Package ‘fabletools’

November 29, 2021

Title Core Tools for Packages in the ‘fable’ Framework

Version 0.3.2

Description Provides tools, helpers and data structures for developing models and time series functions for ‘fable’ and extension packages. These tools support a consistent and tidy interface for time series modelling and analysis.

License GPL-3

URL https://fabletools.tidyverts.org/, https://github.com/tidyverts/fabletools

BugReports https://github.com/tidyverts/fabletools/issues

Depends R (>= 3.1.3)

Imports tsibble (>= 0.9.0),
 tibble (>= 1.4.1),
 ggplot2 (>= 3.0.0),
 tidyselect,
 rlang (>= 0.4.5),
 stats,
 dplyr (>= 1.0.0),
 tidyr (>= 1.1.0),
 generics,
 R6,
 utils,
 vctrs (>= 0.2.2),
 distributional (>= 0.2.2),
 progressr,
 lifecycle

Suggests covr,
 crayon,
 fable (>= 0.2.0),
 future.apply,
 knitr,
 pillar (>= 1.0.1),
 feasts (>= 0.1.2),
 rmarkdown,
 spelling,
 testthat,
 tsibbledata (>= 0.2.0),
R topics documented:

- lubridate
- Matrix

VignetteBuilder knitr
RdMacros lifecycle
ByteCompile true
Encoding UTF-8
Language en-GB

Roxygen list(markdown = TRUE, roclets=c('rd', 'collate', 'namespace'))

RoxygenNote 7.1.2

R topics documented:

- fabletools-package
- accuracy
- aggregate_index
- aggregate_key
- agg_vec
- as_dable
- as_fable
- as_mable
- augment.mdl_df
- autoplot.dcmp_ts
- autoplot.fbl_ts
- autoplot.tbl_ts
- bias_adjust
- bottom_up
- box_cox
- combination_ensemble
- combination_model
- combination_weighted
- common_periods
- common_xregs
- components.mdl_df
- construct_fc
- dable
- decomposition_model
- distribution_var
- estimate
- fable
- features
- features_by_pkg
- features_by_tag
- feature_set
- fitted.mdl_df
- forecast
- generate.mdl_df
- glance.mdl_df
- hypothesize.mdl_df
R topics documented:

interpolate.mdl_df .. 31
is_aggregated .. 32
is_dable ... 32
is_fable ... 32
is_mable ... 33
is_model ... 33
MAAPE ... 33
mable ... 34
mable_vars ... 34
MDA ... 35
ME ... 36
middle_out ... 37
min_trace ... 38
model ... 38
model_lhs ... 39
model_rhs ... 40
model_sum .. 40
new_model_class ... 41
new_specials .. 42
new_transformation .. 42
outliers ... 43
parse_model .. 43
parse_model_lhs .. 44
parse_model_rhs .. 44
percentile_score .. 45
reconcile ... 46
refit.mdl_df ... 47
register_feature .. 47
report ... 48
residuals.mdl_df .. 48
response .. 49
response_vars ... 49
scenarios .. 50
skill_score .. 50
special_xreg .. 51
stream ... 51
tidy.mdl_df ... 52
top_down ... 52
traverse ... 53
unpack_hilo ... 54
validate_formula .. 55
winkler_score .. 55

Index ... 57
fabletools-package

fabletools: Core Tools for Packages in the 'fable' Framework

Description

Provides tools, helpers and data structures for developing models and time series functions for `fable` and extension packages. These tools support a consistent and tidy interface for time series modelling and analysis.

Author(s)

Maintainer: Mitchell O’Hara-Wild <mail@mitchelloharawild.com>

Authors:
- Rob Hyndman
- Earo Wang

Other contributors:
- Di Cook [contributor]
- George Athanasopoulos [contributor]
- David Holt [contributor]

See Also

Useful links:
- https://fabletools.tidyverts.org/
- https://github.com/tidyverts/fabletools
- Report bugs at https://github.com/tidyverts/fabletools/issues

accuracy

Evaluate accuracy of a forecast or model

Description

Summarise the performance of the model using accuracy measures. Accuracy measures can be computed directly from models as the one-step-ahead fitted residuals are available. When evaluating accuracy on forecasts, you will need to provide a complete dataset that includes the future data and data used to train the model.

Usage

```r
accuracy(object, ...)
```

```r
## S3 method for class 'mdl_df'
accuracy(object, measures = point_accuracy_measures, ...)
```

```r
## S3 method for class 'fbl_ts'
accuracy(object, data, measures = point_accuracy_measures, ..., by = NULL)
```
Arguments

- **object**: A model or forecast object
- **measures**: A list of accuracy measure functions to compute (such as `point_accuracy_measures`, `interval_accuracy_measures`, or `distribution_accuracy_measures`)
- **data**: A dataset containing the complete model dataset (both training and test data). The training portion of the data will be used in the computation of some accuracy measures, and the test data is used to compute the forecast errors.
- **by**: Variables over which the accuracy is computed (useful for computing across forecast horizons in cross-validation). If `by` is `NULL`, groups will be chosen automatically from the key structure.

