Package ‘factorMerger’

July 4, 2019

Title The Merging Path Plot
Version 0.4.0
Description The Merging Path Plot is a methodology for adaptive fusing of k-groups with likelihood-based model selection. This package contains tools for exploration and visualization of k-group dissimilarities.
Comparison of k-groups is one of the most important issues in exploratory analyses and it has zillions of applications.
The traditional approach is to use pairwise post hoc tests in order to verify which groups differ significantly. However, this approach fails with a large number of groups in both interpretation and visualization layer.
The Merging Path Plot solves this problem by using an easy-to-understand description of dissimilarity among groups based on Likelihood Ratio Test (LRT) statistic (Sitko, Biecek 2017) <arXiv:1709.04412>.
‘factorMerger’ is a part of the 'DrWhy.AI' universe (Biecek 2018) <arXiv:1806.08915>.
Work on this package was financially supported by the 'NCN Opus grant 2016/21/B/ST6/02176'.
Depends R (>= 3.0)
License GPL
Encoding UTF-8
LazyData true
Imports ggplot2, dplyr, reshape2, colorRamps, proxy, MASS, ggpubr, scales, mvtnorm, knitr, magrittr, survival, agricolae, forcats, formula.tools
RoxygenNote 6.1.1
URL https://github.com/M2DataLab/factorMerger
Suggests survminer, rmarkdown, testthat
VignetteBuilder knitr
NeedsCompilation no
Author Agnieszka Sitko [aut],
Aleksandra Grudziąż [aut],
Przemysław Biecek [aut, ths],
Tomasz Mikołajczyk [cre]
BRCA

Maintainer Tomasz Mikołajczyk <t.mikolajczyk@gmail.com>

Repository CRAN

Date/Publication 2019-07-03 22:50:26 UTC

R topics documented:

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>BRCA</td>
<td>2</td>
</tr>
<tr>
<td>cutTree</td>
<td>3</td>
</tr>
<tr>
<td>ess</td>
<td>4</td>
</tr>
<tr>
<td>generateMultivariateSample</td>
<td>4</td>
</tr>
<tr>
<td>generateSample</td>
<td>5</td>
</tr>
<tr>
<td>getOptimalPartition</td>
<td>5</td>
</tr>
<tr>
<td>getOptimalPartitionDf</td>
<td>6</td>
</tr>
<tr>
<td>groupsStats</td>
<td>7</td>
</tr>
<tr>
<td>mergeFactors</td>
<td>7</td>
</tr>
<tr>
<td>mergeFactors.default</td>
<td>8</td>
</tr>
<tr>
<td>mergeFactors.formula</td>
<td>9</td>
</tr>
<tr>
<td>mergingHistory</td>
<td>11</td>
</tr>
<tr>
<td>pisa2012</td>
<td>11</td>
</tr>
<tr>
<td>plot.factorMerger</td>
<td>12</td>
</tr>
<tr>
<td>plotBoxplot</td>
<td>14</td>
</tr>
<tr>
<td>plotFrequency</td>
<td>14</td>
</tr>
<tr>
<td>plotGIC</td>
<td>15</td>
</tr>
<tr>
<td>plotHeatmap</td>
<td>15</td>
</tr>
<tr>
<td>plotMeansAndConfInt</td>
<td>16</td>
</tr>
<tr>
<td>plotProfile</td>
<td>16</td>
</tr>
<tr>
<td>plotProportion</td>
<td>17</td>
</tr>
<tr>
<td>plotResponse</td>
<td>17</td>
</tr>
<tr>
<td>plotSurvival</td>
<td>18</td>
</tr>
<tr>
<td>plotTree</td>
<td>18</td>
</tr>
<tr>
<td>plotTukey</td>
<td>19</td>
</tr>
<tr>
<td>print.factorMerger</td>
<td>19</td>
</tr>
</tbody>
</table>

Index

<table>
<thead>
<tr>
<th>BRCA</th>
<th>Breast cancer dataset</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Description

A clinical dataset from The Cancer Genome Atlas Project from the RTCGA.clinical package (https://github.com/RTCDA/RTCDA.clinical).

