Package ‘flps’

April 21, 2024

Type Package
Title Fully-Latent Principal Stratification
Version 1.1.0
Date 2024-03-27
License GPL-3
Depends R (>= 3.5.0)
Imports rstan, Rcpp (>= 1.0.8.3), methods, mirt, MASS, utils, stats, mvtnorm, ggplot2, glue
Suggests testthat (>= 3.0.0), knitr, rmarkdown, lavaan, data.table
Encoding UTF-8
LazyData true
RoxygenNote 7.3.1
VignetteBuilder knitr
Collate ‘flps-package.r’ ‘load_rstan.r’ ‘make_FLPSdata.r’ ‘run_FLPS.r’ ‘priors.r’ ‘sim_gen_measurement.r’ ‘sim_gen_structure.r’ ‘sim_gen_standata.r’ ‘sim_make_data.r’ ‘sim_utils.r’ ‘z_utils.r’ ‘z_validate.r’ ‘plot_function.r’ ‘summary_function.r’ ‘data_desc.r’ ‘zzz.r’
URL https://sooyongl.github.io/flps/
NeedsCompilation no
Author Sooyong Lee [aut, cre],
 Adam Sales [aut],
 Hyeon-Ah Kang [aut],
 Tiffany Whittaker [aut]
Maintainer Sooyong Lee <sooyong109@gmail.com>
Repository CRAN
Date/Publication 2024-04-21 21:22:38 UTC
Description

The FLPS package conducts Bayesian analysis for fully latent principal stratification via rstan.

PACKAGE

Details

The 'flps' package.

Author(s)

Soooyong Lee <sooyongl09@gmail.com>

References

Description

A data set containing binary items information. Example data regenerated from CTA1

Usage

binary

Format

A data frame with variables:

- `schid` School ID
- `id` Student ID
- `sex` 0 = boys; 1 = girls
- `race` 0 = White; 1 = Others
- `pretest` Pre test scores
- `stdscore` Standardized scores
- `cm_sex` Cluster-mean of sex
- `cm_race` Cluster-mean of race
- `cm_pretest` Cluster-mean of Pre test scores
- `cm_stdscore` Cluster-mean of Standardized scores
- `trt` Treatment assignment; 0 = control, 1 = treatment
- `Y` Outcome
- `q1` Binary item
- `q2` Binary item
- `q3` Binary item
- `q4` Binary item
- `q5` Binary item
- `q6` Binary item
- `q7` Binary item
- `q8` Binary item
- `q9` Binary item
- `q10` Binary item
- `q11` Binary item
- `q12` Binary item
- `q13` Binary item
Source

CTA1

Examples

data(binary)
summary(binary)

Description

A data set containing continuous items information. Example data regenerated from CTA1

Usage

continuous

Format

A data frame with variables:

schid School ID
id Student ID
sex 0 = boys; 1 = girls
race 0 = White; 1 = Others
pretest Pre test scores
stdscore Standardized scores
cm_sex Cluster-mean of sex
cm_race Cluster-mean of race
cm_pretest Cluster-mean of Pre test scores
cm_stdscore Cluster-mean of of Standardized scores
trt Treatment assignment; 0 = control, 1 = treatment
Y Outcome
q1 Continuous item
q2 Continuous item
q3 Continuous item
q4 Continuous item
q5 Continuous item
q6 Continuous item
q7 Continuous item
q8 Continuous item
q9 Continuous item
q10 Continuous item
q11 Continuous item
q12 Continuous item
q13 Continuous item
q14 Continuous item
q15 Continuous item
q16 Continuous item
q17 Continuous item
q18 Continuous item
q19 Continuous item
q20 Continuous item

Source
CTA1

Examples
data(continuous)
summary(continuous)

Description
A generated data set for rasch FLPS to mimic CTA1 data.

Usage
example0
Format

A data frame with variables:

Y Outcome
trt Treatment assignment; 0 = control, 1 = treatment
sex 0 = boys; 1 = girls
race 0 = White; 1 = Others
pretest Pre test scores
stdscore Standardized scores
V1 Binary item
V2 Binary item
V3 Binary item
V4 Binary item
V5 Binary item
V6 Binary item
V7 Binary item
V8 Binary item
V9 Binary item
V10 Binary item
V11 Binary item
V12 Binary item

Description

A generated data set containing binary items information.