See Also

- Evaluating forecast accuracy

Examples

```r
library(fable)
library(tsibble)
library(tsibbledata)
library(dplyr)

fit <- aus_production %>%
  filter(Quarter < yearquarter("2006 Q1")) %>%
  model(ets = ETS(log(Beer) ~ error("M") + trend("Ad") + season("A")))

# In-sample training accuracy does not require extra data provided.
accuracy(fit)

# Out-of-sample forecast accuracy requires the future values to compare with.
# All available future data will be used, and a warning will be given if some
# data for the forecast window is unavailable.
fc <- fit %>%
  forecast(h = "5 years")
fc %>%
  accuracy(aus_production)

# It is also possible to compute interval and distributional measures of
# accuracy for models and forecasts which give forecast distributions.
fc %>%
  accuracy(
    aus_production,
    measures = list(interval_accuracy_measures, distribution_accuracy_measures)
  )
```

aggregate_index

Expand a dataset to include temporal aggregates

Description

Experimental
Usage
aggregate_index(.data, .window, ..., .offset = "end", .bin_size = NULL)

Arguments
.data A tsibble.
.window Temporal aggregations to include. The default (NULL) will automatically identify appropriate temporal aggregations. This can be specified in several ways (see details).
... <data-masking> Name-value pairs of summary functions. The name will be the name of the variable in the result. The value can be:
 • A vector of length 1, e.g. min(x), n(), or sum(is.na(y)).
 • A vector of length n, e.g. quantile().
 • A data frame, to add multiple columns from a single expression.
.offset Offset the temporal aggregation windows to align with the start or end of the data. If FALSE, no offset will be applied (giving common breakpoints for temporal bins.)
.bin_size Temporary. Define the number of observations in each temporal bucket

Details
This feature is very experimental. It currently allows for temporal aggregation of daily data as a proof of concept.

The aggregation .window can be specified in several ways:

 • A character string, containing one of "day", "week", "month", "quarter" or "year". This can optionally be preceded by a (positive or negative) integer and a space, or followed by "s".
 • A number, taken to be in days.
 • A difftime object.

Examples
library(tsibble)
pedestrian %>%
 # Currently only supports daily data
 index_by(Date) %>%
 dplyr::summarise(Count = sum(Count)) %>%
 # Compute weekly aggregates
 fabletools:::aggregate_index("1 week", Count = sum(Count))
Description

Uses the structural specification given in .spec to aggregate a time series. A grouped structure is specified using grp1 * grp2, and a nested structure is specified via parent / child. Aggregating the key structure is commonly used with forecast reconciliation to produce coherent forecasts over some hierarchy.

Usage

aggregate_key(.data, .spec, ...)

Arguments

.data A tsibble.
.spec The specification of aggregation structure.
... <data-masking> Name-value pairs of summary functions. The name will be the name of the variable in the result.

The value can be:

- A vector of length 1, e.g. min(x), n(), or sum(is.na(y)).
- A vector of length n, e.g. quantile().
- A data frame, to add multiple columns from a single expression.

Details

This function is experimental, and is subject to change in the future.

The way in which the measured variables are aggregated is specified in a similar way to how [dplyr::summarise()] is used.

See Also

reconcile(), is_aggregated()

Examples

library(tsibble)
tourism %>%
aggregate_key(Purpose * (State / Region), Trips = sum(Trips))
agg_vec

Create an aggregation vector

Description

[Maturing]

Usage

```
agg_vec(x = character(), aggregated = logical(vec_size(x)))
```

Arguments

- `x`: The vector of values.
- `aggregated`: A logical vector to identify which values are aggregated.

Details

An aggregation vector extends usual vectors by adding aggregated values. These vectors are typically produced via the `aggregate_key` function, however it can be useful to create them manually to produce more complicated hierarchies (such as unbalanced hierarchies).

Examples

```
agg_vec(
  x = c(NA, "A", "B"),
  aggregated = c(TRUE, FALSE, FALSE)
)
```

as_dable

Coerce to a dable object

Description

Coerce to a dable object

Usage

```
as_dable(x, ...)
```

```r
## S3 method for class 'tbl_df'
as_dable(x, response, method = NULL, seasons = list(), aliases = list(), ...)
```

```r
## S3 method for class 'tbl_ts'
as_dable(x, response, method = NULL, seasons = list(), aliases = list(), ...)
```
as_fable

Arguments

x Object to be coerced to a dable (dcmp_ts)
...
response The character vector of response variable(s).
method The name of the decomposition method.
seasons A named list describing the structure of seasonal components (such as period, and base).
aliases A named list of calls describing common aliases computed from components.

Description

Coerce to a fable object

Usage

as_fable(x, ...)

S3 method for class 'tbl_ts'
as_fable(x, response, distribution, ...)

S3 method for class 'grouped_ts'
as_fable(x, response, distribution, ...)

S3 method for class 'tbl_df'
as_fable(x, response, distribution, ...)

S3 method for class 'fbl_ts'
as_fable(x, response, distribution, ...)

S3 method for class 'grouped_df'
as_fable(x, response, distribution, ...)

