
Method for plotting TO spillovers

Usage
plotTo(spillover_table, ...)

Arguments
- spillover_table: the output of rolling spillover estimation function
- ...: other arguments like whether it is within or absolute spillover in case of the frequency spillovers
plotTo.list_of_spills

Value
The plot

Author(s)
Tomas Krehlik <tomas.krehlik@gmail.com>

---

plotTo.list_of_spills Function to plot to spillovers

Description
Taking in list_of_spillovers, the function plots the to spillovers using the zoo::plot.zoo function

Usage
```r
S3 method for class 'list_of_spills'
plotTo(
 spillover_table,
 within = FALSE,
 which = 1:nrow(spillover_table$list_of_tables[[1]]$tables[[1]]),
 ...
)
```

Arguments
- `spillover_table` a list_of_spills object, ideally from rolling window estimation
- `within` whether to compute the within spillovers if the spillover tables are frequency based.
- `which` a vector with indices specifying which plots to plot.
- `...` for the sake of CRAN not to complain

Value
a plot of to spillovers

Author(s)
Tomas Krehlik <tomas.krehlik@gmail.com>
Function to not print the list_of_spills object

Description

Usually it is not a good idea to print the list_of_spills object, hence this function implements warning and shows how to print them individually if the user really wants to.

Usage

```r
S3 method for class 'list_of_spills'
print(x, ...)
```

Arguments

- `x`: a list_of_spills object, ideally from the provided estimation functions
- `...`: for the sake of CRAN not to complain

Author(s)

Tomas Krehlik <tomas.krehlik@gmail.com>

Function to print the spillover_table object

Description

The function takes as an argument the spillover_table object and prints it nicely to the console. While doing that it also computes all the necessary measures.

Usage

```r
S3 method for class 'spillover_table'
print(x, ...)
```

Arguments

- `x`: a spillover_table object, ideally from the provided estimation functions
- `...`: for the sake of CRAN not to complain

Author(s)

Tomas Krehlik <tomas.krehlik@gmail.com>
spillover

Description

This function is an internal implementation of the spillover. The spillover is in general defined as the contribution of the other variables to the fevd of the self variable. This function computes the spillover as the contribution of the diagonal elements of the fevd to the total sum of the matrix. The other functions are just wrappers around this function. In general, other spillovers could be implemented using this function.

Usage

spillover(func, est, n.ahead, no.corr = F)

Arguments

- `func`: name of the function that returns FEVD for the estimate `est`
- `est`: the estimate of a system, typically VAR estimate in our case
- `n.ahead`: how many periods ahead should the FEVD be computed, generally this number should be high enough so that it won’t change with additional period
- `no.corr`: boolean parameter whether the off-diagonal in the covariance matrix should be set to zero

Value

spillover_table object

Author(s)

Tomas Krehlik <tomas.krehlik@gmail.com>

spilloverBK09

Description

This function is an internal implementation of the frequency spillover. We apply the identification scheme suggested by `fevd` to the frequency decomposition of the transfer functions from the estimate `est`.

Usage

spilloverBK09(est, n.ahead = 100, no.corr, partition)
Arguments

- **est**: the estimate of a system, typically VAR estimate in our case
- **n.ahead**: how many periods ahead should the FEVD be computed, generally this number should be high enough so that it won’t change with additional period
- **no.corr**: boolean parameter whether the off-diagonal in the covariance matrix should be set to zero
- **partition**: defines the frequency partitions to which the spillover should be decomposed

Value

spillover_table object

Author(s)

Tomas Krehlik <tomas.krehlik@gmail.com>

Description

This function is an internal implementation of the frequency spillover. We apply the identification scheme suggested by fevd to the frequency decomposition of the transfer functions from the estimate est.

Usage

spilloverBK12(est, n.ahead = 100, no.corr, partition)
computing spillover from a fevd according to diebold yilmaz (2009)

description

this function is an internal implementation of the spillover. the spillover is in general defined as the contribution of the other variables to the fevd of the self variable. this function computes the spillover as the contribution of the diagonal elements of the fevd to the total sum of the matrix. the other functions are just wrappers around this function. in general, other spillovers could be implemented using this function.

usage

spilloverDY09(est, n.ahead = 100, no.corr)

arguments

est the estimate of a system, typically VAR estimate in our case
n.ahead how many periods ahead should the FEVD be computed, generally this number should be high enough so that it won’t change with additional period
no.corr boolean parameter whether the off-diagonal in the covariance matrix should be set to zero

value

spillover_table object

author(s)

Tomas Krehlik <tomas.krehlik@gmail.com>

computing spillover from a generalized fevd according to diebold yilmaz (2012)

description

this function is an internal implementation of the spillover. the spillover is in general defined as the contribution of the other variables to the fevd of the self variable. this function computes the spillover as the contribution of the diagonal elements of the fevd to the total sum of the matrix. the other functions are just wrappers around this function. in general, other spillovers could be implemented using this function.

usage

spilloverDY12(est, n.ahead = 100, no.corr)
spilloverFft

Arguments

est  the estimate of a system, typically VAR estimate in our case
n.ahead how many periods ahead should the FEVD be computed, generally this number should be high enough so that it won’t change with additional period
no.corr boolean parameter whether the off-diagonal in the covariance matrix should be set to zero

Value

spillover_table object

Author(s)

Tomas Krehlik <tomas.krehlik@gmail.com>

---

spilloverFft  Computing the decomposed spillover from a fevd

Description

This function is an internal implementation of the frequency spillover. We apply the identification scheme suggested by fevd to the frequency decomposition of the transfer functions from the estimate est.