Usage

example1

dataframe

Format

A data frame with variables:

Y Outcome
trt Treatment assignment; 0 = control, 1 = treatment
X1 Continuous covariate 1
X2 Continuous covariate 2

example1

example1.rda
Description

A generated data set containing continuous items information.

Usage

example2

Format

A data frame with variables:

Y Outcome
trt Treatment assignment; 0 = control, 1 = treatment
X1 Continuous covariate 1
X2 Continuous covariate 2
q1 Continuous item
q2 Continuous item
q3 Continuous item
q4 Continuous item
q5 Continuous item
q6 Continuous item
q7 Continuous item
q8 Continuous item
q9 Continuous item
q10 Continuous item
A generated data set for multidimensional FLPS.

Usage

example3

Format

A data frame with variables:

Y Outcome
Z Treatment assignment: 0 = control, 1 = treatment
X1 Continuous covariate 1
X2 Continuous covariate 2
X3 Continuous covariate 2
X4 Continuous covariate 2
V1 Continuous item
V2 Continuous item
V3 Continuous item
V4 Continuous item
V5 Continuous item
V6 Continuous item
V7 Continuous item
V8 Continuous item
V9 Continuous item
V10 Continuous item
V11 Continuous item
V12 Continuous item
flps_plot
Make plots related to FLPS models

Description
Make plots related to FLPS models

Usage

```r
flps_plot(object, type = "causal", ...)
```

Arguments
- `object`: a `flps` object
- `type`: a character indicating the type of plots
- ... Additional features related to plots

Value
A `ggplot` object that can be further customized using the `ggplot2` package.

graded
graded.rda

Description
A data set containing graded response items information. Example data regenerated from CTA1

Usage

```r
graded
```

Format
A data frame with variables:
- `schid`: School ID
- `id`: Student ID
- `sex`: 0 = boys; 1 = girls
- `race`: 0 = White; 1 = Others
- `pretest`: Pre test scores
- `stdscore`: Standardized scores
- `cm_sex`: Cluster-mean of sex
cm_race Cluster-mean of race
cm_pretest Cluster-mean of Pre test scores
cm_stdscore Cluster-mean of Standardized scores
trt Treatment assignment; 0 = control, 1 = treatment
Y Outcome
q1 Graded response item
q2 Graded response item
q3 Graded response item
q4 Graded response item
q5 Graded response item
q6 Graded response item
q7 Graded response item
q8 Graded response item
q9 Graded response item
q10 Graded response item
q11 Graded response item
q12 Graded response item
q13 Graded response item
q14 Graded response item
q15 Graded response item
q16 Graded response item
q17 Graded response item
q18 Graded response item
q19 Graded response item
q20 Graded response item

Source

CTA1

Examples

data(graded)
summary(graded)
importModel

Import compiled Stan object

Usage

`importModel(lv_type, multilevel = FALSE, lv_randomeffect = FALSE)`

Arguments

- `lv_type`: a character indicating the type of FLPS model.
- `multilevel`: a logical indicating multilevel Stan model.
- `lv_randomeffect`: A logical indicating whether to estimate random effects for latent variables.

Value

A Stan compiled stanmodel object generated by `modelBuilder`

makeInpData

Generate a matrix style data for simulation

Description

`makeInpData` is a function for generating a data based on the given information.

Usage

`makeInpData(N, R2Y, R2eta, omega, tau0, tau1, betaL, betaY, linear = TRUE, ydist = "n", lambda, nitem, nfac = 1,`
makeInpData

lvmodel,
f covmat,
item.missing = TRUE,
misspec = FALSE,
cov.res = 0,
relsize = 0.6
)

Arguments

N
 a numeric indicating sample size.
R2Y
 a numeric indicating predictive power of covariates.
R2eta
 a numeric indicating Predictive power of latent variable
omega
 a numeric indicating the size of effect of latent factor on the outcome.
tau0
 a numeric indicating the size of difference in the outcome between the treatment and the control.
tau1
 a numeric indicating the principal effect
betaL
 a numeric vector indicating the effects of covariates on the latent factor
betaY
 a numeric vector indicating the effects of covariates on the outcome
linear
 a logical whether the relationship between the outcome and covariates is linear (default is TRUE).
ydist
 a character indicating the outcome distribution (default is n).
lambda
 a numeric indicating the mean of Worked problems/person. (extent to which covariates predict eta).
nitem
 a numeric indicating the number of maximum measurement items given to students.
nfac
 a numeric indicating the number of latent factors
dlmodel
 a character specifying a type of latent variable model.
f covmat
 a matrix indicating the variance-covariance matrix of latent factors when nfac > 1
item.missing
 a logical to make the measurement item data missing for the control group (default is TRUE).
misspec
 a logical to allow cross-loadings across latent factors when nfac > 1 (default is FALSE).
cov.res
 a logical to allow for residual correlations (only for CFA model) (default is 0).
relsize
 a numeric indicating the degree to which the latent factor explain the variances of continuous items (only for CFA model) (default is 0.6).

