Package ‘ferrn’

August 6, 2022

Title Facilitate Exploration of touRR optimisation

Version 0.0.2

Description Diagnostic plots for optimisation, with a focus on projection pursuit. These show paths the optimiser takes in the high-dimensional space in multiple ways: by reducing the dimension using principal component analysis, and also using the tour to show the path on the high-dimensional space. Several botanical colour palettes are included, reflecting the name of the package. A paper describing the methodology can be found at <https://journal.r-project.org/archive/2021/RJ-2021-105/index.html>.

License MIT + file LICENSE

Encoding UTF-8

LazyData true

URL https://github.com/huizezhang-sherry/ferrn/

BugReports https://github.com/huizezhang-sherry/ferrn/issues

Imports rlang (>= 0.1.2), dplyr, magrittr, scales, gganimate, ggplot2, tibble, purrr, geozoo, tourr, stringr, ggrepel, ggforce, tidyr

RoxygenNote 7.2.0

Depends R (>= 2.10)

Suggests roxygen2, covr, pkgdown, testthat, forcats, patchwork

Language en-GB

NeedsCompilation no

Author H. Sherry Zhang [aut, cre] (<https://orcid.org/0000-0002-7122-1463>), Dianne Cook [aut] (<https://orcid.org/0000-0002-3813-7155>), Ursula Laa [aut] (<https://orcid.org/0000-0002-0249-6439>), Nicolas Langrené [aut] (<https://orcid.org/0000-0001-7601-4618>), Patricia Menéndez [aut] (<https://orcid.org/0000-0003-0701-6315>)

Maintainer H. Sherry Zhang <huize.zhang@monash.edu>

Repository CRAN

Date/Publication 2022-08-06 13:50:02 UTC
R topics documented:

add_anchor ... 3
add_anno ... 3
add_dir_search .. 4
add_end ... 5
add_interp ... 5
add_interp_last .. 6
add_interrupt ... 7
add_search ... 8
add_space ... 9
add_start ... 10
add_theo ... 11
bind_random .. 12
bind_random_matrix ... 12
bind_theoretical .. 13
botanical_palettes .. 14
clean_method .. 15
explore_space_pca .. 15
explore_space_tour .. 17
explore_trace_interp .. 18
explore_trace_search .. 19
format_label .. 20
get_anchor ... 21
get_basis_matrix ... 21
get_best ... 22
get_dir_search ... 23
get_interp ... 23
get_interp_last ... 24
get_interrupt ... 25
get_search ... 26
get_search_count ... 26
get_space_param ... 27
get_start ... 28
get_theo ... 28
holes_1d_geo ... 29
scale_color_continuous_botanical .. 31
theme_fern ... 32

Index 33
add_anchor

A ggproto for drawing anchor points

Description
This is a wrapper function used by explore_space_pca() and should be called directly by the user.

Usage
add_anchor(dt, anchor_size = 3, anchor_alpha = 0.5, anchor_color = NULL, ...)

Arguments
- **dt**: A data object from the running the optimisation algorithm in guided tour.
- **anchor_size**: numeric; the size of the anchor points.
- **anchor_alpha**: numeric; the alpha of the anchor points.
- **anchor_color**: the variable to be coloured by.
- **...**: other aesthetics inherent from explore_space_pca().

Value
a wrapper for drawing anchor points in explore_space_pca().

See Also
Other draw functions: add_anno(), add_dir_search(), add_end(), add_interp_last(), add_interp(), add_interrupt(), add_search(), add_space(), add_start(), add_theo().

add_anno

A ggproto for annotating the symmetry of the starting points

Description
This is a wrapper function used by explore_space_pca() and should be called directly by the user.

Usage
add_anno(dt, anno_color = "black", anno_lty = "dashed", anno_alpha = 0.1, ...)
add_dir_search

Arguments
- **dt** A data object from the running the optimisation algorithm in guided tour
- **anno_color** character; the colour of the annotation line
- **anno_lty** character; the linetype of the annotation line
- **anno_alpha** numeric; the alpha of the annotation line
- ... other aesthetics inherent from `explore_space_pca()`

Value
- a wrapper for annotating the symmetry of start points in `explore_space_pca()`

See Also
- Other draw functions: `add_anchor()`, `add_dir_search()`, `add_end()`, `add_interp_last()`, `add_interp()`, `add_interrupt()`, `add_search()`, `add_space()`, `add_start()`, `add_theo()`

add_dir_search

A ggproto for drawing directional search points

Description

This is a wrapper function used by `explore_space_pca()` and should be called directly by the user.

