
Package ‘fiery’
September 27, 2019

Type Package

Title A Lightweight and Flexible Web Framework

Version 1.1.2

Maintainer Thomas Lin Pedersen <thomasp85@gmail.com>

Description A very flexible framework for building server side logic in R. The
framework is unopinionated when it comes to how HTTP requests and WebSocket
messages are handled and supports all levels of app complexity; from serving
static content to full-blown dynamic web-apps. Fiery does not hold your hand
as much as e.g. the shiny package does, but instead sets you free to create
your web app the way you want.

License MIT + file LICENSE

Encoding UTF-8

Imports R6, assertthat, httpuv, uuid, utils, stringi, future, later,
stats, reqres, glue, crayon

Collate 'loggers.R' 'aaa.R' 'HandlerStack.R' 'Fire.R' 'FutureStack.R'
'fake_request.R' 'fiery-package.R'

RoxygenNote 6.1.1

Suggests testthat, covr, knitr, rmarkdown

URL https://fiery.data-imaginist.com,

https://github.com/thomasp85/fiery

BugReports https://github.com/thomasp85/fiery/issues

VignetteBuilder knitr

NeedsCompilation no

Author Thomas Lin Pedersen [cre, aut]
(<https://orcid.org/0000-0002-5147-4711>)

Repository CRAN

Date/Publication 2019-09-27 06:50:03 UTC

1

https://fiery.data-imaginist.com
https://github.com/thomasp85/fiery
https://github.com/thomasp85/fiery/issues

2 fiery-package

R topics documented:

fiery-package . 2
Fire . 3
loggers . 6
random_port . 9

Index 10

fiery-package fiery: A Lightweight and Flexible Web Framework

Description

A very flexible framework for building server side logic in R. The framework is unopinionated when
it comes to how HTTP requests and WebSocket messages are handled and supports all levels of app
complexity; from serving static content to full-blown dynamic web-apps. Fiery does not hold your
hand as much as e.g. the shiny package does, but instead sets you free to create your web app the
way you want.

Details

fiery is a lightweight and flexible framework for web servers build on top of the httpuv package.
The framework is largely event-based, letting the developer attach handlers to life-cycle events as
well as defining and triggering their own events. This approach to development is common in
JavaScript, but might feel foreign to R developers. Thankfully it is a rather simple concept that
should be easy to gradually begin to use to greater and greater effect.

Author(s)

Maintainer: Thomas Lin Pedersen <thomasp85@gmail.com> (0000-0002-5147-4711)

See Also

Useful links:

• https://github.com/thomasp85/fiery

• Report bugs at https://github.com/thomasp85/fiery/issues

https://github.com/thomasp85/fiery
https://github.com/thomasp85/fiery/issues

Fire 3

Fire Generate a New App Object

Description

The Fire generator creates a new Fire-object, which is the class containing all the app logic. The
class is based on the R6 OO-system and is thus reference-based with methods and data attached to
each object, in contrast to the more well known S3 and S4 systems. A fiery server is event driven,
which means that it is build up and manipulated by adding event handlers and triggering events. To
learn more about the fiery event model, read the event vignette. fiery servers can be modified
directly or by attaching plugins. As with events, plugins has its own vignette.

Initialization

A new ’Fire’-object is initialized using the new() method on the generator:

Usage

app <- Fire$new(host = ’127.0.0.1’, port = 8080L)

Arguments

host A string overriding the default host (see the Fields section below)
port An integer overriding the default port (see the Fields section below)

Copying

As Fire objects are using reference semantics new copies of an app cannot be made simply be
assigning it to a new variable. If a true copy of a Fire object is desired, use the clone() method.

Fields

host A string giving a valid IPv4 address owned by the server, or '0.0.0.0' to listen on all
addresses. The default is '127.0.0.1'

port An integer giving the port number the server should listen on (defaults to 8080L)

refresh_rate The interval in seconds between run cycles when running a blocking server (de-
faults to 0.001)

refresh_rate_nb The interval in seconds between run cycles when running a non-bocking server
(defaults to 1)

trigger_dir A valid folder where trigger files can be put when running a blocking server (defaults
to NULL)

plugins A named list of the already attached plugins. Static - can only be modified using the
attach() method.

root The location of the app. Setting this will remove the root value from requests (or decline them
with 400 if the request does not match the root). E.g. the path of a request will be changed
from /demo/test to /test if root == '/demo'

https://fiery.data-imaginist.com/articles/events.html
https://fiery.data-imaginist.com/articles/plugins.html