S3 method for class 'forecast'
as_fable(x, ..., point_forecast = list(.mean = mean))

Arguments

x Object to be coerced to a fable (fbl_ts)
...
response The character vector of response variable(s).
distribution The name of the distribution column (can be provided using a bare expression).
point_forecast The point forecast measure(s) which should be returned in the resulting fable. Specified as a named list of functions which accept a distribution and return a vector. To compute forecast medians, you can use list(.median = median).
as_mable

Coerce a dataset to a mable

Description

Coerce a dataset to a mable

Usage

```r
as_mable(x, 

## S3 method for class 'data.frame'
as_mable(x, key = NULL, model = NULL, 

Arguments

- `x`: A dataset containing a list model column.
- `...`: Additional arguments passed to other methods.
- `key`: Structural variable(s) that identify each model.
- `model`: Identifiers for the columns containing model(s).
```

augment.mdl_df

Augment a mable

Description

Uses a fitted model to augment the response variable with fitted values and residuals. Response residuals (back-transformed) are stored in the `.resid` column, while innovation residuals (transformed) are stored in the `.innov` column.

Usage

```r
## S3 method for class 'mdl_df'
augment(x, 

## S3 method for class 'mdl_ts'
augment(x, type = NULL, 

Arguments

- `x`: A mable.
- `...`: Arguments for model methods.
- `type`: Deprecated.
Examples

```r
library(fable)
library(tsibbledata)

Forecasting with an ETS(M,Ad,A) model to Australian beer production
aus_production %>%
 model(ets = ETS(log(Beer) ~ error("M") + trend("Ad") + season("A"))) %>%
 augment()
```

autplot.dcmp_ts  Decomposition plots

Description

Produces a faceted plot of the components used to build the response variable of the dable. Useful for visualising how the components contribute in a decomposition or model.

Usage

```r
S3 method for class 'dcmp_ts'
autplot(object, .vars = NULL, scale_bars = TRUE, level = c(80, 95), ...)
```

Arguments

- `object`: A dable.
- `.vars`: The column of the dable used to plot. By default, this will be the response variable of the decomposition.
- `scale_bars`: If TRUE, each facet will include a scale bar which represents the same units across each facet.
- `level`: If the decomposition contains distributions, which levels should be used to display intervals?
- `...`: Further arguments passed to `ggplot2::geom_line()`, which can be used to specify fixed aesthetics such as `colour = "red"` or `size = 3`.

Examples

```r
library(feasts)
library(tsibbledata)
aus_production %>%
 model(STL(Beer)) %>%
 components() %>%
 autplot()
```
autoplot.fbl_ts

Plot a set of forecasts

Description

Produces a forecast plot from a fable. As the original data is not included in the fable object, it will need to be specified via the data argument. The data argument can be used to specify a shorter period of data, which is useful to focus on the more recent observations.

Usage

```r
S3 method for class 'fbl_ts'
autoplot(object, data = NULL, level = c(80, 95), show_gap = TRUE, ...)
```

```r
S3 method for class 'fbl_ts'
autolayer(
 object,
 data = NULL,
 level = c(80, 95),
 point_forecast = list(mean = mean),
 show_gap = TRUE,
 ...
)
```

Arguments

- **object** A fable.
- **data** A tsibble with the same key structure as the fable.
- **level** The confidence level(s) for the plotted intervals.
- **show_gap** Setting this to FALSE will connect the most recent value in data with the forecasts.
- **...** Further arguments passed used to specify fixed aesthetics for the forecasts such as colour = "red" or size = 3.
- **point_forecast** The point forecast measure to be displayed in the plot.

Examples

```r
library(fable)
library(tsibbledata)

fc <- aus_production %>%
 model(ets = ETS(log(Beer) ~ error("M") + trend("Ad") + season("A"))) %>%
 forecast(h = "3 years")

fc %>%
 autoplot(aus_production)

