Package ‘fastRG’

February 26, 2021

Title Sample Generalized Random Dot Product Graphs in Linear Time
Version 0.3.0
Description Samples generalized random product graph, a generalization of a broad class of network models. Given matrices X, S, and Y with with non-negative entries, samples a matrix with expectation X S Y^T and independent Poisson or Bernoulli entries. The algorithm first samples the number of edges and then puts them down one-by-one. As a result it is O(m) where m is the number of edges, a dramatic improvement over element-wise algorithms that which require O(n^2) operations to sample a random graph, where n is the number of nodes.

License MIT + file LICENSE
URL https://github.com/RoheLab/fastRG
BugReports https://github.com/RoheLab/fastRG/issues
Depends Matrix
Imports ellipsis, glue, igraph, magrittr, RSpectra, stats, tibble, tidygraph
Suggests covr, dplyr, ggplot2, knitr, rmarkdown, testthat (>= 2.1.0)
Config/testthat/edition 3
Config/testthat/parallel true
Encoding UTF-8
LazyData true
RoxygenNote 7.1.1
NeedsCompilation no
Author Alex Hayes [aut, cre, cph] (<https://orcid.org/0000-0002-4985-5160>), Karl Rohe [aut, cph], Jun Tao [aut], Xintian Han [aut], Norbert Binkiewicz [aut]
Maintainer Alex Hayes <alexpghayes@gmail.com>
Repository CRAN
Date/Publication 2021-02-26 09:40:03 UTC
R topics documented:

- `dcsbm` ... 2
- `directed_erdos_renyi` 5
- `directed_factor_model` 6
- `erdos_renyi` ... 8
- `expected_edges` 9
- `planted_partition` 10
- `sample_edgelist.directed_erdos_renyi` 13
- `sample_edgelist.matrix` 16
- `sample_igraph.directed_erdos_renyi` 19
- `sample_sparse.directed_erdos_renyi` 22
- `sample_tidygraph.directed_erdos_renyi` 26
- `sbm` .. 30
- `undirected_factor_model` 33

Index

- `dcsbm` 35

Description

To specify a degree-corrected stochastic blockmodel, you must specify the degree-heterogeneity parameters (via `n` or `theta`), the mixing matrix (via `k` or `B`), and the relative block probabilities (optional, via `pi`). We provide sane defaults for most of these options to enable rapid exploration, or you can invest the effort for more control over the model parameters. **We strongly recommend** setting the `expected_degree` or `expected_density` argument to avoid large memory allocations associated with sampling large, dense graphs.

Usage

```r
dcsbm(
  n = NULL,
  theta = NULL,
  k = NULL,
  B = NULL,
  ..., 
  pi = rep(1/k, k),
  sort_nodes = TRUE
)
```

Arguments

- `n` (degree heterogeneity) The number of nodes in the blockmodel. Use when you don’t want to specify the degree-heterogeneity parameters `theta` by hand. When `n` is specified, `theta` is randomly generated from a `LogNormal(2,1)` distribution. This is subject to change, and may not be reproducible. `n` defaults to `NULL`. You must specify either `n` or `theta`, but not both.
theta (degree heterogeneity) A numeric vector explicitly specifying the degree heterogeneity parameters. This implicitly determines the number of nodes in the resulting graph, i.e. it will have length(theta) nodes. Must be positive. Setting to a vector of ones recovers a stochastic blockmodel without degree correction. Defaults to NULL. You must specify either n or theta, but not both.

k (mixing matrix) The number of blocks in the blockmodel. Use when you don’t want to specify the mixing-matrix by hand. When k is specified, the elements of B are drawn randomly from a Uniform(0,1) distribution. This is subject to change, and may not be reproducible. k defaults to NULL. You must specify either k or B, but not both.

B (mixing matrix) A k by k matrix of block connection probabilities. The probability that a node in block i connects to a node in community j is Poisson(B[i,j]). Must be square a square matrix. matrix and Matrix objects are both acceptable. If B is not symmetric, it will be symmetrized via the update B := B + t(B). Defaults to NULL. You must specify either k or B, but not both.

Arguments passed on to undirected_factor_model

expected_degree If specified, the desired expected degree of the graph. Specifying expected_degree simply rescales S to achieve this. Defaults to NULL. Do not specify both expected_degree and expected_density at the same time.

expected_density If specified, the desired expected density of the graph. Specifying expected_density simply rescales S to achieve this. Defaults to NULL. Do not specify both expected_degree and expected_density at the same time.

pi (relative block probabilities) Relative block probabilities. Must be positive, but do not need to sum to one, as they will be normalized internally. Must match the dimensions of B or k. Defaults to rep(1 / k,k), or a balanced blocks.

sort_nodes Logical indicating whether or not to sort the nodes so that they are grouped by block. Useful for plotting. Defaults to TRUE.

Value

An undirected_dcsbm S3 object, a subclass of the undirected_factor_model() with the following additional fields:

- theta: A numeric vector of degree-heterogeneity parameters.
- z: The community memberships of each node, as a factor(). The factor will have k levels, where k is the number of communities in the stochastic blockmodel. There will not always necessarily be observed nodes in each community.
- pi: Sampling probabilities for each block.
- sorted: Logical indicating where nodes are arranged by block (and additionally by degree heterogeneity parameter) within each block.

Generative Model

There are two levels of randomness in a degree-corrected stochastic blockmodel. First, we randomly chosen a block membership for each node in the blockmodel. This is handled by dcsbm(). Then,
given these block memberships, we randomly sample edges between nodes. This second operation is handled by \texttt{sample_edgelist().sample_sparse().sample_igraph()} and \texttt{sample_tidygraph()}, depending your desirable graph representation.

Block memberships:

Let z_i represent the block membership of node i. To generate z_i we sample from a categorical distribution (note that this is a special case of a multinomial) with parameter π, such that π_i represents the probability of ending up in the ith block. Block memberships for each node are independent.