Usage

`add_dir_search(dt, dir_size = 0.5, dir_alpha = 0.5, dir_color = NULL, ...)`

Arguments
- **dt** A data object from the running the optimisation algorithm in guided tour
- **dir_size** numeric; the size of the directional search points in pseudo derivative search
- **dir_alpha** numeric; the alpha of the directional search points in pseudo derivative search
- **dir_color** the variable to be coloured by
- ... other aesthetics inherent from `explore_space_pca()`

Value
- a wrapper for drawing directional search points (used in pseudo derivative search) with buffer in `explore_space_pca()`

See Also
- Other draw functions: `add_anchor()`, `add_anno()`, `add_end()`, `add_interp_last()`, `add_interp()`, `add_interrupt()`, `add_search()`, `add_space()`, `add_start()`, `add_theo()`
add_end

A ggproto for drawing start points

Description

This is a wrapper function used by `explore_space_pca()` and should be called directly by the user.

Usage

```r
add_end(dt, end_size = 5, end_alpha = 1, end_color = NULL, ...)
```

Arguments

- `dt`: A data object from the running the optimisation algorithm in guided tour
- `end_size`: numeric; the size of the end point
- `end_alpha`: numeric; the alpha of the end point
- `end_color`: the variable to be coloured by
- `...`: other aesthetics inherent from `explore_space_pca()`

Value

A wrapper for drawing end points in `explore_space_pca()`

See Also

Other draw functions: `add_anchor()`, `add_anno()`, `add_dir_search()`, `add_interp_last()`, `add_interp()`, `add_interrupt()`, `add_search()`, `add_space()`, `add_start()`, `add_theo()`

add_interp

A ggproto for drawing interpolation path

Description

This is a wrapper function used by `explore_space_pca()` and should be called directly by the user.

Usage

```r
add_interp(
  dt,
  interp_size = 1.5,
  interp_alpha = NULL,
  interp_color = NULL,
  interp_group = NULL,
  ...
)
```
add_interp_last

Arguments

- **dt**: A data object from the running the optimisation algorithm in guided tour
- **interp_size**: numeric; the size of the interpolation path
- **interp_alpha**: numeric; the alpha of the interpolation path
- **interp_color**: the variable to be coloured by
- **interp_group**: the variable to label different interpolation path
- **...**: other aesthetics inherent from explore_space_pca()

Value

A wrapper for drawing the interpolation points in explore_space_pca()

See Also

Other draw functions: `add_anchor()`, `add_anno()`, `add_dir_search()`, `add_end()`, `add_interp_last()`, `add_interrupt()`, `add_search()`, `add_space()`, `add_start()`, `add_theo()`

add_interp_last

A ggproto for drawing finish points

Description

This is a wrapper function used by explore_space_pca() and should be called directly by the user

Usage

```r
add_interp_last(
  dt,
  interp_last_size = 3,
  interp_last_alpha = 1,
  interp_last_color = NULL,
  ...
)
```

Arguments

- **dt**: A data object from the running the optimisation algorithm in guided tour
- **interp_last_size**: numeric; the size of the last interpolation points in each iteration
- **interp_last_alpha**: numeric; the alpha of the last interpolation points in each iteration
- **interp_last_color**: the variable to be coloured by
- **...**: other aesthetics inherent from explore_space_pca()
add_interrupt

Value

a wrapper for drawing the last interpolation points of each iteration in explore_space_pca()

See Also

Other draw functions: add_anchor(), add_anno(), add_dir_search(), add_end(), add_interp(), add_interrupt(), add_search(), add_space(), add_start(), add_theo()

add_interrupt

A ggproto for annotating the interrupted path

Description

This is a wrapper function used by explore_space_pca() and should be be called directly by the user

Usage

add_interrupt(
 dt,
 interrupt_size = 0.5,
 interrupt_alpha = NULL,
 interrupt_color = NULL,
 interrupt_group = NULL,
 interrupt_linetype = "dashed",
 ...
)

Arguments

dt A data object from the running the optimisation algorithm in guided tour
interrupt_size numeric; the size of the interruption path
interrupt_alpha numeric; the alpha of the interruption path
interrupt_color the variable to be coloured by
interrupt_group the variable to label different interruption
interrupt_linetype character; the linetype to annotate the interruption
...

other aesthetics inherent from explore_space_pca()

Value

a wrapper for annotating the interruption in explore_space_pca()
See Also

Other draw functions: add_anchor(), add_anno(), add_dir_search(), add_end(), add_interp_last(), add_interp(), add_search(), add_space(), add_start(), add_theo()
Description

This is a wrapper function used by `explore_space_pca()` and should be called directly by the user.

