Package ‘foieGras’

April 27, 2021

Title Fit Continuous-Time State-Space and Latent Variable Models for Quality Control of Argos Satellite (and Other) Telemetry Data and for Estimating Movement Behaviour

Version 0.7-6

Date 2021-04-26

Author Ian Jonsen [aut, cre, cph], Toby Patterson [aut, ctb]

Maintainer Ian Jonsen <ian.jonsen@mq.edu.au>

Description Fits continuous-time random walk and correlated random walk state-space models for quality control animal tracking data ('Argos', processed light-level 'geolocation', 'GPS'). Template Model Builder ('TMB') is used for fast estimation. The 'Argos' data can be: (older) least squares-based locations; (newer) Kalman filter-based locations with error ellipse information; or a mixture of both. The models estimate two sets of location states corresponding to: 1) each observation, which are (usually) irregularly timed; and 2) user-specified time intervals (regular or irregular). Latent variable models are provided to estimate move persistence along tracks as an index of behaviour. Track simulation functions are provided. ‘Jonsen I’, ‘McMahon CR’, ‘Patterson TA’, ‘Auger-Méthé M’, ‘Harcourt R’, ‘Hindell MA’, ‘Bestley S’ (2019) Movement responses to environment: fast inference of variation among southern elephant seals with a mixed effects model. Ecology 100:e02566 <doi:10.1002/ecy.2566>.

URL https://github.com/ianjonsen/foieGras/

BugReports https://github.com/ianjonsen/foieGras/issues

License MIT + file LICENSE

LazyData true

Encoding UTF-8

RoxygenNote 7.1.1

LinkingTo TMB (>= 1.7.15), RcppEigen

Imports tibble (>= 2.1.3), ggplot2 (>= 3.0.0), lubridate, TMB (>= 1.7.15), sf (>= 0.9-4), stringr, tidyr, purrr, dplyr (>= 1.0.0), tripl, assertthat, patchwork, future, purrr, CircStats, mvtnorm, tmvtnorm, parallel, lifecycle
Suggests testthat, covr, knitr, rmarkdown, rgeos, rworldmap

Depends R (>= 3.6.0)

SystemRequirements GDAL (>= 2.4.2), GEOS (>= 3.7.0), PROJ (>= 5.2.0), pandoc (>=2.7.3)

VignetteBuilder knitr

NeedsCompilation yes

Repository CRAN

Date/Publication 2021-04-26 22:10:07 UTC

R topics documented:

- foieGras-package ... 3
- dummy ... 3
- ellie ... 4
- emf ... 4
- fit_mpm ... 5
- fit_ssm ... 6
- fmap .. 10
- grab ... 11
- join ... 12
- mpm_control .. 12
- osar ... 14
- plot.fG_mpm .. 15
- plot.fG_osar ... 16
- plot.fG_sim .. 17
- plot.fG_simfit ... 18
- plot.fG_ssm .. 18
- print.ssm ... 20
- res .. 20
- sese .. 21
- sese1 ... 21
- sese2 ... 21
- sim .. 22
- simfit ... 24
- ssm_control .. 25
- xm ... 26

Index

- 27
Description

fit Continuous-Time Random Walk and Correlated Random Walk state-space models to filter Argos Least Squares or Kalman Filter location data

Author(s)

Ian Jonsen, Toby Patterson

References

See Also

fit_ssm

dummy Roxygen commands

Description

Roxygen commands

Usage

dummy()
Southern elephant seal Argos satellite data (1 individual, sub-sampled for testing speed)

Example elephant seal Argos tracking data. Data were sourced from the Integrated Marine Observing System (IMOS) - IMOS is supported by the Australian Government through the National Collaborative Research Infrastructure Strategy and the Super Science Initiative.

Format

.data

Description

emf

Usage

emf(
 gps = 0.1,
 emf.x = c(1, 1.54, 3.72, 13.51, 23.9, 44.22),
 emf.y = c(1, 1.29, 2.55, 14.99, 22, 32.53)
)

Arguments

gps error multiplication factor(s) for GPS locations, can be a scalar (x = y) or vector of length 2 (x != y)
emf.x error multiplication factors for Argos longitude classes 3, 2, 1, 0, A, B (Z assumed equal to B)
emf.y error multiplication factors for Argos latitude classes 3, 2, 1, 0, A, B (Z assumed equal to B)
Details

Error Multiplication Factors for Argos (and GPS) locations. Default assumption is that GPS locations are 10x more accurate than Argos lc 3 in both x and y directions.