Degree heterogeneity:

In addition to block membership, the DCSBM also allows nodes to have different propensities for edge formation. We represent this propensity for node i by a positive number θ_i. Typically the θ_i are constrained to sum to one for identifiability purposes, but this doesn’t really matter during sampling (i.e. without the sum constraint scaling B and θ has the same effect on edge probabilities, but whether B or θ is responsible for this change is uncertain).

Edge formulation:

Once we know the block memberships z and the degree heterogeneity parameters θ, we need one more ingredient, which is the baseline intensity of connections between nodes in block i and block j. Then each edge $A_{i,j}$ is Poisson distributed with parameter

$$\lambda[i,j] = \theta_i \cdot B_{z_i,z_j} \cdot \theta_j.$$

See Also

Other stochastic block models: \texttt{planted_partition(), sbm()}

Other undirected graphs: \texttt{erdos_renyi(), planted_partition(), sbm()}

Examples

```r
set.seed(27)

lazy_dcsbm <- dcsbm(n = 1000, k = 5, expected_density = 0.01)
lazy_dcsbm

# sometimes you gotta let the world burn and
# sample a wildly dense graph

dense_lazy_dcsbm <- dcsbm(n = 500, k = 3, expected_density = 0.8)
dense_lazy_dcsbm

# explicitly setting the degree heterogeneity parameter,
# mixing matrix, and relative community sizes rather
# than using randomly generated defaults

k <- 5
n <- 1000
B <- matrix(stats::runif(k * k), nrow = k, ncol = k)
```
theta <- round(stats::rlnorm(n, 2))

pi <- c(1, 2, 4, 1, 1)

custom_dcsbm <- dcsbm(
 theta = theta,
 B = B,
 pi = pi,
 expected_degree = 50
)

custom_dcsbm

edgelist <- sample_edgelist(custom_dcsbm)
edgelist

efficient eigendecomposition that leverages low-rank structure in
E(A) so that you don't have to form E(A) to find eigenvectors,
as E(A) is typically dense. Computation is
handled via RSpectra

population_eigs <- eigs_sym(custom_dcsbm)

directed_erdos_renyi

Create an directed erdos renyi object

Description
Create an directed erdos renyi object

Usage

directed_erdos_renyi(n, ..., p = NULL)

Arguments

n Number of nodes in graph.

... Arguments passed on to directed_factor_model

expected_in_degree If specified, the desired expected in degree of the graph.
 Specifying expected_in_degree simply rescales S to achieve this. De-
 faults to NULL. Specify only one of expected_in_degree, expected_out_degree, and expected_density.

expected_out_degree If specified, the desired expected out degree of the graph.
 Specifying expected_out_degree simply rescales S to achieve this. De-
 faults to NULL. Specify only one of expected_in_degree, expected_out_degree, and expected_density.

p Probability of an edge between any two nodes. You must specify either p,
 expected_in_degree, or expected_out_degree.
directed_factor_model

Value

Never returns Poisson edges.

See Also

Other bernoulli graphs: erdos_renyi()
Other erdos renyi: erdos_renyi()

Examples

set.seed(87)

er <- directed_erdos_renyi(n = 10, p = 0.1)
er

big_er <- directed_erdos_renyi(n = 10^6, expected_in_degree = 5)
big_er

A <- sample_sparse(er)
A

directed_factor_model Create a directed factor model graph

Description

A directed factor model graph is a directed generalized Poisson random dot product graph. The edges in this graph are assumed to be independent and Poisson distributed. The graph is parameterized by its expected adjacency matrix, with is E[A] = X S Y'. We do not recommend that causal users use this function, see instead directed_dcsbm() and related functions, which will formulate common variants of the stochastic blockmodels as undirected factor models with lots of helpful input validation.

Usage

directed_factor_model(
 X,
 S,
 Y,
 ...,
 expected_in_degree = NULL,
 expected_out_degree = NULL,
 expected_density = NULL
)
Arguments

- **X**: A `matrix()` or `Matrix()` representing real-valued latent node positions encoding community structure of incoming edges. Entries must be positive.
- **S**: A `matrix()` or `Matrix()` mixing matrix. Entries must be positive.
- **Y**: A `matrix()` or `Matrix()` representing real-valued latent node positions encoding community structure of outgoing edges. Entries must be positive.
- **...**: Ignored. For internal developer use only.

expected_in_degree

If specified, the desired expected in degree of the graph. Specifying `expected_in_degree` simply rescales `S` to achieve this. Defaults to NULL. Specify only one of `expected_in_degree`, `expected_out_degree`, and `expected_density`.

expected_out_degree

If specified, the desired expected out degree of the graph. Specifying `expected_out_degree` simply rescales `S` to achieve this. Defaults to NULL. Specify only one of `expected_in_degree`, `expected_out_degree`, and `expected_density`.

expected_density

If specified, the desired expected density of the graph. Specifying `expected_density` simply rescales `S` to achieve this. Defaults to NULL. Specify only one of `expected_in_degree`, `expected_out_degree`, and `expected_density`.

Value

A `directed_factor_model` S3 class based on a list with the following elements:

- **X**: The incoming latent positions as a `Matrix()` object.
- **S**: The mixing matrix as a `Matrix()` object.
- **Y**: The outgoing latent positions as a `Matrix()` object.
- **n**: The number of nodes with incoming edges in the network.
- **k1**: The dimension of the latent node position vectors encoding incoming latent communities (i.e. in `X`).
- **d**: The number of nodes with outgoing edges in the network. Does not need to match `n` – rectangular adjacency matrices are supported.
- **k2**: The dimension of the latent node position vectors encoding outgoing latent communities (i.e. in `Y`).