Usage

spilloverFft(func, est, n.ahead, partition, no.corr = F)

Arguments

func  name of the function that returns FEVD for the estimate est
est  the estimate of a system, typically VAR estimate in our case
n.ahead how many periods ahead should the FEVD be computed, generally this number should be high enough so that it won’t change with additional period
partition defines the frequency partitions to which the spillover should be decomposed
no.corr boolean parameter whether the off-diagonal in the covariance matrix should be set to zero

Value

spillover_table object

Author(s)

Tomas Krehlik <tomas.krehlik@gmail.com>
spilloverRolling  

**Description**

This function computes the rolling spillover using the standard VAR estimate. We implement the parallel version for faster processing. The window is of fixed window and is rolled over the data. Interpretation of the other parameters is the same as in the standard computation of spillover. For usage, see how spilloverRollingDY09, etc. are implemented.

**Usage**

```r
spilloverRolling(
 func_spill,
 params_spill,
 func_est,
 params_est,
 data,
 window,
 cluster = NULL,
 check_data = TRUE
)
```

**Arguments**

- `func_spill`: name of the function that returns FEVD for the estimate `est`
- `params_spill`: parameters from spillover estimation function as a list
- `func_est`: name of the estimation function
- `params_est`: parameters from the estimation function as a list
- `data`: variable containing the dataset
- `window`: length of the window to be rolled
- `cluster`: either `NULL` for no parallel processing or the variable containing the cluster.
- `check_data`: whether to check the data for NAs before starting estimation. Typically should be left true unless the underlying estimate is providing a way how to infer those NAs.

**Value**

A corresponding spillover value on a given frequency band, ordering of bands corresponds to the ordering of original bounds.

**Author(s)**

Tomas Krehlik <tomas.krehlik@gmail.com>
Computing rolling frequency spillover from a fevd as defined by Barunik, Krehlik (2018)

Description

This function computes the rolling spillover using the standard VAR estimate. We implement the parallel version for faster processing. The window is of fixed window and is rolled over the data. Interpretation of the other parameters is the same as in the standard computation of spillover.

Usage

```
spilloverRollingBK09(
 data,
 n.ahead = 100,
 no.corr,
 partition,
 func_est,
 params_est,
 window,
 cluster = NULL
)
```

Arguments

data variable containing the dataset

n.ahead how many periods ahead should the FEVD be computed, generally this number should be high enough so that it won’t change with additional period

no.corr boolean parameter whether the off-diagonal in the covariance matrix should be set to zero

partition how to split up the estimated spillovers into frequency bands. Should be a vector of bound points that starts with 0 and ends with pi+0.00001.

func_est estimation function, usually would be VAR or BigVAR function to estimate the multivariate system

params_est parameters passed to the estimation function, as a list, for parameters refer to documentation of the estimating function

window length of the window to be rolled

cluster either NULL for no parallel processing or the variable containing the cluster.

Author(s)

Tomas Krehlik <tomas.krehlik@gmail.com>
spilloverRollingBK12  \textit{Computing rolling frequency spillover from a generalized fevd as defined by Barunik, Krehlik (2018)}

\textbf{Description}

This function computes the rolling spillover using the standard VAR estimate. We implement the parallel version for faster processing. The window is of fixed window and is rolled over the data. Interpretation of the other parameters is the same as in the standard computation of spillover.

\textbf{Usage}

\begin{verbatim}
spilloverRollingBK12(
    data,
    n.ahead = 100,
    no.corr,
    partition,
    func_est,
    params_est,
    window,
   cluster = NULL
)
\end{verbatim}

\textbf{Arguments}

\begin{itemize}
  \item \texttt{data} variable containing the dataset
  \item \texttt{n.ahead} how many periods ahead should the FEVD be computed, generally this number should be high enough so that it won’t change with additional period
  \item \texttt{no.corr} boolean parameter whether the off-diagonal in the covariance matrix should be set to zero
  \item \texttt{partition} defines the frequency partitions to which the spillover should be decomposed
  \item \texttt{func_est} a name of the function to estimate with, for example "var" for VAR from vars package
  \item \texttt{params_est} a list of the parameters to pass to the function besides the data that are passed as a first element.
  \item \texttt{window} length of the window to be rolled
  \item \texttt{cluster} either NULL for no parallel processing or the variable containing the cluster.
\end{itemize}

\textbf{Author(s)}

Tomas Krehlik <tomas.krehlik@gmail.com>
Computing rolling spillover according to Diebold Yilmaz (2009)

Description

This function computes the rolling spillover using the standard VAR estimate. We implement the parallel version for faster processing. The window is of fixed window and is rolled over the data. Interpretation of the other parameters is the same as in the standard computation of spillover.