User-specified Error Multiplication Factors (emf). emf’s must be provided as a data.frame with the following columns:

- emf.x emf values for the x direction
- emf.y emf values for y direction

lc location class designations

The location class designations can be the standard Argos lc values: 3, 2, 1, 0, A, B, Z or other values. The number of classes specified is flexible though may not be amenable to a large number of classes. Whatever class designations are chosen must also appear in the input data lc column. A GPS location class ("G") is provided by default and assumes that GPS locations are 10x more precise than Argos lc 3 locations.

fit_mpm

fit a a Move Persistence Model (mpm)

Description

fit a random walk with time-varying move persistence to temporally regular or irregular location data

Usage

fit_mpm(
 x,
 what = "predicted",
 model = c("jmpm", "mpm"),
 coords = 3:4,
 control = mpm_control(),
 inner.control = NULL,
 optim = NULL,
 optMeth = NULL,
 verbose = NULL
)

Arguments

- x: a fG_ssm fit object or a data frame of observations (see details)
- what: if a fG_ssm fit object is supplied then what determines whether fitted or predicted (default) values are mapped; ignored if x is a data frame
- model: mpm model to fit; either mpm with unpooled random walk variance parameters (sigma_(g,i)) or jmpm with a single, pooled random variance parameter (sigma_g)
cooks
control
inner.control
optim
optMeth
verbose
Value
Examples
fit jmpm to two southern elephant seal tracks
xs <- fit_ssm(sese2, spdf=FALSE, model = "rw", time.step=72,
control = ssm_control(se = FALSE, verbose = 0))
fmpm <- fit_mpm(xs, model = "jmpm")

fit_ssm
Fit a continuous-time state-space model to filter Argos satellite geolocation data

Description
fits either a simple random walk or a correlated random walk (a random walk on velocity) in continuous time to filter Argos LS, and/or KF/KS location data, processed light-level geolocation data (GLS), and/or GPS data. Location data of different types can combined in a single data frame (see details). Predicts locations at user-specified time intervals (regular or irregular).
Usage

```r
fit_ssm(
  d,
  vmax = 5,
  ang = c(15, 25),
  distlim = c(2500, 5000),
  spdf = TRUE,
  min.dt = 60,
  pf = FALSE,
  model = "crw",
  time.step = NA,
  scale = FALSE,
  emf = NULL,
  map = NULL,
  parameters = NULL,
  fit.to.subset = TRUE,
  control = ssm_control(),
  inner.control = NULL,
  verbose = NULL,
  optim = NULL,
  optMeth = NULL,
  lpsi = NULL
)
```

Arguments

d a data frame of observations including Argos KF error ellipse info (when present)

vmax max travel rate (m/s) passed to sda to identify outlier locations

ang angles (deg) of outlier location "spikes"

distlim lengths (m) of outlier location "spikes"

spdf (logical) turn trip::sda on (default; TRUE) or off

min.dt minimum allowable time difference between observations; dt <= min.dt will be ignored by the SSM

pf just pre-filter the data, do not fit the SSM (default is FALSE)

model fit either a simple random walk ("rw") or correlated random walk ("crw") as a continuous-time process model

time.step options: 1) the regular time interval, in hours, to predict to; 2) a vector of prediction times, possibly not regular, must be specified as a data.frame with id and POSIXt dates; 3) NA - turns off prediction and locations are only estimated at observation times.

scale scale location data for more efficient optimization. This should rarely be needed (default = FALSE)

emf optionally supplied data.frame of error multiplication factors for Argos location quality classes. Default behaviour is to use the factors supplied in foieGras::emf()
fit_ssm

map a named list of parameters as factors that are to be fixed during estimation, e.g.,
list(psi = factor(NA))

parameters a list of initial values for all model parameters and unobserved states, default is
to let sfilter specify these. Only play with this if you know what you are doing

fit.to.subset fit the SSM to the data subset determined by prefilter (default is TRUE)

countrol list of control settings for the outer optimizer (see ssm_control for details)

inner.control list of control settings for the inner optimizer (see MakeADFUn for additional
details)

verbose [Deprecated] use ssm_control(verbose = 1) instead, see ssm_control for de-
tails

optim [Deprecated] use ssm_control(optim = "optim") instead, see ssm_control for de-
tails

optMeth [Deprecated] use ssm_control(method = "L-BFGS-B") instead, see ssm_control for de-
tails

lpsi [Deprecated] use ssm_control(lower = list(lpsi = -Inf)) instead, see ssm_control for de-
tails