Examples

```r
n <- 10000
k1 <- 5
k2 <- 3
d <- 5000
X <- matrix(rpois(n = n * k1, 1), nrow = n)
```
S <- matrix(runif(n = k1 * k2, 0, .1), nrow = k1, ncol = k2)
Y <- matrix(rexp(n = k2 * d, 1), nrow = d)
fm <- directed_factor_model(X, S, Y)
fm
sane_fm <- directed_factor_model(X, S, Y, expected_in_degree = 50)
sane_fm

erdos_renyi

Create an undirected erdos_renyi object

Description

Create an undirected erdos_renyi object

Usage

erdos_renyi(n, ..., p = NULL)

Arguments

n Number of nodes in graph.

... Arguments passed on to undirected_factor_model

expected_degree If specified, the desired expected degree of the graph. Specifying expected_degree simply rescales S to achieve this. Defaults to NULL. Do not specify both expected_degree and expected_density at the same time.

p Probability of an edge between any two nodes. You must specify either p or expected_degree.

Value

Never returns Poisson edges.

See Also

Other bernoulli graphs: directed_erdos_renyi()
Other erdos_renyi: directed_erdos_renyi()
Other undirected graphs: dcsbm(), planted_partition(), sbm()
Examples

set.seed(87)

er <- erdos_renyi(n = 10, p = 0.1)

er

er <- erdos_renyi(n = 10, expected_density = 0.1)

er

big_er <- erdos_renyi(n = 10^6, expected_degree = 5)

big_er

A <- sample_sparse(er)

A

expected_edges

Calculate the expected edges in Poisson RDPG graph

Description

These calculations are conditional on the latent factors X and Y.

Usage

expected_edges(factor_model, ...)

expected_degree(factor_model, ...)

expected_in_degree(factor_model, ...)

expected_out_degree(factor_model, ...)

expected_density(factor_model, ...)

expected_degrees(factor_model, ...)

Arguments

- **factor_model**: A `directed_factor_model()` or `undirected_factor_model()`.
- **...**: Ignored. Do not use.

Details

Note that the runtime of the fastRG algorithm is proportional to the expected number of edges in the graph. Expected edge count will be an underestimate of expected number of edges for Bernoulli graphs. See the Rohe et al for details.
Value

Expected edge counts, or graph densities.

References

Examples

```r
n <- 10000
k <- 5

X <- matrix(rpois(n = n * k, 1), nrow = n)
S <- matrix(runif(n = k * k, 0,.1), nrow = k)

ufm <- undirected_factor_model(X, S)
expected_edges(ufm)
expected_degree(ufm)
eigs_sym(ufm)

n <- 10000
d <- 1000

k1 <- 5
k2 <- 3

X <- matrix(rpois(n = n * k1, 1), nrow = n)
Y <- matrix(rpois(n = d * k2, 1), nrow = d)
S <- matrix(runif(n = k1 * k2, 0,.1), nrow = k1)

dfm <- directed_factor_model(X = X, S = S, Y = Y)
expected_edges(dfm)
expected_in_degree(dfm)
expected_out_degree(dfm)
svds(dfm)
```
Description

To specify a planted partition model, you must specify the number of nodes (via \(n \)), the mixing matrix (optional, either via `within_block/between_block` or \(a/b \)), and the relative block probabilities (optional, via \(\pi \)). We provide sane defaults for most of these options to enable rapid exploration, or you can invest the effort for more control over the model parameters. We **strongly recommend** setting the expected_degree or expected_density argument to avoid large memory allocations associated with sampling large, dense graphs.

Usage

```r
planted_partition(
  n, 
  k, 
  ..., 
  within_block = NULL, 
  between_block = NULL, 
  a = NULL, 
  b = NULL, 
  pi = rep(1/k, k), 
  edge_distribution = c("poisson", "bernoulli"), 
  sort_nodes = TRUE 
)
```

Arguments

- **n**
 - The number of nodes in the network. Must be a positive integer. This argument is required.
- **k**
 - Number of planted partitions, as a positive integer. This argument is required.
- **...**
 - Arguments passed on to `undirected_factor_model`
- **expected_degree**
 - If specified, the desired expected degree of the graph. Specifying `expected_degree` simply rescales \(S \) to achieve this. Defaults to `NULL`. Do not specify both `expected_degree` and `expected_density` at the same time.
- **expected_density**
 - If specified, the desired expected density of the graph. Specifying `expected_density` simply rescales \(S \) to achieve this. Defaults to `NULL`. Do not specify both `expected_degree` and `expected_density` at the same time.
- **within_block**
 - Probability of within block edges. Must be strictly between zero and one. Must specify either `within_block` and `between_block`, or \(a \) and \(b \) to determine edge probabilities.
- **between_block**
 - Probability of between block edges. Must be strictly between zero and one. Must specify either `within_block` and `between_block`, or \(a \) and \(b \) to determine edge probabilities.
- **a**
 - Integer such that \(a/n \) is the probability of edges within a block. Useful for sparse graphs. Must specify either `within_block` and `between_block`, or \(a \) and \(b \) to determine edge probabilities.
planted_partition

b
Integer such that b/n is the probability of edges between blocks. Useful for sparse graphs. Must specify either within_block and between_block, or a and b to determine edge probabilities.

pi
(relative block probabilities) Relative block probabilities. Must be positive, but do not need to sum to one, as they will be normalized internally. Must match the dimensions of B or k. Defaults to rep(1 / k, k), or a balanced blocks.

details

A planted partition model is stochastic blockmodel in which the diagonal and the off-diagonal of the mixing matrix B are both constant. This means that edge probabilities depend only on whether two nodes belong to the same block, or to different blocks, but the particular blocks themselves don’t have any impact apart from this.

Value
An undirected_planted_partition S3 object, which is a subclass of the sbm() object, with additional fields:

• within_block: The probability of edge formation within a block.
• between_block: The probability of edge formation between two distinct blocks.