Usage

```r
add.space(
    dt,
    space_alpha = 0.5,
    space_fill = "grey92",
    space_color = "white",
    cent_size = 1,
    cent_alpha = 1,
    cent_color = "black",
    ...
)
```

Arguments

- **dt**
 A data object from the running the optimisation algorithm in guided tour
- **space_alpha**
 numeric; the alpha of the basis space
- **space_fill**
 character; the colour of the space filling
- **space_color**
 character; the colour of the space brim
- **cent_size**
 numeric; the size of the centre point
- **cent_alpha**
 numeric; an alpha of the centre point
- **cent_color**
 character; the colour of the centre point
- **...**
 other aesthetics inherent from `explore_space_pca()`

Value

A wrapper for drawing the space in `explore_space_pca()`

See Also

Other draw functions: `add_anchor()`, `add_anno()`, `add_dir_search()`, `add_end()`, `add_interp_last()`, `add_interp()`, `add_interrupt()`, `add_search()`, `add_start()`, `add_theo()`
Examples

```r
library(ggplot2)
space <- tibble::tibble(x0 = 0, y0 = 0, r = 5)
ggplot() +
  add_space(space) +
  theme_void() +
  theme(aspect.ratio = 1)
```

add_start

A ggproto for drawing start points

Description

This is a wrapper function used by `explore_space_pca()` and should be called directly by the user.

Usage

```r
add_start(dt, start_size = 5, start_alpha = 1, start_color = NULL, ...)
```

Arguments

- `dt` A data object from the running the optimisation algorithm in guided tour
- `start_size` numeric; the size of start point
- `start_alpha` numeric; the alpha of start point
- `start_color` the variable to be coloured by
- `...` other aesthetics inherent from `explore_space_pca()`

Value

A wrapper for drawing start points in `explore_space_pca()`

See Also

Other draw functions: `add_anchor()`, `add_anno()`, `add_dir_search()`, `add_end()`, `add_interp_last()`, `add_interp()`, `add_interrupt()`, `add_search()`, `add_space()`, `add_theo()`

Examples

```r
library(ggplot2)
# construct the space and start df for plotting
space <- tibble::tibble(x0 = 0, y0 = 0, r = 5)
start <- holes_1d_geo %>%
  compute_pca() %>%
  purrr::pluck("aug") %>%
  clean_method() %>%
  get_start()
```
add_theo

A ggproto for drawing the theoretical basis, if applicable

Description

This is a wrapper function used by explore_space_pca() and should be called directly by the user.

Usage

add_theo(dt, theo_label = "*", theo_size = 25, theo_alpha = 0.8, ...)

Arguments

dt A data object from the running the optimisation algorithm in guided tour
deo_label character; a symbol to label the theoretical point
deo_size numeric; the size of the theoretical point
deo_alpha numeric; the alpha of the theoretical point
...
other aesthetics inherent from explore_space_pca()

Value

a wrapper for drawing theoretical points in explore_space_pca()

See Also

Other draw functions: add_anchor(), add_anno(), add_dir_search(), add_end(), add_interp_last(), add_interp(), add_interrupt(), add_search(), add_space(), add_start()
bind_random

Bind random bases in the projection bases space

Description

Given the orthonormality constraint, the projection bases live in a high dimensional hollow sphere. Generating random points on the sphere is useful to perceive the data object in the high dimensional space.

Usage

bind_random(dt, n = 500, seed = 1)

Arguments

dt
 a data object collected by the projection pursuit guided tour optimisation in the tourr package

n
 numeric; the number of random bases to generate in each dimension by geozoo

seed
 numeric; a seed for generating reproducible random bases from geozoo

Value

a tibble object containing both the searched and random bases

See Also

Other bind: bind_random_matrix(), bind_theoretical()

Examples

bind_random(holes_1d_better) %>% tail(5)

bind_random_matrix

Bind random bases in the projection bases space as a matrix

Description

Bind random bases in the projection bases space as a matrix

Usage

bind_random_matrix(basis, n = 500, front = FALSE, seed = 1)
bind_theoretical

Arguments

- `basis` (matrix returned by `get_basis_matrix()`) numeric; the number of random bases to generate in each dimension by geozoo
- `n` logical; if the random bases should be bound before or after the original bases
- `seed` numeric; a seed for generating reproducible random bases from geozoo

Value

- `matrix` a matrix containing both the searched and random bases

See Also

Other bind: `bind_random()`, `bind_theoretical()`

Examples

```r
data <- get_basis_matrix(holes_1d_geo)
bind_random_matrix(data) %>% tail(5)
```

Description

The theoretical best basis is usually known for a simulated problem. Augment this information into the data object allows for evaluating the performance of optimisation against the theory.

Usage

`bind_theoretical(dt, matrix, index, raw_data)`

Arguments

- `dt` a data object collected by the projection pursuit guided tour optimisation in the `tourr` package
- `matrix` a matrix of the theoretical basis
- `index` the index function used to calculate the index value
- `raw_data` a tibble of the original data used to calculate the index value

Value

- a tibble object containing both the searched and theoretical best bases
botanical_palettes

A customised colour palette based on Australian botanies

Description

Available colours in the palettes

Usage

botanical_palettes

botanical_pal(palette = "fern", reverse = FALSE)

Arguments

palette Colour palette from the botanical_palette
reverse logical, if the colour should be reversed

Format

An object of class list of length 5.