Details
d is a data.frame, tibble, or sf-tibble with 5, 7 or 8 columns, depending on the tracking data
type. Argos Least-Squares and GPS data should have 5 columns in the following order: "id", "date",
"lc", "lon", "lat". Where "date" can be a POSIX object or text string in YYYY-MM-DD HH:MM:SS
format. If a text string is supplied then the time zone is assumed to be "GMT". lc (location class)
can include the following values: 3, 2, 1, 0, A, B, Z, G, or GL. The latter two are for GPS and
GLS locations, respectively. Class Z values are assumed to have the same error variances as class
B. By default, class G (GPS) locations are assumed to have error variances 10x smaller than Argos
class 3 variances, but unlike Argos error variances the GPS variances are the same for longitude and
latitude.

See emf for details on how to modify these assumptions.

Argos Kalman Filter (or Kalman Smoother) data should have 8 columns, including the above 5 plus
"smaj", "smin", "eor" that contain Argos error ellipse variables (in m for "smaj", "smin" and deg for
"eor").

Light-level geolocation (GLS) locations can be modelled provided each longitude and latitude has
a corresponding standard error. These data should have 7 columns, including the above 5 plus
"lonerr", "laterr" (in degrees). In this case, all lc values should be set to "GL".

Multiple location data types can be combined in a single data frame (see the vignette for examples).

When data are provided as an sf-tibble, the user-specified projection is respected. Otherwise,
longlat data are re-projected internally to a global Mercator grid and provided as the default output.
An un-projected tibble of lon,lat and x,y location estimates can be obtained by using grab with
the argument as_sf = FALSE.

Value

a list with components
fit_ssm

call the matched call
predicted an sf tbl of predicted location states
fitted an sf tbl of fitted locations
par model parameter summary
data an augmented sf tbl of the input data
inits a list of initial values
pm the process model fit, either "rw" or "crw"
ts time.time.step in h used
opt the object returned by the optimizer
tmb the TMB object
rep TMB sdreport
aic the calculated Akaike Information Criterion
time the processing time for sfilter

References

See Also

sfilter

Examples

fit crw model to Argos LS data
se = FALSE to speed up ex
fit <- fit_ssm(sese1, vmax = 4, model = "crw", time.step = 48, control = ssm_control(se = FALSE))

time series plots of fitted value fit to data
plot(fit, what = "fitted", type = 1, ask = FALSE)

track plots of predicted value fit to data
plot(fit, what = "predicted", type = 2, ask = FALSE)
Description

map foieGras fitted or predicted locations, with or without Argos observations, optionally apply a
different projection

Usage

fmap(
 x,
 y = NULL,
 what = c("fitted", "predicted"),
 conf = TRUE,
 obs = FALSE,
 obs.shp = 17,
 by.date = TRUE,
 crs = NULL,
 ext.rng = c(0.05, 0.05),
 size = 0.25,
 col = "black",
 lines = FALSE,
 landfill = grey(0.6),
 pal = "Zissou1",
 rev = FALSE
)

Arguments

x a foieGras ssm fit object with class fG_ssm
y optionally, a foieGras mpm fit object with class fG_mpm; default is NULL
what specify which location estimates to map: fitted or predicted
conf include confidence regions around estimated location (logical; default = TRUE, unless y is an mpm fit object then conf is FALSE)
obs include Argos observations on map (logical; default = FALSE)
ob.shp point shape for observations (default = 17)
by.date when mapping single tracks, should locations be coloured by date (logical; de-
dfault = TRUE if nrow(x) == 1 else FALSE)
crs proj4string for re-projecting locations, if NULL the default projection (+proj=merc) for the fitting the SSM will be used
ext.rng factors to extend the plot range in x and y dimensions (can exceed 1)
size size of estimated location points (size = NA will draw no points). Optionally, a vector of length 2 with size of observed locations given by 2nd value (ignored if obs = FALSE)
Description

grab() lets you obtain fitted, predicted, or data tibble’s from a compound tibble created when fitting to multiple individual data sets. The specified tibble’s are appended to a single output tibble.