See Also
Other stochastic block models: dcsbm(), sbm()
Other undirected graphs: dcsbm(), erdos_renyi(), sbm()

Examples

set.seed(27)

lazy_pp <- planted_partition(
 n = 1000,
 k = 5,
 expected_density = 0.01,
 within_block = 0.1,
 between_block = 0.01
)

lazy_pp
Description

There are two steps to using the fastRG package. First, you must parameterize a random dot product graph by sampling the latent factors. Use functions such as dcsbm(), sbm(), etc, to perform this specification. Then, use sample_*() functions to generate a random graph in your preferred format.

Usage

```r
## S3 method for class 'directed_erdos_renyi'
sample_edgelist(factor_model, ..., allow_self_loops = TRUE)

sample_edgelist(
  factor_model,
  ..., 
  poisson_edges = TRUE,
  allow_self_loops = TRUE
)

## S3 method for class 'undirected_factor_model'
sample_edgelist(
  factor_model,
  ..., 
  poisson_edges = TRUE,
  allow_self_loops = TRUE
)

## S3 method for class 'directed_factor_model'
sample_edgelist(
  factor_model,
  ..., 
  poisson_edges = TRUE,
  allow_self_loops = TRUE
)

## S3 method for class 'undirected_erdos_renyi'
sample_edgelist(
  factor_model,
  ..., 
  poisson_edges = FALSE,
  allow_self_loops = TRUE
)

## S3 method for class 'undirected_sbm'
```
sample_edgelist(factor_model, ..., allow_self_loops = TRUE)

S3 method for class 'undirected_sbm'
sample_edgelist(factor_model, ..., allow_self_loops = TRUE)

Arguments

factor_model A directed_factor_model() or undirected_factor_model().
...
allow_self_loops Logical indicating whether or not nodes should be allowed to form edges with themselves. Defaults to TRUE. When FALSE, sampling proceeds allowing self-loops, and these are then removed after the fact.
poisson_edges Logical indicating whether or not multiple edges are allowed to form between a pair of nodes. Defaults to TRUE. When FALSE, sampling proceeds as usual, and duplicate edges are removed afterwards. See Section 2.3 of Rohe et al (2017) for additional details.

Details

This function implements the fastRG algorithm as described in Rohe et al (2017). Please see the paper (which is short and open access!!) for details.

Value

A single realization of a random Poisson (or Bernoulli) Dot Product Graph, represented as a tibble::tibble() with two integer columns, from and to.

In the undirected case, from and to do not encode information about edge direction, but we will always have from <= to for convenience of edge identification. To avoid handling such considerations yourself, we recommend using sample_sparse(), sample_igraph(), and sample_tidygraph() over sample_edgelist().

References

See Also

Other samplers: sample_edgelist.matrix(), sample_igraph.directed_erdos_renyi(), sample_sparse.directed_erdos_renyi(), sample_tidygraph.directed_erdos_renyi()

Examples

library(igraph)
library(tidygraph)
set.seed(27)

undirected examples --------------------------

n <- 100
k <- 5

X <- matrix(rpois(n = n * k, 1), nrow = n)
S <- matrix(runif(n = k * k, 0, .1), nrow = k)

S will be symmetrized internal here, or left unchanged if
it is already symmetric

ufm <- undirected_factor_model(
 X, S,
 expected_density = 0.1
)

ufm

sampling graphs as edgelists ----------------------

edgelist <- sample_edgelist(ufm)
edgelist

sampling graphs as sparse matrices ----------------

A <- sample_sparse(ufm)

inherits(A, "dsCMatrix")

isSymmetric(A)
dim(A)

B <- sample_sparse(ufm, poisson_edges = FALSE)

inherits(B, "dsCMatrix")

isSymmetric(B)
dim(B)

sampling graphs as igraph graphs ------------------

sample_igraph(ufm)

sampling graphs as tidygraph graphs ---------------

sample_tidygraph(ufm)

sample_tidygraph(ufm, poisson_edges = FALSE)

directed examples --------------------------

n2 <- 100
```r
k1 <- 5
k2 <- 3
d <- 50

X <- matrix(rpois(n = n2 * k1, 1), nrow = n2)
S <- matrix(runif(n = k1 * k2, 0, .1), nrow = k1, ncol = k2)
Y <- matrix(rexp(n = k2 * d, 1), nrow = d)

fm <- directed_factor_model(X, S, Y, expected_in_degree = 2)
f

### sampling graphs as edgelists ----------------------
edgelist2 <- sample_edgelist(fm)
edgelist2

### sampling graphs as sparse matrices ----------------
A2 <- sample_sparse(fm)
inherits(A2, "dgCMatrix")
isSymmetric(A2)
dim(A2)
B2 <- sample_sparse(fm, poisson_edges = FALSE)
inherits(B2, "dgCMatrix")
isSymmetric(B2)
dim(B2)

### sampling graphs as igraph graphs ------------------
# since the number of rows and the number of columns
# in `fm` differ, we will get a bipartite igraph here
# creating the bipartite igraph is slow relative to other
# sampling -- if this is a blocker for
# you please open an issue and we can investigate speedups
dig <- sample_igraph(fm)
is_bipartite(dig)

### sampling graphs as tidygraph graphs ---------------
sample_tidygraph(fm, poisson_edges = FALSE)
```

sample_edgelist.matrix

Low level interface to sample RPDG edgelists
sample_edgelist.matrix

Description

This is a breaks-off, no safety checks interface. We strongly recommend that you do not call sample_edgelist.matrix() unless you know what you are doing, and even then, we still do not recommend it, as you will bypass all typical input validation. extremely loud coughing All those who bypass input validation suffer foolishly at their own hand. extremely loud coughing