Usage

```r
data(BRCA)
```
The variables are as follows (original column names from the RTCGA.clinical package are given in brackets):

- `time` – event time / censoring time (originally: `times`)
- `patientCode` – patient's id (originally: `bcr_patient_barcode`)
- `vitalStatus` – patient status (originally: `patient.vital_status`)
- `drugName` – drug name given to the patient (originally: `patient.drugs.drug.drug_name`)
- `histologicalType` – patient histological type (originally: `patient.stage_event.tnm_categories.pathologic_categories.pathologic_t`)
- `pathologicCategory` – patient pathologic type

Description

Splits factor levels into non-overlapping clusters based on a `factorMerger` object. If a stat is "loglikelihood" or "p-value" then performs bottom-up search through models on the merging path until spots a model scored worse than the given threshold (`value`). If `stat` = "GIC", `value` is interpreted as GIC penalty and optimal GIC model is returned.

Usage

```r
cutTree(factorMerger, stat = "GIC", value = 2)
```

Arguments

- `factorMerger` object of a class `factorMerger`
- `stat` statistic used in the bottom-up search. Available statistics are: "loglikelihood", "p-value", "GIC".
- `value` cut threshold or penalty (for GIC)

Details

By default, `cutree` returns factor partition corresponding to the optimal GIC model (with the lowest GIC).

Value

Returns a factor vector - each observation is given a new cluster label.
ess

European Social Survey - happiness

Description

A dataset from http://www.europeansocialsurvey.org/download.html?family=ESS7e02_1&y=2014 on happiness of European countries.

Usage

```r
data(ess)
```

Details

ess is a reweighted version of the original data. The weighting was performed using the dweight variable with the seed 123. The variables are as follows:

- **happy** – binary, denoting happiness of an individual. Interviewees were asked to assess their happiness in the scale 0-10 (variable happy). Respondents who gave value greater than 5 are considered as "happy",
- **country** – respondent's country.

generateMultivariateSample

Generate multivariate normal sample

Description

Produces a random sample of k groups and d dimensions drawn from the normal distribution with different parameters.

Usage

```r
generateMultivariateSample(N, k, d = 2)
```

Arguments

- `N` Sample size.
- `k` Number of groups.
- `d` Number of dimensions.

Value

- list with two fields: matrix `response` and factor variable `factor`.
generateSample

Examples

```r
generateMultivariateSample(N = 100, k = 10, d = 5)
```

Description

Produces a random sample of k groups drawn from the same distribution with different parameters.

Usage

```r
generateSample(N, k, distr = "gaussian")
```

Arguments

- `N` sample size
- `k` number of groups
- `distr` type of distribution from `c("norm", "exp", "beta")`

Value

list with two fields: numeric variable `response` and factor variable `factor`.

Examples

```r
generateSample(100, 2)
generateSample(100, 2, "exp")
```

getOptimalPartition

Get optimal partition (final clusters names)

Description

Splits factor levels into non-overlapping clusters based on a `factorMerger` object. If a stat is "loglikelihood" or "p-value" then performs bottom-up search through models on the merging path until spots a model scored worse than the given threshold (value). If stat = "GIC", value is interpreted as GIC penalty and optimal GIC model is returned.

Usage

```r
getOptimalPartition(factorMerger, stat = "GIC", value = 2)
```
getOptimalPartitionDf

Arguments

- `factorMerger` object of a class `factorMerger`
- `stat` statistic used in the bottom-up search. Available statistics are: "loglikelihood", "p-value", "GIC".
- `value` cut threshold / GIC penalty

Details

By default, `cutree` returns factor partition corresponding to the optimal GIC model (with the lowest GIC).

Value

Returns a vector with the final cluster names from the `factorMerger` object.

getOptimalPartitionDf
Get optimal partition (clusters dictionary)

Description

Splits factor levels into non-overlapping clusters based on a `factorMerger` object. If a stat is "loglikelihood" or "p-value" then performs bottom-up search through models on the merging path until spots a model scored worse than the given threshold (`value`). If `stat = "GIC"`, `value` is interpreted as GIC penalty and optimal GIC model is returned.