Usage

grab(x, what = "fitted", as_sf = TRUE)

Arguments

x a foieGras ssm or mpm model object
what the tibble to be grabbed; either fitted, predicted (ssm only), or data (single letters can be used)
as_sf logical; if FALSE then return a tibble with un-projected lonlat coordinates, otherwise return an sf tibble. Ignored if x is an mpm model object.

Value

a tibble with all individual tibble’s appended

Examples

generate a fG_ssm fit object
xs <- fit_ssm(sese2, spdf=FALSE, model = "rw", time.step=72, control = ssm_control(se = FALSE, verbose = 0))

grab predicted values as an un-projected tibble
preds <- grab(xs, what = "predicted", as_sf = FALSE)
join

join an mpm-estimated behavioural index to ssm-predicted locations

Description

join() joins ssm-predicted locations and mpm-estimated behavioural index into a single tibble. If the ssm-predicted tibble is a projected sf object then the output of join will also be an sf object (default). This can be avoided by using as_sf = FALSE.

Usage

join(ssm, mpm, what.ssm = "predicted", as_sf = TRUE)

Arguments

ssm a foieGras ssm fitted model object
mpm a foieGras mpm fitted model object
what.ssm specifies whether ssm predicted or fitted values are to be extracted
as_sf logical; if FALSE then return a tibble with un-projected lonlat coordinates, otherwise return an sf tibble

Value

a single tbl with all individuals

Examples

load example foieGras fit objects (to save time)
generate a fG_ssm fit object
xs <- fit_ssm(sese2, spdf=FALSE, model = "rw", time.step=72,
control = ssm_control(se = FALSE, verbose = 0))
data(xm)

join predicted values as an un-projected tibble
xsm <- join(xs, xm, as_sf = FALSE)
xsm

mpm_control

Control Values for fit_mpm.

Description

mpm_control selects the numerical minimizer, method, associated control parameters, and parameter bounds used by fit_mpm.
mpm_control

Usage

mpm_control(
 optim = c("nlminb", "optim"),
 method = c("L-BFGS-B", "BFGS", "Nelder-Mead", "CG", "SANN", "Brent"),
 lower = NULL,
 upper = NULL,
 verbose = 1,
 ...
)

Arguments

optim the numerical optimizer used in the fit
method if optim = "optim" then the optimization method to be used can be one of
 "BFGS", "L-BFGS-B", "Nelder-Mead", "CG", "SANN", or "Brent" see optim
 for details
lower a list named parameter lower bounds, if NULL then built in defaults are used
 when method = "L-BFGS-B". Possible parameter names are: 1_sigma a vector
 of length 2, log scale; 1_rho_p a scalar, logit scale; 1_D a scalar, log scale;
 1_psi a scalar, log scale; 1_tau a vector of length 2, log scale; 1_rho_o a scalar, logit
 scale
upper a list of named parameter upper bounds, if NULL then built in defaults are used
 when method = "L-BFGS-B". Possible parameter names are same as lower
verbose integer; report progress during minimization: 0 = silent; 1 = optimizer trace; 2
 = parameter trace (default))
... control parameters for the chosen optimizer

Details

The optimizer used to minimize the objective function is selected by the optim argument. Additional
control parameters specific to the chosen optimizer are specified via the dots argument. See
nlminb and optim for available options. Adapted from S. Wotherspoon https://github.com/
SWotherspoon/RWalc/blob/master/R/RWalc.R

Value

Returns a list with components

optim the name of the numerical optimizer as a string, "nlminb" or "optim"
method optimization method to be used
lower named list of lower parameter bounds
upper named list of upper parameter bounds
verbose level of tracing information to be reported
control list of control parameters for the optimizer
osar

calculate one-step-ahead (prediction) residuals from a foieGras fit

Description

calculate one-step-ahead (prediction) residuals from a foieGras fit

Usage

osar(x, method = "fullGaussian", ...)