Value

a function for interpolating colour in the botanical palette
clean_method

Clean method names

Usage

`clean_method(dt)`

Arguments

dt: a data object

Value

a tibble with method cleaned

Examples

`head(clean_method(holes_1d_better), 5)`

explore_space_pca

Plot the PCA projection of the projection bases space

Description

The set of functions returns a primary ggplot object that plots the data object in a space reduced by PCA. `compute_pca()` computes the PCA and `explore_space_pca()` plots the bases in the PCA-projected space

Usage

```r
explore_space_pca(
  dt,
  details = FALSE,
  pca = TRUE,
  group = NULL,
  color = NULL,
  ...,  
  animate = FALSE
)
```

```r
flip_sign(dt, group = NULL, ...)
```

```r
compute_pca(dt, group = NULL, random = TRUE, flip = TRUE, ...)
```
Arguments

- `dt` a data object collected by the projection pursuit guided tour optimisation in `tourr`
- `details` logical; if components other than start, end and interpolation need to be shown
- `pca` logical; if PCA coordinates need to be computed for the data
- `group` the variable to label different runs of the optimiser(s)
- `color` the variable to be coloured by
- `...` other arguments received from `explore_space_pca()`
- `animate` logical; if the interpolation path needs to be animated
- `random` logical; if random bases from the basis space need to be added to the data
- `flip` logical; if the sign flipping need to be performed

Value

- `explore_space_pca()` a ggplot object for diagnosing the optimisers in the PCA-projected basis space
- `flip_sign()` a list containing
 - a matrix of all the bases
 - a logical value whether a flip of sign is performed
 - a dataframe of the original dataset
- `compute_pca()` a list containing
 - the PCA summary
 - a dataframe with PC coordinates augmented

See Also

Other main plot functions: `explore_space_tour()`, `explore_trace_interp()`, `explore_trace_search()`

Examples

dplyr::bind_rows(holes_1d_geo, holes_1d_better) %>%
 bind_theoretical(matrix(c(0, 1, 0, 0, 0), nrow = 5),
 index = tourr::holes(), raw_data = boa5)
explore_space_pca(group = method, details = TRUE) +
scale_color_discrete_botanical()
dplyr::bind_rows(holes_1d_geo, holes_1d_better) %>%
 flip_sign(group = method)
str(max = 1)
dplyr::bind_rows(holes_1d_geo, holes_1d_better) %>%
 compute_pca(group = method)
explore_space_tour

Plot the grand tour animation of the bases space in high dimension

Description

Plot the grand tour animation of the bases space in high dimension

Usage

explore_space_tour(...)

prep_space_tour(
 dt,
 group = NULL,
 flip = FALSE,
 color = NULL,
 rand_size = 1,
 point_size = 1.5,
 end_size = 5,
 theo_size = 3,
 theo_shape = 17,
 theo_color = "black",
 palette = botanical_palettes$fern,
 ...
)

Arguments

... other argument passed to tourr::animate_xy() and prep_space_tour()
dt a data object collected by the projection pursuit guided tour optimisation in tourr
group the variable to label different runs of the optimiser(s)
flip logical; if the sign flipping need to be performed
color the variable to be coloured by
rand_size numeric; the size of random points
point_size numeric; the size of points searched by the optimiser(s)
end_size numeric; the size of end points
theo_size numeric; the size of theoretical point(s)
theo_shape numeric; the shape symbol in the basic plot
theo_color character; the color of theoretical point(s)
palette the colour palette to be used
explore_trace_interp

Value

explore_space_tour() an animation of the search path in the high-dimensional sphere
prep_space_tour() a list containing various components needed for producing the animation

See Also

Other main plot functions: explore_space_pca(), explore_trace_interp(), explore_trace_search()

Examples

explore_space_tour(dplyr::bind_rows(holes_1d_better, holes_1d_geo),
 group = method, palette = botanical_palettes$fern[c(1, 6)]
)

explore_trace_interp Plot the trace the search progression

Description

Trace the index value of search/interpolation points in guided tour optimisation

Usage

explore_trace_interp(
 dt,
 iter = NULL,
 color = NULL,
 group = NULL,
 cutoff = 50,
 target_size = 3,
 interp_size = 1,
 accuracy_x = 5,
 accuracy_y = 0.01
)

Arguments

dt a data object collected by the projection pursuit guided tour optimisation in tourr
iter the variable to be plotted on the x-axis
color the variable to be coloured by
group the variable to label different runs of the optimiser(s)
cutoff numeric; if the number of interpolating points is smaller than cutoff, all the interpolation points will be plotted as dots
target_size numeric; the size of target points in the interpolation
explore_trace_search

interp_size numeric; the size of interpolation points
accuracy_x numeric; If the difference of two neighbour x-labels is smaller than accuracy_x, only one of them will be displayed. Used for better axis label
accuracy_y numeric; the precision of y-axis label

Value

a ggplot object for diagnosing how the index value progresses during the interpolation

See Also

Other main plot functions: explore_space_pca(), explore_space_tour(), explore_trace_search()