Usage

```r
## S3 method for class 'matrix'
sample_edgelist(
  factor_model,
  S,
  Y,
  directed,
  ...,  
  poisson_edges = TRUE,
  allow_self_loops = TRUE
)
```

```r
## S3 method for class 'Matrix'
sample_edgelist(
  factor_model,
  S,
  Y,
  directed,
  ...,  
  poisson_edges = TRUE,
  allow_self_loops = TRUE
)
```

Arguments

- `factor_model`: An n by k1 matrix() or Matrix::Matrix() of latent node positions encoding incoming edge community membership. The X matrix in Rohe et al (2017). Naming differs only for consistency with the S3 generic.
- `S`: A k1 by k2 mixing matrix() or Matrix::Matrix(). In the undirect case this is assumed to be symmetric but we do not check that this is the case.
- `Y`: A d by k2 matrix() or Matrix::Matrix() of latent node positions encoding outgoing edge community membership.
- `directed`: Logical indicating whether or not the graph should be directed. When directed = FALSE, symmetrizes S internally. Y = X together with a symmetric S implies a symmetric expectation (although not necessarily an undirected graph). When directed = FALSE, samples a directed graph with symmetric expectation, and then adds edges until symmetry is achieved.
- `...`: Ignored. Do not use.
- `poisson_edges`: Logical indicating whether or not multiple edges are allowed to form between a pair of nodes. Defaults to TRUE. When FALSE, sampling proceeds as usual, and
duplicate edges are removed afterwards. See Section 2.3 of Rohe et al (2017) for additional details.

allow_self_loops
Logical indicating whether or not nodes should be allowed to form edges with themselves. Defaults to TRUE. When FALSE, sampling proceeds allowing self-loops, and these are then removed after the fact.

Details
This function implements the fastRG algorithm as described in Rohe et al (2017). Please see the paper (which is short and open access!!) for details.

Value
A single realization of a random Poisson (or Bernoulli) Dot Product Graph, represented as a tibble::tibble() with two integer columns, from and to.

In the undirected case, from and to do not encode information about edge direction, but we will always have from <= to for convenience of edge identification. To avoid handling such considerations yourself, we recommend using sample_sparse(), sample_igraph(), and sample_tidygraph() over sample_edgelist().

References

See Also
Other samplers: sample_edgelist.directed_erdos_renyi(), sample_igraph.directed_erdos_renyi(), sample_sparse.directed_erdos_renyi(), sample_tidygraph.directed_erdos_renyi()

Examples

```r
set.seed(46)

n <- 10000
d <- 1000

k1 <- 5
k2 <- 3

X <- matrix(rpois(n = n * k1, 1), nrow = n)
S <- matrix(runif(n = k1 * k2, 0, .1), nrow = k1)
Y <- matrix(rpois(n = d * k2, 1), nrow = d)

sample_edgelist(X, S, Y, TRUE)
```
Sample a random dot product graph as an igraph graph

Description
There are two steps to using the fastRG package. First, you must parameterize a random dot product graph by sampling the latent factors. Use functions such as `dcsbm()`, `sbm()`, etc, to perform this specification. Then, use sample_*(function) functions to generate a random graph in your preferred format.

Usage

```r
## S3 method for class 'directed_erdos_renyi'
sample_igraph(factor_model, ..., allow_self_loops = TRUE)

sample_igraph(factor_model, ..., poisson_edges = TRUE, allow_self_loops = TRUE)

## S3 method for class 'undirected_factor_model'
sample_igraph(factor_model, ..., poisson_edges = TRUE, allow_self_loops = TRUE)

## S3 method for class 'directed_factor_model'
sample_igraph(factor_model, ..., poisson_edges = TRUE, allow_self_loops = TRUE)

## S3 method for class 'undirected_erdos_renyi'
sample_igraph(
  factor_model,
  ..., 
  poisson_edges = FALSE,
  allow_self_loops = TRUE
)

## S3 method for class 'undirected_erdos_renyi'
sample_igraph(
  factor_model,
  ..., 
  poisson_edges = FALSE,
  allow_self_loops = TRUE
)
```

Arguments

- `factor_model`: A `directed_factor_model` or `undirected_factor_model`.
- `...`: Ignored. Do not use.
- `allow_self_loops`: Logical indicating whether or not nodes should be allowed to form edges with themselves. Defaults to TRUE. When FALSE, sampling proceeds allowing self-loops, and these are then removed after the fact.
poisson_edges Logical indicating whether or not multiple edges are allowed to form between a pair of nodes. Defaults to TRUE. When FALSE, sampling proceeds as usual, and duplicate edges are removed afterwards. See Section 2.3 of Rohe et al (2017) for additional details.

Details

This function implements the fastRG algorithm as described in Rohe et al (2017). Please see the paper (which is short and open access!!) for details.

Value

An igraph::igraph() object that is possibly a multigraph (that is, we take there to be multiple edges rather than weighted edges).

When factor_model is undirected:

- the graph is undirected and one-mode.

When factor_model is directed and square:

- the graph is directed and one-mode.

When factor_model is directed and rectangular:

- the graph is undirected and bipartite.

Note that working with bipartite graphs in igraph is more complex than working with one-mode graphs.