Value

a list containing all the data related to population values and running FLPS.
Examples

```r
sdat <- makeInpData(
  N = 200, # sample size
  R2Y = 0.2, # r^2 of outcome
  R2eta = 0.5, # r^2 of eta by one covariates
  omega = 0.2, # the effect of eta
  tau0 = 0.13, # direct effect
  tau1 = -0.06, # interaction effect between Z and eta
  betaL = 0.2,
  betaY = 0.4,
  lambda = 0.8, # the proportion of administered items
  nitem = 10, # the total number of items
  nfac = 1, # the number of latent factors
  lvmodel = '2pl'
)
```

Description

`makeInpData` is a function for generating a data based on the given information.

Usage

```r
makeSimData(  
  N,  
  R2Y,  
  R2eta,  
  omega,  
  tau0,  
  tau1,  
  betaL,  
  betaY,  
  linear = TRUE,  
  ydist = "n",  
  lambda,  
  nitem,  
  nfac,  
  lvmodel,  
  fcovmat,  
  item.missing = TRUE,  
  misspec = FALSE,  
  cov.res = 0,  
  relsize = 0.6  
)
```
Arguments

N a numeric indicating sample size.
R2Y a numeric indicating predictive power of covariates.
R2eta a numeric indicating Predictive power of latent variable
omega a numeric indicating the size of effect of latent factor on the outcome.
tau0 a numeric indicating the size of difference in the outcome between the treatment and the control.
tau1 a numeric indicating the principal effect
betaL a numeric vector indicating the effects of covariates on the latent factor
betaY a numeric vector indicating the effects of covariates on the outcome
linear a logical whether the relationship between the outcome and covariates is linear (default is TRUE).
ydist a character indicating the outcome distribution (default is n).
lambda a numeric indicating the mean of Worked problems/person. (extent to which covariates predict eta).
nitem a numeric indicating the number of maximum measurement items given to students.
nfac a numeric indicating the number of latent factors
lvmodel a character specifying a type of latent variable model.
fcovmat a matrix indicating the variance-covariance matrix of latent factors when nfac > 1
item.missing a logical to make the measurement item data missing for the control group (default is TRUE).
misspec a logical to allow cross-loadings across latent factors when nfac > 1 (default is FALSE).
cov.res a logical to allow for residual correlations (only for CFA model) (default is 0).
relsize a numeric indicating the degree to which the latent factor explain the variances of continuous items (only for CFA model) (default is 0.6).

Value

a list containing all the data related to population values and running FLPS.

Examples

sd <- makeSimData(
 N = 200, # sample size
 R2Y = 0.2, # r^2 of outcome
 R2eta = 0.5, # r^2 of eta by one covariates
 omega = 0.2, # the effect of eta
 tau0 = 0.13, # direct effect
 tau1 = -0.06, # interaction effect between Z and eta
 betaL = 0.2,
 betaY = 0.4,
modelBuilder

Generate compiled Stan object to facilitate the analysis

Description
Generate compiled Stan object to facilitate the analysis

Usage
modelNameBuilder(lv_type, multilevel = FALSE, lv_randomeffect = FALSE)

Arguments
lv_type A character string specifying the type of FLPS model
multilevel a logical indicating multilevel Stan model.
lv_randomeffect A logical indicating whether to estimate random effects for latent variables.

Value
There’s no return, but the compiled objects are saved in the package root directory.

plot.flps

Plot

Description
Plot

Usage
S3 method for class 'flps'
plot(x, type = NULL, pars = c("tau0", "tau1"), ...)

Arguments
x an object of class flps
type a string for the type of plot
pars a character vector indicating the target parameters
... additional options for stan_plot
Value

A `ggplot` object that can be further customized using the `ggplot2` package.

print.flps

Print results

Description

Print results

Usage

```r
## S3 method for class 'flps'
print(x, ...)
```

Arguments

- **x**: an object of class `flps`
- **...**: additional options for future development

Value

Summary of FLPS model are printed.

print.summary.flps

Print summary of results

Description

Print summary of results

Usage

```r
## S3 method for class 'summary.flps'
print(x, type = "structures", ...)
```

Arguments

- **x**: an object of class `flps`
- **type**: a string for the part of FLPS model
 - `structures`: prints the results of structural parts.
 - `measurement`: prints the results of measurement parts.
 - `latent`: prints the information of individual latent scores
 - `raw`: prints the results via the `summary` function of `rstan` package.
- **...**: additional options for future development
Value

Summary of FLPS model are printed.