Usage

```r
getOptimalPartitionDf(factorMerger, stat = "GIC", value = 2)
```

Arguments

- `factorMerger` object of a class `factorMerger`
- `stat` statistic used in the bottom-up search. Available statistics are: "loglikelihood", "p-value", "GIC".
- `value` cut threshold / GIC penalty

Details

By default, `cutree` returns factor partition corresponding to the optimal GIC model (with the lowest GIC).

Value

Returns a dictionary in a data frame format. Each row gives an original label of a factor level and its new (cluster) label.
groupsStats

Description
Summary of statistics specific for a model for each group that appeared in merging.

Usage
groupsStats(factorMerger)

Arguments
factorMerger object of a class factorMerger

Examples
randsample <- generateMultivariateSample(N = 100, k = 10, d = 3)
fm <- mergeFactors(randsample$response, randsample$factor)
groupsStats(fm)

mergeFactors

Description
Performs step-wise merging of factor levels.

Usage
mergeFactors(response, factor, ...)

Arguments
response A response vector/matrix suitable for the model family or a formula containing columns names from the data argument or formula.
factor A factor vector when we use response argument, otherwise the name of column from data argument containing which levels should be merged.
... Other arguments corresponding to type of first argument
Examples

```r
rSample <- generateMultivariateSample(N = 100, k = 10, d = 3)

rSample$covariates <- runif(100)
rSample$weights <- runif(100)
mergeFactors(response = rSample$response, factor = rSample$factor, covariates = rSample$covariates)
mergeFactors(rSample$response[,1], rSample$factor, covariates = rSample$covariates, weights = rSample$weights)
dataset <- cbind(rSample$response, rSample$factor, rSample$covariates)
colnames(dataset) <- c("res1","res2","res3","fct", "cov1")

formula <- as.formula("res1+res2+res3~fct")
formulaCovariates <- as.formula("res1+res2+res3~fct+cov1")
mergeFactors(response = formula, factor="fct", data=dataset)
mergeFactors(response = formulaCovariates, factor="fct", data=dataset)
```

Description

Default method for `mergeFactors()` function.

Usage

```r
## Default S3 method:
mergeFactors(response, factor, ..., covariates = NULL, weights = NULL, family = "gaussian", method = "fast-adaptive", abbreviate = TRUE)
```

Arguments

- **response**: A response vector/matrix suitable for the model family or a formula containing columns names from the data argument or formula.
- **factor**: A factor vector when we use response argument, otherwise the name of column from data argument containing which levels should be merged.
- **...**: Other arguments corresponding to type of first argument
- **covariates**: A covariates vector/matrix, optional when we use response argument.
- **weights**: A weights vector, optional when we use response argument. For more information see: `lm, glm, coxph`
- **family**: Model family to be used in merging. Available models are: "gaussian", "survival", "binomial". By default `mergeFactors` uses "gaussian" model.
- **method**: A string specifying method used during merging. Four methods are available:
• method = "adaptive". The objective function that is maximized throughout procedure is the logarithm of likelihood. The set of pairs enabled to merge contains all possible pairs of groups available in a given step. Pairwise LRT distances are recalculated every step. This option is the slowest one since it requires the largest number of comparisons. It requires O(k^3) model evaluations. (with k - the initial number of groups)

• method = "fast-adaptive". For Gaussian family of response, at the very beginning, the groups are ordered according to increasing averages and then the set of pairs compared contains only pairs of closest groups. For other families the order corresponds to beta coefficients in a regression model. This option is much faster than method = "adaptive" and requires O(k^2) model evaluations.

• method = "fixed". This option is based on the DMR algorithm introduced in Proch. It was extended to cover survival models. The largest difference between this option and the method = "adaptive" is, that in the first step a pairwise distances are calculated between each groups based on the LRT statistic. Then the agglomerative clustering algorithm is used to merge consecutive pairs. It means that pairwise model differences are not recalculated as LRT statistics in every step but the complete linkage is used instead. This option is very fast and requires O(k^2) comparisons.