4 Fire

access_log_format A glue string defining how requests will be logged. For standard formats see
common_log_format and combined_log_format. Defaults to the Common Log Format

Methods

ignite(block = TRUE, showcase = FALSE, ...) Begins the server, either blocking the console if
block = TRUE or not. If showcase = TRUE a browser window is opened directing at the server
address. ... will be redirected to the start handler(s)

start(block = TRUE, showcase = FALSE, ...) A less dramatic synonym of for ignite()

reignite(block = TRUE, showcase = FALSE, ...) As ignite but additionally triggers the resume
event after the start event

resume(block = TRUE, showcase = FALSE, ...) Another less dramatic synonym, this time for
reignite()

extinguish() Stops a running server

stop() Boring synonym for extinguish()

is_running() Check if the server is currently running

on(event, handler, pos = NULL) Add a handler function to to an event at the given position
(pos) in the handler stack. Returns a string uniquely identifying the handler. See the event
vignette for more information.

off(handlerId) Remove the handler tied to the given id

trigger(event, ...) Triggers an event passing the additional arguments to the potential han-
dlers

send(message, id) Sends a websocket message to the client with the given id, or to all connected
clients if id is missing

log(event, message, request, ...) Send a message to the logger. The event defines the type
of message you are passing on, while request is the related Request object if applicable.

close_ws_con(id) Closes the websocket connection started from the client with the given id,
firing the websocket-closed event

attach(plugin, ..., force = FALSE) Attaches a plugin to the server. See the plugin vignette
for more information. Plugins can only get attached once unless force = TRUE

has_plugin(name) Check whether a plugin with the given name has been attached

header(name, value) Add a global header to the server that will be set on all responses. Remove
by setting value = NULL

set_data(name, value) Adds data to the servers internal data store

get_data(name) Extracts data from the internal data store

remove_data(name) Removes the data with the given name from the internal data store

time(expr, then, after, loop = FALSE) Add a timed evaluation (expr) that will be evaluated
after the given number of seconds (after), potentially repeating if loop = TRUE. After the
expression has evaluated the then function will get called with the result of the expression
and the server object as arguments.

remove_time(id) Removes the timed evaluation identified by the id (returned when adding the
evaluation)

https://fiery.data-imaginist.com/articles/events.html
https://fiery.data-imaginist.com/articles/events.html
https://fiery.data-imaginist.com/articles/plugins.html

Fire 5

delay(expr, then) Similar to time(), except the expr is evaluated immediately at the end of the
loop cycle (see here for detailed explanation of delayed evaluation in fiery).

remove_delay(id) Removes the delayed evaluation identified by the id

async(expr, then) As delay() and time() except the expression is evaluated asynchronously.
The progress of evaluation is checked at the end of each loop cycle

remove_async(id) Removes the async evaluation identified by the id. The evaluation is not nec-
essarily stopped but the then function will not get called.

set_client_id_converter(converter) Sets the function that converts an HTTP request into a
specific client id

set_logger(logger) Sets the function that takes care of logging

set_client_id_converter(converter) Sets the function that converts an HTTP request into a
specific client id

clone() Create a copy of the full Fire object and return that

Examples

Create a New App
app <- Fire$new(port = 4689)

Setup the data every time it starts
app$on('start', function(server, ...) {

server$set_data('visits', 0)
server$set_data('cycles', 0)

})

Count the number of cycles
app$on('cycle-start', function(server, ...) {

server$set_data('cycles', server$get_data('cycles') + 1)
})

Count the number of requests
app$on('before-request', function(server, ...) {

server$set_data('visits', server$get_data('visits') + 1)
})

Handle requests
app$on('request', function(server, ...) {

list(
status = 200L,
headers = list('Content-Type' = 'text/html'),
body = paste('This is indeed a test. You are number', server$get_data('visits'))

)
})

Show number of requests in the console
app$on('after-request', function(server, ...) {

message(server$get_data('visits'))
flush.console()

})

https://fiery.data-imaginist.com/articles/delayed.html

6 loggers

Terminate the server after 300 cycles
app$on('cycle-end', function(server, ...) {

if (server$get_data('cycles') > 300) {
message('Ending...')
flush.console()
server$extinguish()

}
})

Be polite
app$on('end', function(server) {

message('Goodbye')
flush.console()

})

Not run:
app$ignite(showcase = TRUE)

End(Not run)

loggers App Logging

Description

fiery has a build in logging mechanism that lets you capture event information however you like.
Every user-injested warnings and errors are automatically captured by the logger along with most
system errors as well. fiery tries very hard not to break due to faulty app logic. This means that
any event handler error will be converted to an error log without fiery stopping. In the case of
request handlers a 500L response will be send back if any error is encountered.