Arguments

x
a compound fG tbl fit object

method
method to calculate prediction residuals (default is "oneStepGaussianOffMode"; see ?TMB::oneStepPrediction for details)

...
other arguments to TMB::oneStepPrediction

Details

One-step-ahead residuals are useful for assessing goodness-of-fit in latent variable models. This is a wrapper function for TMB::oneStepPredict (beta version). osar tries the "fullGaussian" (fastest) method first and falls back to the "oneStepGaussianOffMode" (slower) method for any failures. Subsequent failures are dropped from the output and a warning message is given. Note, OSA residuals can take a considerable time to calculate if there are many individual fits and/or deployments are long. The method is automatically parallelized across 2 x the number of individual fits, up to the number of processor cores available.

References

Examples

generate a fG_ssm fit object (call is for speed only)
x <- fit_ssm(sese2, spdf=FALSE, model = "rw", time.step=72, control = ssm_control(se = FALSE, verbose = 0))

just use one seal to save time
dres <- osar(xs[2,])
Description

visualize fits from an fG_mpm object

Usage

```r
## S3 method for class 'fG_mpm'
plot(
  x,
  y = NULL,
  se = FALSE,
  pages = 0,
  ncol = 1,
  ask = TRUE,
  pal = "Zissou1",
  rev = FALSE,
  ...
)
```

Arguments

- `x`: a foieGras mpm fit object with class `fG_mpm`
- `y`: optional ssm fit object with class `fG_ssm` corresponding to `x`. If absent, 1-d plots of `gamma_t` time series are rendered otherwise, 2-d track plots with locations coloured by `gamma_t` are rendered.
- `se`: logical (default = FALSE); should points be scaled by `gamma_t` uncertainty (ignored if `y` is not supplied)
- `pages`: plots of all individuals on a single page (pages = 1; default) or each individual on a separate page (pages = 0)
- `ncol`: number of columns to use for faceting. Default is `ncol = 1` but this may be increased for multi-individual objects. Ignored if `pages = 0`
- `ask`: logical; if TRUE (default) user is asked for input before each plot is rendered. Set to FALSE to return ggplot objects
- `pal`: hcl.colors palette to use (default: "Zissou1"; type `hcl.pals()` for options)
- `rev`: reverse colour palette (logical)
- `...`: additional arguments to be ignored

Value

a ggplot object with either: 1-d time series of `gamma_t` estimates (if `y` not provided), with estimation uncertainty ribbons (95% CI’s); or 2-d track plots (if `y` provided) coloured by `gamma_t`, with smaller points having greater uncertainty (size is proportional to `SE^{-2}`, if `se = TRUE`). Plots can be rendered all on a single page (pages = 1) or on separate pages.
Examples

plot mpm fit object
1-d time-series plots
plot(xm)

generate a fG_ssm fit object (call is for speed only)
x <- fit_ssm(sese2, spdf=FALSE, model = "rw", time.step=72,
control = ssm_control(se = FALSE, verbose = 0))

2-d track plots by adding ssm fit object
plot(xm, xs)

Description

plot One-Step-Ahead (prediction) residuals from a foieGras osar object

Usage

S3 method for class 'fG_osar'
plot(
 x,
 type = c("ts", "qqnorm", "acf"),
 pages = 1,
 ncol = 1,
 ask = TRUE,
 pal = "Zissou1",
 ...
)

Arguments

x a foieGras osar object with class fG_osar

type type of residual plot to generate; time-series (ts), qqnorm (qq; default) or acf
(note: hist is deprecated)
pages plots of all individuals on a single page (pages = 1; default) or each individual
on a separate page (pages = 0)
ncol number of columns to use for faceting. Default is ncol = 2 but this may be
increased for multi-individual fit objects
ask logical; if TRUE (default) user is asked for input before each plot is rendered.
set to FALSE to return ggplot objects
pal hcl.colors colour palette to use (default = "Zissou1"; type hcl.pals() for
options)
... additional arguments to be ignored
Examples

```r
## generate a fG_ssm fit object (call is for speed only)
xs <- fit_ssm(sese2, spdf=FALSE, model = "rw", time.step=72,
              control = ssm_control(se = FALSE, verbose = 0))

dres <- osar(xs[2,]) # only use one seal to save time
plot(dres, type = "qq")
```

Description

visualize simulated tracks from a fG_sim data.frame

Usage

```r
## S3 method for class 'fG_sim'
plot(x, error = FALSE, pal = "Zissou1", rev = FALSE, col = TRUE, ...)
```

Arguments

- `x`: a foieGras simulation data.frame with class `fG_sim`
- `error`: logical, plot locations with error (TRUE) or without. Ignored in 1-D time-series plots
- `pal`: hcl.colors palette to use (default: "Zissou1"); type `hcl.pals()` for options
- `rev`: reverse direction of colour palette; logical (default = FALSE)
- `col`: colour data points by speed; logical (default = TRUE)
- `...`: additional arguments to be ignored

Value

Plots of simulated tracks. Can be rendered all on a single page (pages = 1) or on separate pages (pages = 0).