• method = "fast-fixed". This option may be considered as a modification of method = "fixed". Here, similarly as in the fast-adaptive version, we assume that if groups A, B and C are sorted according to their increasing beta coefficients, then the distance between groups A and B and the distance between groups B and C are not greater than the distance between groups A and C. This assumption enables to implement the complete linkage clustering more efficiently in a dynamic manner. The biggest difference is that in the first step we do not calculated whole matrix of pairwise differences, but instead only the differences between consecutive groups. Then in each step a only single distance is calculated. This helps to reduce the number of model evaluations to O(n).

The default option is "fast-adaptive".

Abbreviate Logical. If TRUE, the default, factor levels names are abbreviated.
mergeFactors.formula

Arguments

- **response**: Formula containing columns names from the data argument.
- **factor**: A factor vector when we use response argument, otherwise the name of column from data argument containing which levels should be merged.
- **...**: Other arguments corresponding to type of first argument/
- **data**: A data frame to be used for modeling
- **weights**: A weights vector, optional when we use response argument. For more information see: lm, glm, coxph
- **family**: Model family to be used in merging. Available models are: "gaussian", "survival", "binomial". By default mergeFactors uses "gaussian" model.
- **method**: A string specifying method used during merging. Four methods are available:
 - method = "adaptive". The objective function that is maximized throughout procedure is the logarithm of likelihood. The set of pairs enabled to merge contains all possible pairs of groups available in a given step. Pairwise LRT distances are recalculated every step. This option is the slowest one since it requires the largest number of comparisons. It requires O(k^3) model evaluations. (with k - the initial number of groups)
 - method = "fast-adaptive". For Gaussian family of response, at the very beginning, the groups are ordered according to increasing averages and then the set of pairs compared contains only pairs of closest groups. For other families the order corresponds to beta coefficients in a regression model. This option is much faster than method = "adaptive" and requires O(k^2) model evaluations.
 - method = "fixed". This option is based on the DMR algorithm introduced in Proch. It was extended to cover survival models. The largest difference between this option and the method = "adaptive" is, that in the first step a pairwise distances are calculated between each groups based on the LRT statistic. Then the agglomerative clustering algorithm is used to merge consecutive pairs. It means that pairwise model differences are not recalculated as LRT statistics in every step but the complete linkage is used instead. This option is very fast and requires O(k^2) comparisons.
 - method = "fast-fixed". This option may be considered as a modification of method = "fixed". Here, similarly as in the fast-adaptive version, we assume that if groups A, B and C are sorted according to their increasing beta coefficients, then the distance between groups A and B and the distance between groups B and C are not greater than the distance between groups A and C. This assumption enables to implement the complete linkage clustering more efficiently in a dynamic manner. The biggest difference is that in the first step we do not calculated whole matrix of pairwise differences, but instead only the differences between consecutive groups. Then in each step a only single distance is calculated. This helps to reduce the number of model evaluations to O(n). The default option is "fast-adaptive".
- **abbreviate**: Logical. If TRUE, the default, factor levels names are abbreviated.
mergingHistory

<table>
<thead>
<tr>
<th>mergingHistory</th>
<th>Merging history</th>
</tr>
</thead>
</table>

Description

Summarizes merging path by giving pairs of factor groups merged in each iteration.

Usage

```r
mergingHistory(factorMerger, showStats = FALSE, penalty, round = TRUE)
```

Arguments

- `factorMerger`: Object of a class `factorMerger`
- `showStats`: If TRUE extends results with the loglikelihood (column `model`), p-value for the LRT tests against the full model (column `pval`) and Generalized Information Criterion value (column `GIC`). By default `showStats` is set to FALSE.
- `penalty`: GIC penalty
- `round`: Logical. If TRUE, the default, statistics are rounded

Examples

```r
randSample <- generateMultivariateSample(N = 100, k = 10, d = 3)
fm <- mergeFactors(randSample$response, randSample$factor)
mergingHistory(fm, showStats = TRUE)
```

pisa2012

<table>
<thead>
<tr>
<th>pisa2012</th>
<th>PISA 2012 dataset</th>
</tr>
</thead>
</table>

Description

Data from the PISA2012lite package (European countries only).