References

See Also

Other samplers: sample_edgelist.directed_erdos_renyi(), sample_edgelist.matrix(), sample_sparse.directed_erdos_renyi()
sample_tidygraph.directed_erdos_renyi()

Examples

library(igraph)
library(tidygraph)

set.seed(27)

undirected examples ----------------------------
n <- 100
k <- 5

X <- matrix(rpois(n = n * k, 1), nrow = n)
S <- matrix(runif(n = k * k, 0, .1), nrow = k)

S will be symmetrized internal here, or left unchanged if # it is already symmetric

ufm <- undirected_factor_model(
 X, S,
 expected_density = 0.1
)

ufm

sampling graphs as edgelists ----------------------

edgelist <- sample_edgelist(ufm)
edgelist

sampling graphs as sparse matrices ----------------

A <- sample_sparse(ufm)

inherits(A, "dsCMatrix")
isSymmetric(A)
dim(A)

B <- sample_sparse(ufm, poisson_edges = FALSE)

inherits(B, "dsCMatrix")
isSymmetric(B)
dim(B)

sampling graphs as igraph graphs -------------------

sample_igraph(ufm)

sampling graphs as tidygraph graphs ---------------

sample_tidygraph(ufm)
sample_tidygraph(ufm, poisson_edges = FALSE)

directed examples ----------------------------

n2 <- 100
k1 <- 5
k2 <- 3
d <- 50
X <- matrix(rpois(n = n2 * k1, 1), nrow = n2)
S <- matrix(runif(n = k1 * k2, 0, .1), nrow = k1, ncol = k2)
Y <- matrix(rexp(n = k2 * d, 1), nrow = d)

fm <- directed_factor_model(X, S, Y, expected_in_degree = 2)
fm

sampling graphs as edgelists ----------------------
edgelist2 <- sample_edgelist(fm)
edgelist2

sampling graphs as sparse matrices -----------------
A2 <- sample_sparse(fm)
inherits(A2, "dgCMatrix")
isSymmetric(A2)
dim(A2)

B2 <- sample_sparse(fm, poisson_edges = FALSE)
inherits(B2, "dgCMatrix")
isSymmetric(B2)
dim(B2)

sampling graphs as igraph graphs ------------------
since the number of rows and the number of columns
in 'fm' differ, we will get a bipartite igraph here
creating the bipartite igraph is slow relative to other
sampling -- if this is a blocker for
you please open an issue and we can investigate speedups
dig <- sample_igraph(fm)
is_bipartite(dig)

sampling graphs as tidygraph graphs ---------------
sample_tidygraph(fm, poisson_edges = FALSE)
Description

There are two steps to using the fastRG package. First, you must parameterize a random dot product graph by sampling the latent factors. Use functions such as `dcsbm()`, `sbm()`, etc, to perform this specification. Then, use `sample_*()` functions to generate a random graph in your preferred format.

Usage

```r
## S3 method for class 'directed_erdos_renyi'
sample_sparse(factor_model, ..., allow_self_loops = TRUE)

sample_sparse(factor_model, ..., poisson_edges = TRUE, allow_self_loops = TRUE)

## S3 method for class 'undirected_factor_model'
sample_sparse(factor_model, ..., poisson_edges = TRUE, allow_self_loops = TRUE)

## S3 method for class 'directed_factor_model'
sample_sparse(factor_model, ..., poisson_edges = TRUE, allow_self_loops = TRUE)

## S3 method for class 'undirected_erdos_renyi'
sample_sparse(
  factor_model,
  ...,
  poisson_edges = FALSE,
  allow_self_loops = TRUE
)

## S3 method for class 'undirected_erdos_renyi'
sample_sparse(
  factor_model,
  ...,
  poisson_edges = FALSE,
  allow_self_loops = TRUE
)
```

Arguments

- `factor_model` A `directed_factor_model()` or `undirected_factor_model()`.
- `...` Ignored. Do not use.
- `allow_self_loops` Logical indicating whether or not nodes should be allowed to form edges with themselves. Defaults to TRUE. When FALSE, sampling proceeds allowing self-loops, and these are then removed after the fact.
- `poisson_edges` Logical indicating whether or not multiple edges are allowed to form between a pair of nodes. Defaults to TRUE. When FALSE, sampling proceeds as usual, and duplicate edges are removed afterwards. See Section 2.3 of Rohe et al (2017) for additional details.
Details

This function implements the fastRG algorithm as described in Rohe et al (2017). Please see the paper (which is short and open access!!) for details.

Value

For undirected factor models, a sparse Matrix::Matrix() of class dsCMatrix. In particular, this means the Matrix object (1) has double data type, (2) is symmetric, and (3) is in column compressed storage format.

For directed factor models, a sparse Matrix::Matrix() of class dgCMatrix. This means the Matrix object (1) has double data type, (2) is not symmetric, and (3) is in column compressed storage format.

To reiterate: for undirected graphs, you will get a symmetric matrix. For directed graphs, you will get a general sparse matrix.

References

See Also

Other samplers: sample_edgelist.directed_erdos_renyi(), sample_edgelist.matrix(), sample_igraph.directed_erdos_renyi(), sample_tidygraph.directed_erdos_renyi()

Examples

```r
library(igraph)
l library(tidygraph)
set.seed(27)

##### undirected examples -------------------------------

n <- 100
k <- 5

X <- matrix(rpois(n = n * k, 1), nrow = n)
S <- matrix(runif(n = k * k, 0, .1), nrow = k)

# S will be symmetrized internal here, or left unchanged if
# it is already symmetric

ufm <- undirected_factor_model(
  X, S,
  expected_density = 0.1
)
```
ufm

sampling graphs as edgelists ----------------------
edgelist <- sample_edgelist(ufm)
edgelist

sampling graphs as sparse matrices ----------------
A <- sample_sparse(ufm)
inherits(A, "dsCMatrix")
isSymmetric(A)
dim(A)

B <- sample_sparse(ufm, poisson_edges = FALSE)
inherits(B, "dsCMatrix")
isSymmetric(B)
dim(B)

sampling graphs as igraph graphs ------------------
sample_igraph(ufm)

sampling graphs as tidygraph graphs ---------------
sample_tidygraph(ufm)
sample_tidygraph(ufm, poisson_edges = FALSE)

directed examples ----------------------------
n2 <- 100
k1 <- 5
k2 <- 3
d <- 50

X <- matrix(rpois(n = n2 * k1, 1), nrow = n2)
S <- matrix(runif(n = k1 * k2, 0, .1), nrow = k1, ncol = k2)
Y <- matrix(rexp(n = k2 * d, 1), nrow = d)

fm <- directed_factor_model(X, S, Y, expected_in_degree = 2)
fm

sampling graphs as edgelists ----------------------
edgelist2 <- sample_edgelist(fm)
edgelist2

sampling graphs as sparse matrices ----------------
A2 <- sample_sparse(fm)
inherits(A2, "dgCMatrix")
isSymmetric(A2)
dim(A2)