Examples

Compare the trace of interpolated points in two algorithms
holes_1d_better %>%
 explore_trace_interp(interp_size = 2) +
 scale_color_continuous_botanical(palette = "fern")

Description

Plot the count in each iteration

Usage

explore_trace_search(
 dt,
 iter = NULL,
 color = NULL,
 cutoff = 15,
 extend_lower = 0.95,
 ...
)

Arguments

dt a data object collected by the projection pursuit guided tour optimisation in tourr
iter the variable to be plotted on the x-axis
color the variable to be coloured by
cutoff numeric; if the number of searches in one iteration is smaller than cutoff, a point geom, rather than boxplot geom, will be used.
extend_lower a numeric for extending the y-axis to display text labels
... arguments passed into geom_label_repel() for displaying text labels
Value

a ggplot object for diagnosing how many points the optimiser(s) have searched

See Also

Other main plot functions: `explore_space_pca()`, `explore_space_tour()`, `explore_trace_interp()`

Examples

```r
# Summary plots for search points in two algorithms
library(patchwork)
library(dplyr)
library(ggplot2)
p1 <- holes_1d_better %>% explore_trace_search() +
    scale_color_continuous_botanical(palette = "fern")
p2 <- holes_2d_better_max_tries %>% explore_trace_search() +
    scale_color_continuous_botanical(palette = "daisy")
p1 / p2
```

format_label

Better label formatting to avoid overlapping

Description

Better label formatting to avoid overlapping

Usage

```r
format_label(labels, accuracy)
```

Arguments

- `labels`: a numerical vector of labels
- `accuracy`: the accuracy of the label

Value

a vector of adjusted labels

Examples

```r
format_label(c(0.87, 0.87, 0.9, 0.93, 0.95), 0.01)
format_label(c(0.87, 0.87, 0.9, 0.93, 0.95, 0.96, 0.96), 0.01)
```
get_anchor

Extract the anchor points on the geodesic path

Description

Extract the anchor points on the geodesic path

Usage

get_anchor(dt, group = NULL)

Arguments

dt a data object collected by the projection pursuit guided tour optimisation in the
tourr package

(group the variable to label different runs of the optimiser(s)

Value

a tibble object containing the target bases in each iteration

See Also

Other get functions: get_basis_matrix(), get_best(), get_dir_search(), get_interp_last(),
get_interp(), get_interrupt(), get_search_count(), get_search(), get_space_param(),
get_start(), get_theo()

Examples

holes_1d_better %>% get_anchor()
holes_1d_geo %>% get_anchor()

get_basis_matrix

Extract all the bases as a matrix

Description

Extract all the bases as a matrix

Usage

global_matrix_matrix(dt)

Arguments

dt a data object collected by the projection pursuit guided tour optimisation in the
tourr package
get_best

Value

a matrix that flattens each basis into a row

See Also

Other get functions: `get_anchor()`, `get_best()`, `get_dir_search()`, `get_interp_last()`, `get_interp()`, `get_interrupt()`, `get_search_count()`, `get_search()`, `get_space_param()`, `get_start()`, `get_theo()`

Examples

```r
head(get_basis_matrix(holes_1d_better), 5)
```

get_best

Extract the record with the largest index value

Description

Extract the record with the largest index value

Usage

```r
get_best(dt, group = NULL)
```

Arguments

- `dt` a data object collected by the projection pursuit guided tour optimisation in the `tourr` package
- `group` the variable to label different runs of the optimiser(s)

Value

a tibble object containing the best basis found by the optimiser(s)

See Also

Other get functions: `get_anchor()`, `get_basis_matrix()`, `get_dir_search()`, `get_interp_last()`, `get_interp()`, `get_interrupt()`, `get_search_count()`, `get_search()`, `get_space_param()`, `get_start()`, `get_theo()`

Examples

```r
dplyr::bind_rows(holes_1d_better, holes_1d_geo) %>% get_best(group = method)
```
get_dir_search

Extract directional search points during the optimisation

Usage

```r
get_dir_search(dt, ratio = 5, ...)
```

Arguments

- **dt**: a data object collected by the projection pursuit guided tour optimisation in the tourr package
- **ratio**: numeric; a buffer value to deviate directional search points from the anchor points
- **...**: arguments passed to `compute_pca()`

Value

a tibble object containing the directional search bases in pseudo derivative search

See Also

Other get functions: `get_anchor()`, `get_basis_matrix()`, `get_best()`, `get_interp_last()`, `get_interp()`, `get_interrupt()`, `get_search_count()`, `get_search()`, `get_space_param()`, `get_start()`, `get_theo()`

Examples

```r
holes_1d_geo %>%
  compute_pca() %>%
purrr::pluck("aug") %>%
  get_dir_search()
```

get_interp

Extract interpolated records

Usage

```r
get_interp(dt, group = NULL)
```
get_interp_last

Arguments

dt a data object collected by the projection pursuit guided tour optimisation in the tourr package

group the variable to label different runs of the optimiser(s)