Usage

```r
data(pisa2012)
```
Details

The original dataset (Program for International Student Assessment, http://www.oecd.org/pisa/) contains information on students' performance on various cognitive tests expressed with so-called plausible values measured in three fields: Mathematics (PV1MATH), Science (PV1SCIE) and Reading (PV1READ).

pisa2012 is a reweighted version of the PISA2012lite data. The weighting was performed using the W_FSTUWT variable with the seed 123. Then only European countries were chosen.

The variables are as follows (original column names from the PISA2012lite package are given in brackets):

- `math` – student’s performance in Mathematics (originally: PV1MATH)
- `reading` – student’s performance in Reading (originally: PV1READ)
- `science` – student’s performance in Science (originally: PV1SCIE)
- `country` – student’s country (originally: CNT)

plot.factorMerger

Plot Factor Merger

Description

Plot Factor Merger

Usage

```r
## S3 method for class 'factorMerger'
plot(x, panel = "all", statistic = "loglikelihood", nodesSpacing = "equidistant", colorClusters = TRUE, splitStatistic = "GIC", splitThreshold = NULL, penalty = 2, showSplit = FALSE, showSignificance = TRUE, title = "Factor Merger Tree", subtitle = "", palette = NULL, responsePanel = NULL, responsePanelPalette = NULL, gicPanelColor = NULL, panelGrid = TRUE, chisqQuantile = 0.05, ...)
```

Arguments

- **x**
 - object of a class `factorMerger`.

- **panel**
 - Type of panels to be plot. Possible values are `c("all", "response", "GIC", "tree")`. All types of plots include the Factor Merger Tree. Apart from the Factor Merger Tree there are also two possible panels: the Response Plot (response summary, specific to the model family), the GIC Plot (GIC vs. loglikelihood/p-value).
 - "all" plots all panels and a short summary of the full model,
 - "response" plots the Factor Merger Tree and the Response Plot,
 - "GIC" plots the Factor Merger Tree and the GIC Plot,
plot.factorMerger

- "tree" plots the Factor Merger Tree only.

statistic
Statistic to be displayed on the OX axis of the Factor Merger Tree. Possible values are c("loglikelihood", "p-value"). If "p-value" is chosen p-value for the Likelihood Ratio Test against the full model is plot on the OX axis.

nodesSpacing
Type of vertical nodes spacing in the Factor Merger Tree. May be chosen from c("equidistant", "effects", "modelSpecific"). "effects" arranges nodes according to the model coefficients estimators (e.g. in Gaussian case on the OY axis group means are plotted).

TODO: Implement "modelSpecific".

colorClusters
Boolean. If TRUE, the default, the Factor Merger Tree is colored according to the optimal factor split (defined by splitStatistic and splitThreshold or splitStatistic and penalty).

splitStatistic
Statistic used in the optimal split definition. Possible values are: c("GIC", "loglikelihood", "p-value"). If "GIC" is chosen, factor is split to minimize GIC with the penalty penalty. Otherwise, chooses the very last partition whose corresponding statistic (model loglikelihood or p-value for the LRT test) is not lower than splitThreshold.

splitThreshold
Threshold used in the optimal split definition. Used only with splitStatistic = c("loglikelihood", "p-value").

penalty
GIC penalty used for defining the optimal partition with splitStatistic = "GIC". The same penalty is used in the GIC plot.

showSplit
Boolean. If TRUE plots vertical line crossing the optimal split.

showSignificance
Boolean. If TRUE, the default, marks partitions that are significantly worse than their predecessors on the Factor Merger Tree (uses the Likelihood Ratio Test). Significance codes are: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1.

title
Factor Merger Tree plot's title.