Usage

spilloverRollingDY09(data, n.ahead = 100, no.corr, func_est, params_est, window, cluster = NULL)

Arguments

data variable containing the dataset
n.ahead how many periods ahead should the FEVD be computed, generally this number should be high enough so that it won’t change with additional period
no.corr boolean parameter whether the off-diagonal in the covariance matrix should be set to zero
func_est estimation function, usually would be VAR or BigVAR function to estimate the multivariate system
params_est parameters passed to the estimation function, as a list, for parameters refer to documentation of the estimating function
window length of the window to be rolled
cluster either NULL for no parallel processing or the variable containing the cluster.

Author(s)

Tomas Krehlik <tomas.krehlik@gmail.com>
spilloverRollingDY12  Computing rolling spillover from the generalized fevd according to Diebold Yilmaz (2012)

Description

This function computes the rolling spillover using the standard VAR estimate. We implement the parallel version for faster processing. The window is of fixed window and is rolled over the data. Interpretation of the other parameters is the same as in the standard computation of spillover.

Usage

spilloverRollingDY12(
  data,
  n.ahead = 100,
  no.corr,
  func_est,
  params_est,
  window,
  cluster = NULL
)

Arguments

data              variable containing the dataset
n.ahead           how many periods ahead should the FEVD be computed, generally this number should be high enough so that it won’t change with additional period
no.corr           boolean parameter whether the off-diagonal in the covariance matrix should be set to zero
func_est          estimation function, usually would be VAR or BigVAR function to estimate the multivariate system
params_est        parameters passed to the estimation function, as a list, for parameters refer to documentation of the estimating function
window            length of the window to be rolled
cluster           either NULL for no parallel processing or the variable containing the cluster.

Author(s)

Tomas Krehlik <tomas.krehlik@gmail.com>
to

Method for computing TO spillovers

Description

Method for computing TO spillovers

Usage

to(spillover_table, ...)

Arguments

spillover_table
  the output of spillover estimation function or rolling spillover estimation function
...
  other arguments like whether it is within or absolute spillover in case of the frequency spillovers

Value

Value for TO spillover

Author(s)

Tomas Krehlik <tomas.krehlik@gmail.com>

to.list_of_spills Function to compute to spillovers

Description

Taking in list_of_spillovers, the function computes the to spillovers for all the individual spillover_table.

Usage

## S3 method for class 'list_of_spills'
to(spillover_table, within = F, ...)

Arguments

spillover_table
  a list_of_spills object, ideally from rolling window estimation
within
  whether to compute the within spillovers if the spillover tables are frequency based.
...
  for the sake of CRAN not to complain
Value

a list containing the to spillovers

Author(s)

Tomas Krehlik <tomas.krehlik@gmail.com>

to.spillover_table  

Function to compute to spillovers

Description

Taking in spillover_table, the function computes the to spillover.

Usage

## S3 method for class 'spillover_table'
to(spillover_table, within = F, ...)

Arguments

spillover_table  
a spillover_table object, ideally from the provided estimation functions

within  
whether to compute the within spillovers if the spillover tables are frequency based.

...  
for the sake of CRAN not to complain

Value

a list containing the to spillover

Author(s)

Tomas Krehlik <tomas.krehlik@gmail.com>

volatilities

Volatilities from Ox Man Institute

Description

The dataset includes median realised volatilities of some financial indices

Author(s)

Tomas Krehlik <tomas.krehlik@gmail.com>
Index

* data
  exampleSim, 4
  volatilities, 36

  collapseBounds, 3
  collapseBounds.list_of_spills, 3
  collapseBounds.spillover_table, 4

  exampleSim, 4

  fevd, 5
  fftFEVD, 5
  fftGenFEVD, 6
  from, 7
  from.list_of_spills, 7
  from.spillover_table, 8

  genFEVD, 9
  getIndices, 9
  getPartition, 10

  net, 11
  net.list_of_spills, 11
  net.spillover_table, 12

  overall, 13
  overall.list_of_spills, 13
  overall.spillover_table, 14

  pairwise, 15
  pairwise.list_of_spills, 15
  pairwise.spillover_table, 16
  plotFrom, 17
  plotFrom.list_of_spills, 17
  plotNet, 18
  plotNet.list_of_spills, 19
  plotOverall, 19
  plotOverall.list_of_spills, 20
  plotPairwise, 21
  plotPairwise.list_of_spills, 21
  plotSpecific, 22

  plotSpecific.list_of_spills, 23
  plotTo, 23
  plotTo.list_of_spills, 24
  print.list_of_spills, 25
  print.spillover_table, 25

  spillover, 26
  spilloverBK09, 26
  spilloverBK12, 27
  spilloverDY09, 28
  spilloverDY12, 28
  spilloverFft, 29
  spilloverRolling, 30
  spilloverRollingBK09, 31
  spilloverRollingBK12, 32
  spilloverRollingDY09, 33
  spilloverRollingDY12, 34

  to, 35
  to.list_of_spills, 35
  to.spillover_table, 36

  volatilities, 36