aus_production %>%
 autoplot(Beer) +
 autolayer(fc)
```
autoplot.tbl_ts

Plot time series from a tsibble

Description

Produces a time series plot of one or more variables from a tsibble. If the tsibble contains a multiple keys, separate time series will be identified by colour.

Usage

## S3 method for class 'tbl_ts'
autoplot(object, .vars = NULL, ...)

## S3 method for class 'tbl_ts'
autolayer(object, .vars = NULL, ...)

Arguments

object

A tsibble.

.vars

A bare expression containing data you wish to plot. Multiple variables can be plotted using \texttt{ggplot2::vars()}.

...

Further arguments passed to \texttt{ggplot2::geom_line()}, which can be used to specify fixed aesthetics such as \texttt{colour = "red"} or \texttt{size = 3}.

Examples

library(fable)
library(tsibbledata)
library(tsibble)

tsibbledata::gafa_stock %>%
  autoplot(vars(Close, log(Close)))


bias_adjust

Bias adjust back-transformation functions

Description

To produce forecast means (instead of forecast medians) it is necessary to adjust the back-transformation function relative to the forecast variance.

Usage

bias_adjust(bt, sd)

Arguments

bt

The back-transformation function

sd

The forecast standard deviation
Details

More details about bias adjustment can be found in the transformations vignette: read the vignette:

vignette("transformations", package = "fable")

Examples

adj_fn <- bias_adjust(function(x) exp(x), 1:10)
y <- rnorm(10)
exp(y)
adj_fn(y)

bottom_up

Bottom up forecast reconciliation

Description

[Experimental]

Usage

bottom_up(models)

Arguments

models A column of models in a mable.

Details

Reconciles a hierarchy using the bottom up reconciliation method. The response variable of the hierarchy must be aggregated using sums. The forecasted time points must match for all series in the hierarchy.

See Also

reconcile(), aggregate_key()

box_cox

Box Cox Transformation

Description

box_cox() returns a transformation of the input variable using a Box-Cox transformation. inv_box_cox() reverses the transformation.

Usage

box_cox(x, lambda)

inv_box_cox(x, lambda)
**combination_ensemble**

**Arguments**

- `x` a numeric vector.
- `lambda` a numeric value for the transformation parameter.

**Details**

The Box-Cox transformation is given by

\[
  f_\lambda(x) = \frac{x^\lambda - 1}{\lambda}
\]

if \( \lambda \neq 0 \). For \( \lambda = 0 \),

\[
  f_0(x) = \log(x)
\]

**Value**

a transformed numeric vector of the same length as `x`.

**Author(s)**

Rob J Hyndman & Mitchell O’Hara-Wild

**References**


**Examples**

```r
library(tsibble)
library(dplyr)
airmiles %>%
 as_tsibble() %>%
 mutate(box_cox = box_cox(value, lambda = 0.3))
```

---

**combination_ensemble**  
*Ensemble combination*

**Description**

Ensemble combination

**Usage**

```r
combination_ensemble(..., weights = c("equal", "inv_var"))
```

**Arguments**

- `...` Estimated models used in the ensemble.
- `weights` The method used to weight each model in the ensemble.

**See Also**

`combination_weighted()`
combination_model  Combination modelling

Description

Combines multiple model definitions (passed via ...) to produce a model combination definition using some combination function (cmbn_fn). Currently distributional forecasts are only supported for models producing normally distributed forecasts.

Usage

combination_model(..., cmbn_fn = combination_ensemble, cmbn_args = list())

Arguments

...  Model definitions used in the combination.

cmbn_fn  A function used to produce the combination.

cmbn_args  Additional arguments passed to cmbn_fn.

Details

A combination model can also be produced using mathematical operations.

Examples

library(fable)
library(tsibble)
library(tsibbledata)

# cmbn1 and cmbn2 are equivalent and equally weighted.
aus_production %>%
  model(
    cmbn1 = combination_model(SNAIVE(Beer), TSLM(Beer ~ trend() + season())),
    cmbn2 = (SNAIVE(Beer) + TSLM(Beer ~ trend() + season()))/2
  )

# An inverse variance weighted ensemble.
aus_production %>%
  model(
    cmbn1 = combination_model(
      SNAIVE(Beer), TSLM(Beer ~ trend() + season()),
      cmbn_args = list(weights = "inv_var")
    )
  )
**combination_weighted**  

**Description**  
Weighted combination

**Usage**  
```
combination_weighted(..., weights = NULL)
```

**Arguments**  
- `...`: Estimated models used in the ensemble.  
- `weights`: The numeric weights applied to each model in `...`

**See Also**  
- `combination_ensemble()`

---

**common_periods**  

**Extract frequencies for common seasonal periods**

**Description**  
Extract frequencies for common seasonal periods

**Usage**  
```
common_periods(x)
```

## Default S3 method:  
```
common_periods(x)
```

## S3 method for class `Var`  
```
common_periods(x)
```

get_frequencies(period, ...)  
## S3 method for class `numeric`  
```
get_frequencies(period, data, ..., .auto = c("smallest", "largest", "all"))
```

get_frequencies(period, data, ..., .auto = c("smallest", "largest", "all"))
get_frequencies(period, data, ...)

## S3 method for class 'Period'
get_frequencies(period, data, ...)

Arguments

- **x**: An object containing temporal data (such as a tsibble, interval, datetime and others.)
- **period**: Specification of the time-series period
- **...**: Other arguments to be passed on to methods
- **data**: A tsibble
- **.auto**: The method used to automatically select the appropriate seasonal periods

Value

A named vector of frequencies appropriate for the provided data.

References

[https://robjhyndman.com/hyndsight/seasonal-periods/](https://robjhyndman.com/hyndsight/seasonal-periods/)

Examples

```r
common_periods(tsibble::pedestrian)
```

---

### common_xregs

**Common exogenous regressors**

**Description**

These special functions provide interfaces to more complicated functions within the model formulae interface.

**Usage**