Usage

logger_null()

logger_console(format = "{time} - {event}: {message}")

logger_file(file, format = "{time} - {event}: {message}")

logger_switch(..., default = logger_null())

common_log_format

combined_log_format

loggers 7

Arguments

format A glue string specifying the format of the log entry

file A file or connection to write to

... A named list of loggers to use for different events. The same semantics as switch
is used so it is possible to let events fall through e.g. logger_switch(error
=,warning = logger_file('errors.log')).

default A catch-all logger for use with events not defined in ...

Format

An object of class character of length 1.

Setting a logger

By default, fiery uses logger_null() which forwards warning and error messages to stderr()
and ignores any other logging events. To change this behavior, set a different logger using the
set_logger() method:

app$set_logger(logger)

where logger is a function taking at least the following arguments: event, message, request,
time, and

fiery comes with some additional loggers, which either writes all logs to a file or to the console.
A new instance of the file logger can be created with logger_file(file):

app$set_logger(logger_file('fiery_log.log'))

A new instance of the console logger can be create with logger_console():

app$set_logger(logger_console())

Both functions takes a format a argument that lets you customise how the log is written. Fur-
thermore the console logger will style the logs with colour coding depending on the content if the
console supports it.

As a last possibility it is possible to use different loggers dependent on the event by using the switch
logger:

app$set_logger(logger_switch(warning =,
error = logger_file('errors.log),
default = logger_file('info.log')))

Automatic logs

fiery logs a number of different information by itself describing its operations during run. The
following events are send to the log:

start Will be send when the server starts up

8 loggers

resume Will be send when the server is resumed

stop Will be send when the server stops

request Will be send when a request has been handled. The message will contain information about
how long time it took to handle the request or if it was denied.

websocket Will be send every time a WebSocket connection is established or closed as well as when
a message is received or send

message Will be send every time a message is emitted by an event handler or delayed execution
handler

warning Will be send everytime a warning is emitted by an event handler or delayed execution
handler

error Will be send everytime an error is signaled by an event handler or delayed execution handler.
In addition some internal functions will also emit error event when exceptions are encountered

By default only message, warning and error events will be logged by sending them to the error
stream as a message().

Access Logs

Of particular interest are logs that detail requests made to the server. These are the request events
detailed above. There are different standards for how requests are logged. fiery uses the Common
Log Format by default, but this can be modified by setting the access_log_format field to a glue
expression that has access to the following variables:

start_time The time the request was recieved

end_time The time the response was send back

request The Request object

response The Response object

id The client id

To change the format:

app$access_log_format <- combined_log_format

Custom logs

Apart from the standard logs described above it is also possible to send messages to the log as you
please, e.g. inside event handlers. This is done through the log() method where you at the very
least specify an event and a message. In general it is better to send messages through log() rather
than with warning() and stop() even though the latters will eventually be caught, as it gives you
more control over the logging and what should happen in the case of an exception.

An example of using log() in a handler could be:

app$on('header', function(server, id, request) {
server$log('info', paste0('request from ', id, ' received'), request)

})

Which would log the timepoint the headers of a request has been recieved.

random_port 9

random_port Select a random safe port

Description

This is a small utility function to get random safe ports to run your application on. It chooses a port
within the range that cannot be registeret to IANA and thus is safe to assume are not in use.

Usage

random_port()

Value

An integer in the range 49152-65535

Examples

random_port()

Index

∗Topic datasets
Fire, 3
loggers, 6

combined_log_format, 4
combined_log_format (loggers), 6
common_log_format, 4
common_log_format (loggers), 6

fiery (fiery-package), 2
fiery-package, 2
Fire, 3

glue, 4, 7, 8

httpuv, 2

logger_console (loggers), 6
logger_file (loggers), 6
logger_null (loggers), 6
logger_switch (loggers), 6
loggers, 6
logging (loggers), 6

message(), 8

R6, 3
random_port, 9

switch, 7

10

	fiery-package
	Fire
	loggers
	random_port
	Index