Value

A tibble object containing the interpolating bases

See Also

Other get functions: get_anchor(), get_basis_matrix(), get_best(), get_dir_search(),
get_interp_last(), get_interrupt(), get_search_count(), get_search(), get_space_param(),
get_start(), get_theo()

Examples

holes_1d_better %>%
 get_interp() %>%
 head()

ginterp(dplyr::bind_rows(holes_1d_better, holes_1d_geo), group = method) %>% head()

g_interp_last

Extract the end point at each interpolation

Description

Extract the end point at each interpolation

Usage

get_interp_last(dt, group = NULL)

Arguments

dt a data object collected by the projection pursuit guided tour optimisation in the tourr package

group the variable to label different runs of the optimiser(s)

Value

A tibble object containing the last interpolating basis in each iteration

See Also

Other get functions: get_anchor(), get_basis_matrix(), get_best(), get_dir_search(),
get_interp(), get_interrupt(), get_search_count(), get_search(), get_space_param(),
get_start(), get_theo()
get_interrupt

Examples

holes_1d_better %>% get_interp_last()
get_interp_last(dplyr::bind_rows(holes_1d_better, holes_1d_geo), group = method)

get_interrupt

Extract the end point of the interpolation and the target point in the iteration when an interruption happens

Description

The optimiser can find better basis on the interpolation path, an interruption is implemented to stop further interpolation from the highest point to the target point. This discrepancy is highlighted in the PCA plot. You should not use geodesic search on this function.

Usage

get_interrupt(dt, group = NULL, precision = 0.001)

Arguments

dt a data object collected by the projection pursuit guided tour optimisation in the tourr package

group the variable to label different runs of the optimiser(s)

precision numeric; if the index value of the last interpolating point and the anchor point differ by precision, an interruption is registered

Value

a tibble object containing the target and anchor bases for the iteration when an interruption happens

See Also

Other get functions: get_anchor(), get_basis_matrix(), get_best(), get_dir_search(), get_interp_last(), get_interp(), get_search_count(), get_search(), get_space_param(), get_start(), get_theo()

Examples

holes_1d_better %>% get_interrupt()
holes_1d_geo %>% get_interrupt()
get_search

Extract search points during the optimisation

Description

Extract search points during the optimisation

Usage

```
get_search(dt)
```

Arguments

- **dt**
 a data object collected by the projection pursuit guided tour optimisation in the `tourr` package

Value

a tibble object containing the search bases

See Also

Other get functions: `get_anchor()`, `get_basis_matrix()`, `get_best()`, `get_dir_search()`, `get_interp_last()`, `get_interp()`, `get_interrupt()`, `get_search_count()`, `get_space_param()`, `get_start()`, `get_theo()`

Examples

```
holes_1d_better %>% get_search()
holes_1d_geo %>% get_search()
```

get_search_count

Extract the count in each iteration

Description

Extract the count in each iteration

Usage

```
get_search_count(dt, iter = NULL, group = NULL)
```

Arguments

- **dt**
 a data object collected by the projection pursuit guided tour optimisation in the `tourr` package
- **iter**
 the variable to be counted by
- **group**
 the variable to label different runs of the optimiser(s)
get_space_param

Value

a tibble object of the number of searches conducted by the optimiser(s) in each iteration

See Also

Other get functions: get_anchor(), get_basis_matrix(), get_best(), get_dir_search(), get_interp_last(), get_interp(), get_interrupt(), get_search(), get_space_param(), get_start(), get_theo()

Examples

get_search_count(holes_1d_better)
get_search_count(dplyr::bind_rows(holes_1d_better, holes_1d_geo), group = method)

Description

The space of projected bases is a circle when reduced to 2D. A radius is estimated using the largest distance from the bases in the data object to the centre point.

Usage

get_space_param(dt, ...)

Arguments

dt a data object collected by the projection pursuit guided tour optimisation in the tourr package

... other arguments passed to compute_pca()

Details

This is a wrapper function used by explore_space_pca() and should be be called directly by the user

Value

a tibble object of the centre and radius of the basis space

See Also

Other get functions: get_anchor(), get_basis_matrix(), get_best(), get_dir_search(), get_interp_last(), get_interp(), get_interrupt(), get_search_count(), get_search(), get_start(), get_theo()
get_start

Extract the starting records

Description
Extract the starting records

Usage
get_start(dt)

Arguments
- dt: a data object collected by the projection pursuit guided tour optimisation in the tourr package

Value
a tibble object containing the start basis

See Also
Other get functions: get_anchor(), get_basis_matrix(), get_best(), get_dir_search(), get_interp_last(), get_interp(), get_interrupt(), get_search_count(), get_search(), get_space_param(), get_theo()

Examples
holes_1d_better %>% get_start()

get_theo

Extract the theoretical best basis, if applicable

Description
Extract the theoretical best basis, if applicable

Usage
get_theo(dt)