```r
common_xregs
```

**Specials**

- **trend**: The `trend` special includes common linear trend regressors in the model. It also supports piecewise linear trend via the `knots` argument.
  ```r
trend(knots = NULL, origin = NULL)
  ```

  - **knots**: A vector of times (same class as the data’s time index) identifying the position of knots for a piecewise linear trend.
  - **origin**: An optional time value to act as the starting time for the trend.

- **season**: The `season` special includes seasonal dummy variables in the model.
  ```r
season(period = NULL)
  ```
period: The periodic nature of the seasonality. This can be either a number indicating the number of observations in each seasonal period, or text to indicate the duration of the seasonal window (for example, annual seasonality would be "1 year").

fourier: The fourier special includes seasonal fourier terms in the model. The maximum order of the fourier terms must be specified using K.

fourier(period = NULL, K, origin = NULL)

period: The periodic nature of the seasonality. This can be either a number indicating the number of observations in each seasonal period, or text to indicate the duration of the seasonal window (for example, annual seasonality would be "1 year").

K: The maximum order of the fourier terms.

origin: An optional time value to act as the starting time for the fourier series.

---

components.mdl_df

Extract components from a fitted model

Description

Allows you to extract elements of interest from the model which can be useful in understanding how they contribute towards the overall fitted values.

Usage

```r
S3 method for class 'mdl_df'
components(object, ...)

S3 method for class 'mdl_ts'
components(object, ...)
```

Arguments

- `object`: A mable.
- `...`: Other arguments passed to methods.

Details

A mable will be returned, which will allow you to easily plot the components and see the way in which components are combined to give forecasts.

Examples

```r
library(fable)
library(tsibbledata)

Forecasting with an ETS(M,Ad,A) model to Australian beer production
aus_production %>%
 model(ets = ETS(log(Beer) ~ error("M") + trend("Ad") + season("A"))) %>%
 components() %>%
 autoplot()
```
**construct_fc**

*Construct a new set of forecasts*

**Description**

[Deprecated]

**Usage**

```
construct_fc(point, sd, dist)
```

**Arguments**

- **point**: The transformed point forecasts
- **sd**: The standard deviation of the transformed forecasts
- **dist**: The forecast distribution (typically produced using `new_fcdist`)

**Details**

This function is deprecated. `forecast()` methods for a model should return a vector of distributions using the distributional package.

Backtransformations are automatically handled, and so no transformations should be specified here.

---

**dable**

*Create a dable object*

**Description**

A dable (decomposition table) data class (`dcmp_ts`) which is a tsibble-like data structure for representing decompositions. This data class is useful for representing decompositions, as its print method describes how its columns can be combined to produce the original data, and has a more appropriate `autoplot()` method for displaying decompositions. Beyond this, a dable (`dcmp_ts`) behaves very similarly to a tsibble (`tbl_ts`).

**Usage**

```
dable(..., response, method = NULL, seasons = list(), aliases = list())
```

**Arguments**

- **...**: Arguments passed to `tsibble::tsibble()`.
- **response**: The name of the response variable column.
- **method**: The name of the decomposition method.
- **seasons**: A named list describing the structure of seasonal components (such as `period`, and `base`).
- **aliases**: A named list of calls describing common aliases computed from components.
**decomposition_model**  

**Description**  
This function allows you to specify a decomposition combination model using any additive decomposition. It works by first decomposing the data using the decomposition method provided to `dcmp_fn` with the given formula. Secondary models are used to fit each of the components from the resulting decomposition. These models are specified after the decomposition formula. All non-seasonal decomposition components must be specified, and any unspecified seasonal components will be forecasted using seasonal naive. These component models will be combined according to the decomposition method, giving a combination model for the response of the decomposition.

**Usage**  
`decomposition_model(dcmp, ...)`

**Arguments**  
- `dcmp` A model definition which supports extracting decomposed components().
- `...` Model definitions used to model the components

**See Also**  
*Forecasting: Principles and Practice* - Forecasting Decomposition

**Examples**  
```r
library(fable)
library(feasts)
library(tsibble)
library(dplyr)

vic_food <- tsibbledata::aus_retail %>%
 filter(State == "Victoria", Industry == "Food retailing")

Identify an appropriate decomposition
vic_food %>%
 model(STL(log(Turnover) ~ season(window = Inf))) %>%
 components() %>%
 autoplot()

Use an ARIMA model to seasonally adjusted data, and SNAIVE to season_year
Any model can be used, and seasonal components will default to use SNAIVE.
my_dcmp_spec <- decomposition_model(
 STL(log(Turnover) ~ season(window = Inf)),
 ETS(season_adjust ~ season("N"), SNAIVE(season_year))
)

vic_food %>%
 model(my_dcmp_spec) %>%
 forecast(h="5 years") %>%
 autoplot(vic_food)
```
distribution_var  
Return distribution variable

**Description**
distribution_var() returns a character vector of the distribution variable in the data.

**Usage**
distribution_var(x)

**Arguments**
- **x**: A dataset containing a distribution variable (such as a fable).

---

estimate  
Estimate a model

**Description**
Estimate a model

**Usage**
estimate(.data, ...)