Examples

```r
tr <- sim(N=100, model = "crw")
plot(tr, error = TRUE)
```
Description

visualize tracks simulated from a foieGras model fit

Usage

S3 method for class 'fG_simfit'
plot(x, ncol = 1, pal = "Zissou1", ...)

Arguments

x
a foieGras simulation data.frame with class fG_simfit
ncol
number of columns to arrange multiple plots
pal
colours palette to use (default: "Zissou1"; type hcl.colors() for options)
...
additional arguments to be ignored

Value

Plots of simulated tracks.

Examples

generate a fG_ssm fit object (call is for speed only)
x <- fit_ssm(sese2, spdf=FALSE, model = "crw", time.step=72,
control = ssm_control(se = FALSE, verbose = 0))

trs <- simfit(x, what = "p", reps = 1)
plot(trs, ncol = 2)
Usage

```r
## S3 method for class 'fG_ssm'
plot(
  x,
  what = c("fitted", "predicted"),
  type = 1,
  outlier = TRUE,
  pages = 0,
  ncol = 1,
  ask = TRUE,
  pal = "Zissou1",
  ...
)
```

Arguments

- `x`: a `foieGras` ssm fit object with class `fG_ssm`
- `what`: specify which location estimates to display on time-series plots: fitted or predicted
- `type`: of plot to generate: 1-d time series for lon and lat separately (type = 1, default) or 2-d track plot (type = 2)
- `outlier`: include outlier locations dropped by prefilter (outlier = TRUE, default)
- `pages`: each individual is plotted on a separate page by default (pages = 0), multiple individuals can be combined on a single page; pages = 1
- `ncol`: number of columns to arrange plots when combining individuals on a single page (ignored if pages = 0)
- `ask`: logical; if TRUE (default) user is asked for input before each plot is rendered. set to FALSE to return ggplot objects
- `pal`: hcl.colors palette to use (default: "Zissou1"; type `hcl.pals()` for options)
- `...`: additional arguments to be ignored

Value

a ggplot object with either: (type = 1) 1-d time series of fits to data, separated into x and y components (units = km) with prediction uncertainty ribbons (2 x SE); or (type = 2) 2-d fits to data (units = km)

Examples

```r
## generate a fG_ssm fit object (call is for speed only)
xs <- fit_ssm(sese2, spdf=FALSE, model = "rw", time.step=72,
  control = ssm_control(se = FALSE, verbose = 0))

plot(xs, what = "f", type = 1)
plot(xs, what = "p", type = 2)
```
print.ssm

print foieGras fit object summary information

Description

print foieGras fit object summary information

Usage

S3 method for class 'ssm'
print(x, ...)

Arguments

x a foieGras ssm fit object
... unused. For compatibility with the generic method.

Examples

see summary fit output
generate a fG_ssm fit object (call is for speed only)
xs <- fit_ssm(sese2, spdf=FALSE, model = "rw", time.step=72,
 control = ssm_control(se = FALSE, verbose = 0))

xs$ssm[[1]]

res

foieGras example osar residuals object

Description

Example foieGras osar residuals object. This example osar residuals object is included purely to speed up vignette build.

Format

.RData
Description

Example elephant seal Argos tracking data. Data were sourced from the Integrated Marine Observing System (IMOS) - IMOS is supported by the Australian Government through the National Collaborative Research Infrastructure Strategy and the Super Science Initiative.

Format

.RData

Description

Example elephant seal Argos tracking data. Data were sourced from the Integrated Marine Observing System (IMOS) - IMOS is supported by the Australian Government through the National Collaborative Research Infrastructure Strategy and the Super Science Initiative.