subtitle
Factor Merger Tree plot's subtitle.

palette
Color palette used in the Factor Merger Tree and the Response Plot.

responsePanel
Response panel type – accepts the following values dependent on the model family:
- multi dimensional Gaussian: c("heatmap", "profile").
- single dimensional Gaussian: c("means", "boxplot","tukey").
- binomial: c("proportion").
- survival: c("survival")

responsePanelPalette
Additional color palette used in the Response Plot if palettes for the Factor Merger Tree and the Response Plot are to be different.

gicPanelColor
Color used in the GIC plot.

panelGrid
Boolean. If TRUE, each interval on the OX axis of the Factor Merger Tree corresponds to the 1 - chisqQuantile quantile of chi-square distribution. Otherwise, panel is blank.

chisqQuantile
Significance level used if panelGrid = TRUE.

... Other arguments
plotBoxplot

Boxplot (single-dimensional Gaussian)

Description
Plots boxplot with mean as a summary statistic grouping observation by factor levels.

Usage
```
plotBoxplot(factorMerger, color, clusterSplit, palette = NULL)
```

Arguments
- `factorMerger` object of a class `factorMerger`
- `color` Boolean. If `TRUE`, the default, there is added aesthetic group corresponding to the final cluster split.
- `clusterSplit` final cluster split definition. A list with two fields:
 - `stat` cluster statistic (available statistics are: "loglikelihood", "pvalue", "GIC"),
 - `value` cut threshold / GIC penalty
- `palette` custom palette

plotFrequency

Frequency plot

Description
Plots barplot with group frequencies.

Usage
```
plotFrequency(factorMerger, color, clusterSplit)
```

Arguments
- `factorMerger` object of a class `factorMerger`
- `color` Boolean. If `TRUE`, the default, there is added aesthetic group corresponding to the final cluster split.
- `clusterSplit` final cluster split definition. A list with two fields:
 - `stat` cluster statistic (available statistics are: "loglikelihood", "pvalue", "GIC"),
 - `value` cut threshold / GIC penalty
Description

Plots Generalized Information Criterion for models on the Factor Merger Tree.

Usage

plotGIC(factorMerger, color, penalty = 2, statistic)

Arguments

factorMerger object of a class factorMerger
color GIC plot color.
penalty GIC penalty
statistic cluster split statistic

Description

Plots heatmap for each dimension of the response variable. Vector of means of factor levels for a given dimension is scaled to have mean equal to zero and standard deviation equal to one.

Usage

plotHeatmap(factorMerger, color, clusterSplit, palette = "Greys")

Arguments

factorMerger object of a class factorMerger
color Boolean. If TRUE, the default, there is added aesthetic group corresponding to the final cluster split.
clusterSplit final cluster split definition. A list with two fields:
 - stat cluster statistic (available statistics are: "loglikelihood", "pvalue", "GIC").
 - value cut threshold / GIC penalty
palette custom palette
plotMeansAndConfInt
Means and standard deviation plot (single-dimensional Gaussian)

Description

For each factor level plots its mean and interval of the length equal to its standard deviation.

Usage

`plotMeansAndConfInt(factorMerger, color, clusterSplit, palette = NULL)`

Arguments

- `factorMerger`: object of a class `factorMerger`
- `color`: Boolean. If `TRUE`, the default, there is added aesthetic group corresponding to the final cluster split.
- `clusterSplit`: final cluster split definition. A list with two fields:
 - `stat`: cluster statistic (available statistics are: "loglikelihood", "pvalue", "GIC"),
 - `value`: cut threshold / GIC penalty
- `palette`: custom palette

plotProfile
Profile plot (multi-dimensional Gaussian)

Description

Plots rank plot - one series is a single factor level and one group on the OX axis is a single dimension of the response.