```r
S3 method for class 'tbl_ts'
estimate(.data, .model, ...)
```

**Arguments**
- **.data**: A data structure suitable for the models (such as a tsibble).
- **...**: Further arguments passed to methods.
- **.model**: Definition for the model to be used.
fable  
Create a fable object

Description
A fable (forecast table) data class (fb1_ts) which is a tsibble-like data structure for representing forecasts. In extension to the key and index from the tsibble (tbl_ts) class, a fable (fb1_ts) must also contain a single distribution column that uses values from the distributional package.

Usage
fable(..., response, distribution)

Arguments
...  Arguments passed to tsibble::tsibble().  
response  The character vector of response variable(s).  
distribution  The name of the distribution column (can be provided using a bare expression).

features  
Extract features from a dataset

Description
Create scalar valued summary features for a dataset from feature functions.

Usage
features(.tbl, .var, features, ...)
features_at(.tbl, .vars, features, ...)
features_all(.tbl, features, ...)
features_if(.tbl, .predicate, features, ...)

Arguments
.tbl  A dataset
.var, .vars  The variable(s) to compute features on
features  A list of functions (or lambda expressions) for the features to compute. feature_set() is a useful helper for building sets of features.
...  Additional arguments to be passed to each feature. These arguments will only be passed to features which use it in their formal arguments (base::formals()), and not via their ... . While passing na.rm = TRUE to stats::var() will work, it will not for base::mean() as its formals are x and ... . To more precisely pass inputs to each function, you should use lambdas in the list of features (~ mean(., na.rm = TRUE)).
.predicate  A predicate function (or lambda expression) to be applied to the columns or a logical vector. The variables for which .predicate is or returns TRUE are selected.
Details

Lists of available features can be found in the following pages:

- Features by package
- Features by tag

See Also

feature_set()

Examples

# Provide a set of functions as a named list to features.
library(tsibble)
tourism %>%
  features(Trips, features = list(mean = mean, sd = sd))

# Search and use useful features with `feature_set()`.

library(feasts)
tourism %>%
  features(Trips, features = feature_set(tags = "autocorrelation"))

# Best practice is to use anonymous functions for additional arguments

library(tsibble)
tourism %>%
  features(Trips, list(~ quantile(., probs=seq(0,1,by=0.2))))

Description

This documentation lists all available in currently loaded packages. This is a useful reference for making a feature_set() from particular package(s).

Details

No features found in currently loaded packages.

See Also

features_by_tag
features_by_tag

Description
This documentation lists all available in currently loaded packages. This is a useful reference for making a feature_set() from particular tag(s).

Details
No features found in currently loaded packages.

See Also
features_by_pkg

feature_set
Create a feature set from tags

Description
Construct a feature set from features available in currently loaded packages. Lists of available features can be found in the following pages:

- Features by package
- Features by tag

Usage
feature_set(pkgs = NULL, tags = NULL)

Arguments
pkgs
The package(s) from which to search for features. If NULL, all registered features from currently loaded packages will be searched.

tags
Tags used to identify similar groups of features. If NULL, all tags will be included.

Registering features
Features can be registered for use with the feature_set() function using register_feature(). This function allows you to register a feature along with the tags associated with it. If the features are being registered from within a package, this feature registration should happen at load time using [.onLoad()].
### fitted.mdl_df

**Description**

Extracts the fitted values from each of the models in a mable. A tsibble will be returned containing these fitted values. Fitted values will be automatically back-transformed if a transformation was specified.

**Usage**

```r
S3 method for class 'mdl_df'
fitted(object, ...)
```

```r
S3 method for class 'mdl_ts'
fitted(object, h = 1, ...)
```

**Arguments**

- `object` A mable or time series model.
- `...` Other arguments passed to the model method for `fitted()`
- `h` The number of steps ahead that these fitted values are computed from.

### forecast

**Description**

The forecast function allows you to produce future predictions of a time series from fitted models. If the response variable has been transformed in the model formula, the transformation will be automatically back-transformed (and bias adjusted if `bias_adjust` is `TRUE`). More details about transformations in the fable framework can be found in `vignette("transformations", package = "fable")`.

**Usage**

```r
forecast(object, ...)
```

```r
S3 method for class 'mdl_df'
forecast(
 object,
 new_data = NULL,
 h = NULL,
 point_forecast = list(.mean = mean),
 ...
)
```

```r
S3 method for class 'mdl_ts'
forecast(
```
Arguments

object The time series model used to produce the forecasts

... Additional arguments for forecast model methods.

ew_data A tsibble containing future information used to forecast.

h The forecast horizon (can be used instead of new_data for regular time series with no exogenous regressors).

point_forecast The point forecast measure(s) which should be returned in the resulting fable. Specified as a named list of functions which accept a distribution and return a vector. To compute forecast medians, you can use list(.mean = mean).

bias_adjust Deprecated. Please use point_forecast to specify the desired point forecast method.

simulate Should forecasts be based on simulated future paths instead of analytical results.

bootstrap Should innovations from simulated forecasts be bootstrapped from the model’s fitted residuals. This allows the forecast distribution to have a different underlying shape which could better represent the nature of your data.

times The number of future paths for simulations if simulate = TRUE.

Details

The forecasts returned contain both point forecasts and their distribution. A specific forecast interval can be extracted from the distribution using the hilo() function, and multiple intervals can be obtained using report(). These intervals are stored in a single column using the hilo class, to extract the numerical upper and lower bounds you can use unpack_hilo().

Value

A fable containing the following columns:

• .model: The name of the model used to obtain the forecast. Taken from the column names of models in the provided mable.

• The forecast distribution. The name of this column will be the same as the dependent variable in the model(s). If multiple dependent variables exist, it will be named .distribution.

• Point forecasts computed from the distribution using the functions in the point_forecast argument.

• All columns in new_data, excluding those whose names conflict with the above.
Examples