Format

.RData

Description

Example elephant seal Argos tracking data, highly sub-sampled. These example data are included purely to speed up examples where a fit object is required. Generating a fit object is preferred as storing an example fit risks GDAL errors on platforms with older GDAL libraries.

Format

.RData
Description

simulate from the rw, crw of mpm process models to generate a set of x,y (or lon,lat) coordinates with or without error from supplied input parameters.

Usage

```
sim(
    N = 100,
    start = list(c(0, 0), as.POSIXct(format(Sys.time(), tz = "UTC", usetz = TRUE))),
    model = c("rw", "crw", "mpm"),
    vmax = 4,
    sigma = c(4, 4),
    rho_p = 0,
    D = 0.05,
    sigma_g = 1.25,
    error = c("ls", "kf"),
    tau = c(1.5, 0.75),
    rho_o = 0,
    tdist = c("reg", "gamma"),
    ts = 3,
    tpar = c(0.23, 1),
    alpha = c(0.9, 0.8)
)
```

Arguments

- **N**: number of time steps to simulate
- **start**: coordinates and datetime of start location for simulated track
- **model**: simulate from the rw, crw or mpm process models
- **vmax**: maximum travel rate (m/s) of simulated animal
- **sigma**: a vector of process error sd's for the rw model (ignored if model != "rw")
- **rho_p**: correlation parameter for rw model process covariance matrix (ignored if model != "rw")
- **D**: diffusion coefficient for crw model process covariance matrix (ignored if model != "crw")
- **sigma_g**: random walk sd for time-varying move persistence parameter (ignored if model != "mpm")
- **error**: indicates whether measurement error should mimic Argos Least-Squares ("ls") or Argos Kalman Filter ("kf")
- **tau**: vector of LS measurement error sd’s (ignored if error = "kf")
\texttt{rho_o} correlation parameter for LS covariance matrix (ignored if error = "kf")
\texttt{tdist} distribution for simulating location times ("reg" generates locations at regular ts intervals, in h; "gamma" uses a gamma distribution to generate random time intervals)
\texttt{ts} time interval in h (ignored if tdist = "gamma")
\texttt{tpar} shape and scale parameters for the gamma distributed times (ignored if tdist = "reg")
\texttt{alpha} transition probabilities switching model versions of \texttt{rw} or \texttt{crw} models. Probabilities are the transition matrix diagonals (ignored if sigma has length 2 or D has length 1)

Value

a tibble is returned with columns that can include some or all of the following, depending on the arguments used

\texttt{date} time as POSIXct tz = UTC (default)
\texttt{lc} Argos location class
\texttt{lon} longitude with error
\texttt{lat} latitude with error
\texttt{x} x in km from arbitrary origin without error
\texttt{y} y in km from arbitrary origin without error
\texttt{x.err} a random deviate drawn from Argos LS or KF error distribution
\texttt{y.err} a random deviate drawn from Argos LS or KF error distribution
\texttt{sma} j Argos error ellipse semi-major axis in m (if error = "kf")
\texttt{smin} Argos error ellipse semi-minor axis in m (if error = "kf")
\texttt{eor} Argos error ellipse orientation in degrees (if error = "kf")
\texttt{u} velocity in x direction (if model = "crw")
\texttt{v} velocity in y direction (if model = "crw")
\texttt{b} behavioural state (if model = "rw" or "crw" and multiple process variances given, see examples)
\texttt{g} movement persistence - the autocorrelation between successive movements on the interval 0,1 (if model = "mpm")

Examples

\begin{verbatim}
tr <- sim(N = 200, model = "crw", D = 0.1, error = "kf", tdist = "reg", ts=12)
plot(tr, error = TRUE)

tr <- sim(N = 200, model = "rw", sigma = c(4,4,0.5,0.5), error = "ls", tdist = "reg")
plot(tr)

tr <- sim(N = 200, model = "crw", D = c(0.1, 0.05), error = "kf", tdist="reg")
plot(tr)
\end{verbatim}
simfit <- sim(N = 200, model = "mpm", sigma_g = 1.2, error = "ls", tau = c(2, 1.5),
 tdist = "gamma", tpar = c(1, 4))
plot(tr, error = TRUE, pal = "Cividis")

simfit simulate animal tracks from a fG_ssm fit

Description

simulate from the rw or crw process models to generate either a set of x,y (or lon,lat) coordinates
from a fG_ssm fit with length equal to the number of observations used in the SSM fit.