Description

Conduct fully latent principal stratification

Usage

runFLPS(
 inp_data = NULL,
 compiled_stan = NULL,
 outcome = NULL,
 trt = NULL,
 covariate = NULL,
 lv_model = NULL,
 lv_type = NULL,
 priors_input = NULL,
 stan_options = list(),
 ...
)

Arguments

inp_data A matrix or data frame containing the input data.
compiled_stan An object of S4 class stanmodel produced by the modelBuilder function.
outcome A character string specifying the outcome variable’s name.
trt A character string specifying the treatment or control group variable’s name.
covariate A character string specifying the covariate variable names.
lv_model A description of the latent variable model using syntax akin to the lavaan package. Key operators include:
 • =~ Denotes associations between factors and indicators (e.g., F1 =~ v1 + v2 + v3). All indicators associated with the corresponding factor should be written in the same line with +.
 • + : Specifies a series of indicators.
lv_type A character string indicating the type of latent variable models.
priors_input A list specifying the priors or defaults to N(0, 5) if not provided. Relevant parameters: tau0 (group difference), tau1 (principal effects), and omega (effect of latent factors on outcome). Ensure that the lengths of tau1 and omega match the number of factors. Examples:
• list(tau0 = c(0, 1), tau1 = c(0.5, 1)): Mean and variance for normal priors.
• list(tau1 = list(c(0.5, 1), c(-0.4, 1))): For two factors.

stan_options A list of options for [rstan::stan()], specified as 'name = value'.

Additional parameters for the latent variable models
• nclass A number specifying the number of latent classes.
• multilevel A logical indicating if a multilevel structure is present.
• lv_randomeffect A logical indicating whether to estimate random effects for latent variables.
• group_id A string for grouping variable for multilevel structure.

Value
An object of class flps encompassing a stanfit object. Components include:
call Function call with arguments.
inp_data The input data frame provided.
flps_model The Stan syntax used in [rstan::stan()].
flps_data Data list used for [rstan::stan()].
flps_fit Resulting stanfit object.
time A numeric; Time taken for computation

See Also
[rstan::stan()]

Examples

inp_data <- flps::makeInpData(
 N = 200,
 R2Y = 0.2,
 R2eta = 0.5,
 omega = 0.2,
 tau0 = 0.23,
 tau1 = -0.16,
 betaL = 0.1,
 betaY = 0.2,
 lambda = 0.8,
 nitem = 10,
 nfac = 1,
 lvmodel = 'rasch')

res <- runFLPS(
 inp_data = inp_data,
 outcome = "Y",
 trt = "Z",
 covariate = c("X1"),
lv_type = "rasch",
lv_model = "F =~ v1 + v2 + v3 + v4 + v5 + v6 + v7 + v8 + v9 + v10",
stan_options = list(iter = 1000, warmup = 500, cores = 1, chains = 2)
)

summary.flps

Summarize the results

Description
Summarize the results

Usage
S3 method for class 'flps'
summary(object, type = "structures", ...)

Arguments

object an object of class flps

 type a string for the part of FLPS model

 • structures: prints the results of structural parts.
 • measurement: prints the results of measurement parts.
 • latent: prints the information of individual latent scores
 • raw: prints the results via the summary function of rstan package.

... additional options for future development

Value
Summary of FLPS model are printed.
Index

* datasets
 binary, 3
 continuous, 4
 example0, 5
 example1, 6
 example2, 7
 example3, 8
 graded, 9
* package
 flps-package, 2
* rstan
 runFLPS, 17

binary, 3
continuous, 4
example0, 5
example1, 6
example2, 7
example3, 8
flps, 9, 15, 16, 19
flps (flps-package), 2
flps-package, 2
flps_plot, 9
ggplot, 9, 16
graded, 9
importModel, 11
makeInpData, 11, 13
makeSimData, 13
modelBuilder, 15
plot.flps, 15
print.flps, 16
print.summary.flps, 16
runFLPS, 17
stanfit, 18
summary.flps, 19