```r
library(fable)
library(tsibble)
library(tsibbledata)
library(dplyr)
library(tidyr)

Forecasting with an ETS(M,Ad,A) model to Australian beer production
beer_fc <- aus_production %>%
 model(ets = ETS(log(Beer) ~ error("M") + trend("Ad") + season("A"))) %>%
 forecast(h = "3 years")

Compute 80% and 95% forecast intervals
beer_fc %>%
 hilo(level = c(80, 95))

beer_fc %>%
 autoplot(aus_production)

Forecasting with a seasonal naive and linear model to the monthly
"Food retailing" turnover for each Australian state/territory.
library(dplyr)
aus_retail %>%
 filter(Industry == "Food retailing") %>%
 model(
 snaive = SNAIVE(Turnover),
 ets = TSLM(log(Turnover) ~ trend() + season()),
) %>%
 forecast(h = "2 years 6 months") %>%
 autoplot(filter(aus_retail, Month >= yearmonth("2000 Jan")), level = 90)

Forecast GDP with a dynamic regression model on log(GDP) using population and
an automatically chosen ARIMA error structure. Assume that population is fixed
in the future.
aus_economy <- global_economy %>%
 filter(Country == "Australia")
fit <- aus_economy %>%
 model(lm = ARIMA(log(GDP) ~ Population))
future_aus <- new_data(aus_economy, n = 10) %>%
 mutate(Population = last(aus_economy$Population))

fit %>%
 forecast(new_data = future_aus) %>%
 autoplot(aus_economy)
```

---

**generate.mdl_df**

Generate responses from a mable

**Description**

Use a model’s fitted distribution to simulate additional data with similar behaviour to the response. This is a tidy implementation of \link[stats]{simulate}. 
Usage

```r
S3 method for class 'mdl_df'
generate(x, new_data = NULL, h = NULL, times = 1, seed = NULL, ...)

S3 method for class 'mdl_ts'
generate(
 x,
 new_data = NULL,
 h = NULL,
 times = 1,
 seed = NULL,
 bootstrap = FALSE,
 bootstrap_block_size = 1,
 ...
)
```

Arguments

- `x`: A `mable`.
- `new_data`: The data to be generated (time index and exogenous regressors).
- `h`: The simulation horizon (can be used instead of `new_data` for regular time series with no exogenous regressors).
- `times`: The number of replications.
- `seed`: The seed for the random generation from distributions.
- `...`: Additional arguments for individual simulation methods.
- `bootstrap`: If `TRUE`, then forecast distributions are computed using simulation with resampled errors.
- `bootstrap_block_size`: The bootstrap block size specifies the number of contiguous residuals to be taken in each bootstrap sample.

Details

Innovations are sampled by the model’s assumed error distribution. If `bootstrap` is `TRUE`, innovations will be sampled from the model’s residuals. If `new_data` contains the `.innov` column, those values will be treated as innovations for the simulated paths.

Examples

```r
library(fable)
library(dplyr)
UKLungDeaths <- as_tsibble(cbind(mdeaths, fdeaths), pivot_longer = FALSE)
UKLungDeaths %>%
 model(lm = TSLM(mdeaths ~ fourier("year", K = 4) + fdeaths)) %>%
generate(UKLungDeaths, times = 5)
```
Description

Uses the models within a mable to produce a one row summary of their fits. This typically contains information about the residual variance, information criterion, and other relevant summary statistics. Each model will be represented with a row of output.

Usage

```r
S3 method for class 'mdl_df'
glance(x, ...)

S3 method for class 'mdl_ts'
glance(x, ...)
```

Arguments

- `x`: A mable.
- `...`: Arguments for model methods.

Examples

```r
library(fable)
library(tsibbledata)

olympic_running %>%
 model(lm = TSLM(log(Time) ~ trend())) %>%
 glance()
```

Description

This function will return the results of a hypothesis test for each model in the mable.

Usage

```r
S3 method for class 'mdl_df'
hypothesize(x, ...)
```

Arguments

- `x`: A mable.
- `...`: Arguments for model methods.
Examples

```r
library(fable)
library(tsibbledata)

olympic_running %>%
 model(lm = TSLM(log(Time) ~ trend())) %>%
hypothesize()
```

---

**interpolate.mdl_df**

**Interpolate missing values**

Description

Uses a fitted model to interpolate missing values from a dataset.

Usage

```r
S3 method for class 'mdl_df'
interpolate(object, new_data, ...)