Usage

simfit(
 x,
 what = c("fitted", "predicted"),
 reps = 1,
 cpf = FALSE,
 sim_only = FALSE
)

Arguments

x a compound fG_ssm model fit object (ignored if NULL)
what simulate fitted (typically irregular in time) or predicted (typically regular in time)
locations
reps number of replicate tracks to simulate from an fG_ssm model fit object (ignored
if x is NULL)
cpf logical; should simulated tracks return to their start point (ie. a central-place
forager)
sim_only logical, do not include fG_ssm estimated location in output (default is FALSE)

Examples

fit <- fit_ssm(ellie, vmax = 4, model = "crw", time.step = 48, control = ssm_control(se = FALSE))
trs <- simfit(fit, reps = 2, what = "predicted")
plot(trs)
Description

ssm_control selects the numerical minimizer, method, associated control parameters, and parameter bounds used by fit_ssm.

Usage

```r
ssm_control(
  optim = c("nlminb", "optim"),
  method = c("L-BFGS-B", "BFGS", "Nelder-Mead", "CG", "SANN", "Brent"),
  lower = NULL,
  upper = NULL,
  verbose = 1,
  se = TRUE,
  ...
)
```

Arguments

- **optim**
 - the numerical optimizer used in the fit
- **method**
 - if optim = "optim" then the optimization method to be used can be one of "BFGS", "L-BFGS-B", "Nelder-Mead", "CG", "SANN", or "Brent" see optim for details
- **lower**
 - a list named parameter lower bounds, if NULL then built in defaults are used when method = "L-BFGS-B". Possible parameter names are: `l_sigma` a vector of length 2, log scale; `l_rhoe` a scalar, logit scale; `l_D` a scalar, log scale; `l_psi` a scalar, log scale; `l_tau` a vector of length 2, log scale; `l_rhoe` a scalar, logit scale
- **upper**
 - a list of named parameter upper bounds, if NULL then built in defaults are used when method = "L-BFGS-B". Possible parameter names are same as lower
- **verbose**
 - integer; report progress during minimization: 0 = silent; 1 = optimizer trace; 2 = parameter trace (default)
- **se**
 - logical; should standard errors for fixed effects be calculated (default = TRUE). Turning this off will speed up computation time at the expense of reporting uncertainty for fixed effects
- **...**
 - control parameters for the chosen optimizer

Details

The optimizer used to minimize the objective function is selected by the optim argument. Additional control parameters specific to the chosen optimizer are specified via the dots argument. See `nlminb` and `optim` for available options. Adapted from S. Wotherspoon https://github.com/SWotherspoon/RWalc/blob/master/R/RWalc.R
Value

Returns a list with components

optim the name of the numerical optimizer as a string, "nlminb" or "optim"
method optimization method to be used
lower named list of lower parameter bounds
upper named list of upper parameter bounds
verbose level of tracing information to be reported
control list of control parameters for the optimizer

See Also

nlminb, optim.

Examples

```r
fit <- fit_ssm(ellie,
  vmax = 4,
  model = "crw",
  time.step = 72,
  control = ssm_control(
    optim = "nlminb",
    eval.max = 2000)
)
```

Description

Example foieGras mpm fit object. This example fit is included purely to speed up examples where a fit object is required but fitting to data is not the focus of the example.

Format

.RData
Index

* data
 ellie, 4
 res, 20
 sese, 21
 sese1, 21
 sese2, 21
 xm, 26
* foieGras
 foieGras-package, 3

dummy, 3
ellie, 4
emf, 4, 8
fit_mpm, 5
fit_ssm, 6
fmap, 10
foieGras (foieGras-package), 3
foieGras-package, 3
grab, 8, 11
join, 12

MakeADFun, 8
mpm_control, 12

nlminb, 13, 14, 25, 26
optim, 13, 14, 25, 26
osar, 14

plot.fG_mpm, 15
plot.fG_osar, 16
plot.fG_sim, 17
plot.fG_simfit, 18
plot.fG_ssm, 18
print (print.ssm), 20
print.ssm, 20
res, 20

sda, 7
sese, 21
sese1, 21
sese2, 21
sfILTER, 9
Sim, 22
simfit, 24
ssm_control, 25
xm, 26