B2 <- sample_sparse(fm, poisson_edges = FALSE)
inherits(B2, "dgCMatrix")
isSymmetric(B2)
dim(B2)

sampling graphs as igraph graphs ------------------
since the number of rows and the number of columns
in `fm` differ, we will get a bipartite igraph here

creating the bipartite igraph is slow relative to other
sampling -- if this is a blocker for
you please open an issue and we can investigate speedups

dig <- sample_igraph(fm)
is_bipartite(dig)

sampling graphs as tidygraph graphs ---------------
sample_tidygraph(fm, poisson_edges = FALSE)

teSample a random dot product graph as a tidygraph graph

Description

There are two steps to using the fastRG package. First, you must parameterize a random dot product
graph by sampling the latent factors. Use functions such as dcsbm(), sbm(), etc, to perform this
specification. Then, use sample_*() functions to generate a random graph in your preferred format.

Usage

S3 method for class 'directed_erdos_renyi'
sample_tidygraph(factor_model, ..., allow_self_loops = TRUE)

sample_tidygraph(
 factor_model,
 ...,
 poisson_edges = TRUE,
Arguments

- **factor_model**
 - A `directed_factor_model()` or `undirected_factor_model()`.

- **...**
 - Ignored. Do not use.

- **allow_self_loops**
 - Logical indicating whether or not nodes should be allowed to form edges with themselves. Defaults to TRUE. When FALSE, sampling proceeds allowing self-loops, and these are then removed after the fact.

- **poisson_edges**
 - Logical indicating whether or not multiple edges are allowed to form between a pair of nodes. Defaults to TRUE. When FALSE, sampling proceeds as usual, and duplicate edges are removed afterwards. See Section 2.3 of Rohe et al (2017) for additional details.
Details

This function implements the fastRG algorithm as described in Rohe et al (2017). Please see the paper (which is short and open access!!) for details.

Value

A tidygraph::tbl_graph() object that is possibly a multigraph (that is, we take there to be multiple edges rather than weighted edges).

When factor_model is **undirected**:

- the graph is undirected and one-mode.

When factor_model is **directed** and **square**:

- the graph is directed and one-mode.

When factor_model is **directed** and **rectangular**:

- the graph is undirected and bipartite.

Note that working with bipartite graphs in tidygraph is more complex than working with one-mode graphs.

References

See Also

Other samplers: sample_edgelist.directed_erdos_renyi(), sample_edgelist.matrix(), sample_igraph.directed_erdos_renyi(), sample_sparse.directed_erdos_renyi()

Examples

```r
library(igraph)
library(tidygraph)
set.seed(27)

##### undirected examples ----------------------------

n <- 100
k <- 5

X <- matrix(rpois(n = n * k, 1), nrow = n)
S <- matrix(runif(n = k * k, 0, .1), nrow = k)
```
ufm <- undirected_factor_model(
 X, S,
 expected_density = 0.1
)
ufm

edgelist <- sample_edgelist(ufm)
edgelist

A <- sample_sparse(ufm)
inherits(A, "dsCMatrix")
isSymmetric(A)
dim(A)

B <- sample_sparse(ufm, poisson_edges = FALSE)
inherits(B, "dsCMatrix")
isSymmetric(B)
dim(B)

n2 <- 100
k1 <- 5
k2 <- 3
d <- 50

X <- matrix(rpois(n = n2 * k1, 1), nrow = n2)
S <- matrix(runif(n = k1 * k2, 0, .1), nrow = k1, ncol = k2)
Y <- matrix(rexp(n = k2 * d, 1), nrow = d)
fml <- directed_factor_model(X, S, Y, expected_in_degree = 2)
Create an undirected stochastic blockmodel object

Description

To specify a stochastic blockmodel, you must specify the number of nodes (via `n`), the mixing matrix (via `k` or `B`), and the relative block probabilities (optional, via `pi`). We provide sane defaults for most of these options to enable rapid exploration, or you can invest the effort for more control over the model parameters. We strongly recommend setting the `expected_degree` or `expected_density` argument to avoid large memory allocations associated with sampling large, dense graphs.
Usage

```
sbm(
  n,
  k = NULL,
  B = NULL,
  ..., 
  pi = rep(1/k, k),
  edge_distribution = c("poisson", "bernoulli"),
  sort_nodes = TRUE
)
```

Arguments

- **n**: The number of nodes in the network. Must be a positive integer. This argument is required.

- **k**: (mixing matrix) The number of blocks in the blockmodel. Use when you don’t want to specify the mixing-matrix by hand. When k is specified, the elements of B are drawn randomly from a Uniform(0,1) distribution. This is subject to change, and may not be reproducible. k defaults to NULL. You must specify either k or B, but not both.

- **B**: (mixing matrix) A k by k matrix of block connection probabilities. The probability that a node in block i connects to a node in community j is Poisson(B[i, j]). Must be a square matrix. Matrix and Matrix objects are both acceptable. If B is not symmetric, it will be symmetrized via the update B := B + t(B). Defaults to NULL. You must specify either k or B, but not both.

- **...**: Arguments passed on to `undirected_factor_model`

 - **expected_degree**: If specified, the desired expected degree of the graph. Specifying expected_degree simply rescales S to achieve this. Defaults to NULL. Do not specify both expected_degree and expected_density at the same time.

 - **expected_density**: If specified, the desired expected density of the graph. Specifying expected_density simply rescales S to achieve this. Defaults to NULL. Do not specify both expected_degree and expected_density at the same time.