Arguments
- dt: a data object collected by the projection pursuit guided tour optimisation in the tourr package
holes_1d_geo

Value

a tibble object containing the theoretical bases

See Also

Other get functions: `get_anchor()`, `get_basis_matrix()`, `get_best()`, `get_dir_search()`, `get_interp_last()`, `get_interp()`, `get_interrupt()`, `get_search_count()`, `get_search()`, `get_space_param()`, `get_start()`

Examples

```r
best <- matrix(c(0, 1, 0, 0, 0), nrow = 5)
holes_1d_better %>%
  bind_theoretical(best, tourr::holes(), raw_data = boa5) %>%
  get_theo()
```

holes_1d_geo Simulated data

Description

The boa data is simulated using different Gaussian mixtures with varied centres and weights (see section format for the simulation code). These data are simulated for demonstrating the usage of four diagnostic plots in the package, users can create their own guided tour data objects and diagnose with the visualisation designed in this package.

Usage

- `holes_1d_geo`
- `holes_1d_better`
- `holes_2d_better`
- `holes_2d_better_max_tries`
- `boa`
- `boa5`
- `boa6`

Format

The code for simulating each data object is as follows:
set.seed(123456);
holes_1d_geo <-
 animate_dist(boa5, tour_path = guided_tour(holes(), d = 1,
 search_f = search_geodesic),
 rescale = FALSE)

set.seed(123456)
holes_1d_better <-
 animate_dist(boa5, tour_path = guided_tour(holes(), d = 1,
 search_f = search_better),
 rescale = FALSE)

set.seed(123456)
holes_2d_better <-
 animate_xy(boa6, tour_path = guided_tour(holes(), d = 2,
 search_f = search_better),
 rescale = FALSE)

set.seed(123456)
holes_2d_better_max_tries <-
 animate_xy(boa6, tour_path = guided_tour(holes(), d = 2,
 search_f = search_better,
 max.tries = 500),
 rescale = FALSE)

library(tidyverse)
set.seed(1234)
x1 <- rnorm(1000, 0, 1)
x2 <- sample(c(rnorm(500, -3, 1), rnorm(500, 3, 1)), size = 1000)
x3 <- sample(c(rep(-1, 500), rep(1, 500)), size = 1000)
x4 <- sample(c(rnorm(250, -3, 1), rnorm(750, 3, 1)), size = 1000)
x5 <- sample(c(rnorm(330, -5, 1), rnorm(340, 0, 1), rnorm(330, 5, 1)), size = 1000)
x6 <- sample(c(rnorm(450, -5, 1), rnorm(100, 0, 1), rnorm(450, 5, 1)), size = 1000)
x7 <- sample(c(rnorm(500, -5, 1), rnorm(500, 5, 1)), size = 1000)
x8 <- rnorm(1000, 0, 1)
x9 <- rnorm(1000, 0, 1)
x10 <- rnorm(1000, 0, 1)
boa <- tibble(x1 = x1, x2 = x2, x3 = x3, x4 = x4, x5 = x5,
 x6 = x6, x7 = x7, x8 = x8, x9 = x9, x10 = x10)
boa <- as_tibble(scale(boa))
boa5 <- select(boa, x1, x2, x8: x10)
boa6 <- select(boa, x1, x2, x7: x10)

An object of class tbl_df (inherits from tbl, data.frame) with 79 rows and 8 columns.
An object of class tbl_df (inherits from tbl, data.frame) with 98 rows and 8 columns.
An object of class tbl_df (inherits from tbl, data.frame) with 1499 rows and 8 columns.
An object of class `tbl_df` (inherits from `tbl`, `data.frame`) with 1000 rows and 10 columns.
An object of class `tbl_df` (inherits from `tbl`, `data.frame`) with 1000 rows and 5 columns.
An object of class `tbl_df` (inherits from `tbl`, `data.frame`) with 1000 rows and 6 columns.

Details

The prefix `holes_*` indicates the use of holes index in the guided tour. The suffix `*_better/geo` indicates the optimiser used: `search_better` and `search_geodesic`.

The name `boa` comes from the fact that the density plot of each variable in the data looks like boa constrictors swallowing multiple French baguettes, rather than elephants, as in the novella the little prince.