Usage

`plotProfile(factorMerger, color, clusterSplit, palette = NULL)`

Arguments

- `factorMerger`: object of a class `factorMerger`
- `color`: Boolean. If `TRUE`, the default, there is added aesthetic group corresponding to the final cluster split.
- `clusterSplit`: final cluster split definition. A list with two fields:
 - `stat`: cluster statistic (available statistics are: "loglikelihood", "pvalue", "GIC"),
 - `value`: cut threshold / GIC penalty
- `palette`: custom palette
plotProportion

Proportion plot (binomial)

Description

Plots proportion of success for each factor level.

Usage

plotProportion(factorMerger, color, clusterSplit, palette = NULL)

Arguments

factorMerger object of a class factorMerger
color Boolean. If TRUE, the default, there is added aesthetic group corresponding to the final cluster split.
clusterSplit final cluster split definition. A list with two fields:
 • stat cluster statistic (available statistics are: "loglikelihood", "pvalue", "GIC"),
 • value cut threshold / GIC penalty
palette custom palette

plotResponse

Plot Response - Helper Function

Description

Plot Response - Helper Function

Usage

plotResponse(factorMerger, responsePanel, colorClusters, clusterSplit, responsePanelPalette)

Arguments

factorMerger object to be plotted
responsePanel logical - shall it be plotted
colorClusters colors
clusterSplit criteria for splitting
responsePanelPalette colors for response
plotSurvival

Survival plot (survival)

Description

Plots adjusted survival curves for coxph model for each group. Survival probabilities are calculated from coxph model.

Usage

```r
plotSurvival(factorMerger, color, clusterSplit, palette = NULL)
```

Arguments

- `factorMerger`: object of a class factorMerger
- `color`: Boolean. If TRUE, the default, there is added aesthetic group corresponding to the final cluster split.
- `clusterSplit`: final cluster split definition. A list with two fields:
 - `stat`: cluster statistic (available statistics are: "loglikelihood", "pvalue", "GIC"),
 - `value`: cut threshold / GIC penalty
- `palette`: custom palette

plotTree

Plot Tree - Helper Function

Description

Plot Tree - Helper Function

Usage

```r
plotTree(factorMerger, statistic, nodesSpacing, clusterSplit, markBestModel, markStars, alpha, color, colorsDf, palette = NULL, title, subtitle, panelGrid)
```

Arguments

- `factorMerger`: object to be plotted
- `statistic`: this parameter will be passed to plotSimpleTree
- `nodesSpacing`: this parameter will be passed to plotSimpleTree
- `clusterSplit`: this parameter will be passed to plotSimpleTree
- `markBestModel`: this parameter will be passed to plotSimpleTree
plotTukey

TukeyHSD Plot

Description

TODO: Aga

Usage

plotTukey(factorMerger, palette = NULL)

Arguments

factorMerger object of a class factorMerger
palette RColorBrewer color palette

print.factorMerger factorMerger

Description

factorMerger is the base class of the factorMerger package. factorMerger stores information about response, initial factor, its levels and their abbreviated names (field map). factorMerger creates its own structure of inheritance connected with model family.

When merging is applied, factorMerger shows which levels have been merged together with the matching summary statistics: model loglikelihood, pvalue for the LRT test against the full model and Generalized Information Criterion value.

Usage

S3 method for class 'factorMerger'
print(x, ...)

Arguments

x object of a class factorMerger.
... Other arguments
Index

*Topic data
 BRCA, 2
 ess, 4
 pisa2012, 11

BRCA, 2

coxph, 8, 10
cutTree, 3

ess, 4

generateMultivariateSample, 4
generateSample, 5
getOptimalPartition, 5
getOptimalPartitionDf, 6
glm, 8, 10
groupsStats, 7

lm, 8, 10

mergeFactor.default (mergeFactors), 7
mergeFactors, 7
mergeFactors.default, 8
mergeFactors.formula, 9
mergingHistory, 11

pisa2012, 11
plot.factorMerger, 12
plotBoxplot, 14
plotFrequency, 14
plotGIC, 15
plotHeatmap, 15
plotMeansAndConfInt, 16
plotProfile, 16
plotProportion, 17
plotResponse, 17
plotSurvival, 18
plotTree, 18
plotTukey, 19
print.factorMerger, 19