- **pi**: (relative block probabilities) Relative block probabilities. Must be positive, but do not need to sum to one, as they will be normalized internally. Must match the dimensions of B or k. Defaults to rep(1/k, k), or a balanced blocks.

- **edge_distribution**: Either "poisson" or "bernoulli". The default is "poisson", in which case the SBM can be a multigraph, i.e. multiple edges between the same two nodes are allowed. If edge_distribution == "bernoulli" only a single edge is allowed between any pair of nodes. See Section 2.3 of Rohe et al (2017) for details.

- **sort_nodes**: Logical indicating whether or not to sort the nodes so that they are grouped by block. Useful for plotting. Defaults to TRUE.
Details

A stochastic block is equivalent to a degree-corrected stochastic blockmodel where the degree heterogeneity parameters have all been set equal to 1.

Value

An undirected_sbm S3 object, which is a subclass of the dcsbm() object, with one additional field.

- edge_distribution: Either "poisson" or "bernoulli".

See Also

Other stochastic block models: dcsbm(), planted_partition()

Other undirected graphs: dcsbm().erdos_renyi(), planted_partition()

Examples

set.seed(27)

lazy_sbm <- sbm(n = 1000, k = 5, expected_density = 0.01)
lazy_sbm

by default we get a multigraph (i.e. multiple edges are allowed between the same two nodes). using bernoulli edges will with an adjacency matrix with only zeroes and ones

bernoulli_sbm <- sbm(
 n = 5000,
 k = 300,
 edge_distribution = "bernoulli",
 expected_degree = 80
)

bernoulli_sbm

edgelist <- sample_edgelist(bernoulli_sbm)
edgelist

A <- sample_sparse(bernoulli_sbm)

only zeroes and ones!
sign(A)
Create an undirected factor model graph

Description
An undirected factor model graph is an undirected generalized Poisson random dot product graph. The edges in this graph are assumed to be independent and Poisson distributed. The graph is parameterized by its expected adjacency matrix, which is $E[A|X] = X S X'$. We do not recommend that casual users use this function, see instead `dcsbm()` and related functions, which will formulate common variants of the stochastic blockmodels as undirected factor models with lots of helpful input validation.

Usage
```r
undirected_factor_model(
  X,
  S,
  ..., expected_degree = NULL,
  expected_density = NULL
)
```

Arguments
- `X`: A `matrix()` or `Matrix()` representing real-valued latent node positions. Entries must be positive.
- `S`: A `matrix()` or `Matrix()` mixing matrix. `S` is symmetrized if it is not already, as this is the undirected case. Entries must be positive.
- `...`: Ignored. Must be empty.
- `expected_degree`: If specified, the desired expected degree of the graph. Specifying `expected_degree` simply rescales `S` to achieve this. Defaults to NULL. Do not specify both `expected_degree` and `expected_density` at the same time.
- `expected_density`: If specified, the desired expected density of the graph. Specifying `expected_density` simply rescales `S` to achieve this. Defaults to NULL. Do not specify both `expected_degree` and `expected_density` at the same time.

Value
An `undirected_factor_model` S3 class based on a list with the following elements:
- `X`: The latent positions as a `Matrix()` object.
- `S`: The mixing matrix as a `Matrix()` object.
- `n`: The number of nodes in the network.
• k: The rank of expectation matrix. Equivalently, the dimension of the latent node position vectors.

Examples

n <- 10000
k <- 5

X <- matrix(rpois(n = n * k, 1), nrow = n)
S <- matrix(runif(n = k * k, 0, .1), nrow = k)

ufm <- undirected_factor_model(X, S)
ufm

sane_ufm <- undirected_factor_model(X, S, expected_degree = 50)
sane_ufm
Index

* bernoulli graphs
 directed_erdos_renyi, 5
 erdos_renyi, 8
* directed graphs
 directed_erdos_renyi, 5
* erdos renyi
 directed_erdos_renyi, 5
 erdos_renyi, 8
* samplers
 sample_edgelist.directed_erdos_renyi, 13
 sample_edgelist.matrix, 16
 sample_igraph.directed_erdos_renyi, 19
 sample_sparse.directed_erdos_renyi, 22
 sample_tidygraph.directed_erdos_renyi, 26
* stochastic block models
 dcsbm, 2
 planted_partition, 10
 sbm, 30
* undirected graphs
 dcsbm, 2
 erdos_renyi, 8
 planted_partition, 10
 sbm, 30
dcsbm, 2, 8, 12, 32
dcsbm(), 13, 19, 23, 26, 32, 33
directed_erdos_renyi, 5, 8
directed_factor_model, 5, 6
directed_factor_model(), 9, 14, 19, 23, 27
erdos_renyi, 4, 6, 8, 12, 32
expected_degree (expected_edges), 9
expected_degrees (expected_edges), 9
expected_density (expected_edges), 9
expected_edges, 9
expected_in_degree (expected_edges), 9
expected_out_degree (expected_edges), 9
factor(), 3
igraph::igraph(), 20
Matrix(), 7, 33
matrix(), 7, 17, 33
Matrix::Matrix(), 17, 24
planted_partition, 4, 8, 10, 32
sample_edgelist
 (sample_edgelist.directed_erdos_renyi), 13
 sample_edgelist(), 4, 14, 18
sample_igraph
 (sample_igraph.directed_erdos_renyi), 19
 sample_igraph(), 4, 14, 18
sample_sparse
 (sample_sparse.directed_erdos_renyi), 22
 sample_sparse(), 4, 14, 18
sample_tidygraph
 (sample_tidygraph.directed_erdos_renyi), 26
 sample_tidygraph(), 4, 14, 18
sbm, 4, 8, 12, 30
sbm(), 12, 13, 19, 23, 26
tibble::tibble(), 14, 18
 tidygraph::tbl_graph(), 28

undirected_factor_model, 3, 8, 11, 31, 33
undirected_factor_model(), 3, 9, 14, 19, 23, 27