Examples

```r
library(ggplot2)
library(tidyrr)
library(dplyr)
boa %>%
pivot_longer(cols = x1:x10, names_to = "var", values_to = "value") %>%
mutate(var =forcats::fct_relevel(as.factor(var), paste0("x", 1:10))) %>%
ggplot(aes(x = value)) +
geom_density() +
facet_wrap(vars(var))
```

scale_color_continuous_botanical

continuous scale colour function

Description

continuous scale colour function
Discrete scale colour function
continuous scale fill function
discrete scale fill function

Usage

```r
scale_color_continuous_botanical(palette = "fern", reverse = FALSE, ...)
scale_color_discrete_botanical(palette = "fern", reverse = FALSE, ...)
scale_fill_continuous_botanical(palette = "fern", reverse = FALSE, ...)
scale_fill_discrete_botanical(palette = "fern", reverse = FALSE, ...)
```
theme_fern

Arguments

- `palette`
 colour palette from the botanical_palette
- `reverse`
 logical; if the colour should be reversed
- `...`
 other arguments passed into scale_color_gradientn

Value

- a wrapper for continuous scales in the botanical palette
- a wrapper for discrete scales in the botanical palette
- a wrapper for continuous fill in the botanical palette
- a wrapper for discrete fill in the botanical palette

<table>
<thead>
<tr>
<th>theme_fern</th>
<th>A specific theme for trace plots</th>
</tr>
</thead>
</table>

Description

A specific theme for trace plots

Usage

```r
tHEME_fern()
```

Value

a ggplot2 theme for explore_trace_interp()
Index

* bind
 bind_random, 12
 bind_random_matrix, 12
 bind_theoretical, 13
* datasets
 botanical_palettes, 14
 holes_1d_geo, 29
* draw functions
 add_anchor, 3
 add_anno, 3
 add_dir_search, 3, 4
 add_end, 3, 4
 add_interp, 3–5
 add_interp_last, 3–6
 add_interrupt, 3–7
 add_search, 3–8
 add_start, 3–9
 add_theo, 3–10
* get functions
 get_anchor, 21
 get_anchor, 21
 get_basis_matrix, 21
 get_best, 22
 get_best, 22
 get_dir_search, 23
 get_best, 22
 get_dir_search, 23
 get_interp, 23
 get_dir_search, 23
 get_interp_last, 24
 get_interrupt, 25
 get_interrupt, 25
 get_search, 26
 get_search, 26
 get_search_count, 26
 get_search_count, 26
 get_space_param, 27
 get_space_param, 27
 get_start, 28
 get_theo, 28
* main plot functions
 explore_space_pca, 15
 explore_space_pca, 15
 explore_space_tour, 17
 explore_space_tour, 17
 explore_trace_interp, 18
 explore_trace_interp, 18
 explore_trace_search, 19
 explore_trace_search, 19
 add_anchor, 3, 4–11
 add_anchor, 3, 4–11
 add_anno, 3, 4–11
 add_anno, 3, 4–11
 add_dir_search, 3, 4, 4, 5–11
 add_dir_search, 3, 4, 4, 5–11
 add_end, 3, 4, 5, 6–11
 add_end, 3, 4, 5, 6–11
 add_interp, 3–5, 5, 7–11
 add_interp, 3–5, 5, 7–11
 add_interp_last, 3–6, 6, 8–11
 add_interp_last, 3–6, 6, 8–11
 add_interrupt, 3–7, 7, 8–11
 add_interrupt, 3–7, 7, 8–11
 add_search, 3–8, 9, 10, 11
 add_search, 3–8, 9, 10, 11
 add_start, 3–9, 10, 11
 add_start, 3–9, 10, 11
 add_theo, 3–10, 11
 add_theo, 3–10, 11
 boa(holes_1d_geo), 29
 boa(holes_1d_geo), 29
 boa5(holes_1d_geo), 29
 boa5(holes_1d_geo), 29
 botanical_pal(botanical_palettes), 14
 botanical_pal(botanical_palettes), 14
 clean_method, 15
 clean_method, 15
 compute_pca(explore_space_pca), 15
 compute_pca(explore_space_pca), 15
 explore_space_pca, 15, 18–20
 explore_space_pca, 15, 18–20
 explore_space_tour, 16, 17, 19, 20
 explore_space_tour, 16, 17, 19, 20
 explore_trace_interp, 16, 18, 18, 20
 explore_trace_interp, 16, 18, 18, 20
 flip_sign(explore_space_pca), 15
 flip_sign(explore_space_pca), 15
 format_label, 20
 format_label, 20
 get_anchor, 21, 22–29
 get_best, 21, 22–29
 get_dir_search, 21, 22–29
 get_end, 21, 22–29
 get_interp, 21–23
 get_interp_last, 21–24
 get_interrupt, 21–24
 get_search, 21–25
 get_search_count, 21–25
 get_space_param, 21–27
 get_start, 21–27
 get_theo, 28
 get_theo, 28
get_theo, 21–28, 28

holes_1d_better (holes_1d_geo), 29
holes_1d_geo, 29
holes_2d_better (holes_1d_geo), 29
holes_2d_better_max_tries
 (holes_1d_geo), 29

prep_space_tour (explore_space_tour), 17

scale_color_continuous_botanical, 31
scale_color_discrete_botanical
 (scale_color_continuous_botanical), 31
scale_fill_continuous_botanical
 (scale_color_continuous_botanical), 31
scale_fill_discrete_botanical
 (scale_color_continuous_botanical), 31

theme_fern, 32