S3 method for class 'mdl_ts'
interpolate(object, new_data, ...)
```

Arguments

- **object** A mable containing a single model column.
- **new_data** A dataset with the same structure as the data used to fit the model.
- **...** Other arguments passed to interpolate methods.

Examples

```r
library(fable)
library(tsibbledata)

The fastest running times for the olympics are missing for years during
world wars as the olympics were not held.
olympic_running

olympic_running %>%
 model(TSLM(Time ~ trend())) %>%
 interpolate(olympic_running)
```
**is_aggregated**  
Is the element an aggregation of smaller data

**Description**  
Is the element an aggregation of smaller data

**Usage**  
is_aggregated(x)

**Arguments**  
\( x \) An object.

**See Also**  
aggregate_key

---

**is_dable**  
Is the object a dable

**Description**  
Is the object a dable

**Usage**  
is_dable(x)

**Arguments**  
\( x \) An object.

---

**is_fable**  
Is the object a fable

**Description**  
Is the object a fable

**Usage**  
is_fable(x)

**Arguments**  
\( x \) An object.
**is_mable**

*Is the object a mable*

**Description**

Is the object a mable

**Usage**

```r
is_mable(x)
```

**Arguments**

- `x`: An object.

**is_model**

*Is the object a model*

**Description**

Is the object a model

**Usage**

```r
is_model(x)
```

**Arguments**

- `x`: An object.

**MAAPE**

*Mean Arctangent Absolute Percentage Error*

**Description**

Mean Arctangent Absolute Percentage Error

**Usage**

```r
MAAPE(.resid, .actual, na.rm = TRUE, ...)
```

**Arguments**

- `.resid`: A vector of residuals from either the training (model accuracy) or test (forecast accuracy) data.
- `.actual`: A vector of responses matching the fitted values (for forecast accuracy, `new_data` must be provided).
- `na.rm`: Remove the missing values before calculating the accuracy measure.
- `...`: Additional arguments for each measure.
References


---

mable

**Create a new mable**

Description

A mable (model table) data class (mdl_df) is a tibble-like data structure for applying multiple models to a dataset. Each row of the mable refers to a different time series from the data (identified by the key columns). A mable must contain at least one column of time series models (mdl_ts), where the list column itself (lst_mdl) describes how these models are related.

Usage

```r
mable(..., key = NULL, model = NULL)
```

Arguments

- `...`: A set of name-value pairs. These arguments are processed with `rlang::quos()` and support unquote via `!!` and unquote-splice via `!!!`. Use `:=` to create columns that start with a dot. Arguments are evaluated sequentially. You can refer to previously created elements directly or using the `.data` pronoun. To refer explicitly to objects in the calling environment, use `!!` or `.env`, e.g. `!!`.data or `.env$.data` for the special case of an object named `.data`.
- `key`: Structural variable(s) that identify each model.
- `model`: Identifiers for the columns containing model(s).

---

mable_vars

**Return model column variables**

Description

`mable_vars()` returns a character vector of the model variables in the object.

Usage

```r
mable_vars(x)
```

Arguments

- `x`: A dataset containing models (such as a mable).
Directional accuracy measures

Description
A collection of accuracy measures based on the accuracy of the prediction’s direction (say, increasing or decreasing).

Usage
MDA(.resid, .actual, na.rm = TRUE, reward = 1, penalty = 0, ...)
MDV(.resid, .actual, na.rm = TRUE, ...)
MDPV(.resid, .actual, na.rm = TRUE, ...)
directional_accuracy_measures

Arguments
.resid A vector of residuals from either the training (model accuracy) or test (forecast accuracy) data.
.actual A vector of responses matching the fitted values (for forecast accuracy, new_data must be provided).
na.rm Remove the missing values before calculating the accuracy measure
reward, penalty The weights given to correct and incorrect predicted directions.
... Additional arguments for each measure.

Format
An object of class list of length 3.

Details
MDA(): Mean Directional Accuracy MDV(): Mean Directional Value MDPV(): Mean Directional Percentage Value

References
Point estimate accuracy measures

Description
Point estimate accuracy measures

Usage

\[
\begin{align*}
\text{ME}(.\text{resid}, \text{na.rm} = \text{TRUE}, \ldots) \\
\text{MSE}(.\text{resid}, \text{na.rm} = \text{TRUE}, \ldots) \\
\text{RMSE}(.\text{resid}, \text{na.rm} = \text{TRUE}, \ldots) \\
\text{MAE}(.\text{resid}, \text{na.rm} = \text{TRUE}, \ldots) \\
\text{MPE}(.\text{resid}, .\text{actual}, \text{na.rm} = \text{TRUE}, \ldots) \\
\text{MAPE}(.\text{resid}, .\text{actual}, \text{na.rm} = \text{TRUE}, \ldots) \\
\text{MASE}(.\text{resid}, .\text{train}, \text{demean} = \text{FALSE}, \text{na.rm} = \text{TRUE}, .\text{period}, d = .\text{period} == 1, D = .\text{period} > 1, \ldots) \\
\text{RMSSE}(.\text{resid}, .\text{train}, \text{demean} = \text{FALSE}, \text{na.rm} = \text{TRUE}, .\text{period}, d = .\text{period} == 1, D = .\text{period} > 1, \ldots) \\
\text{ACF1}(.\text{resid}, \text{na.action} = \text{stats::na.pass}, \text{demean} = \text{TRUE}, \ldots)
\end{align*}
\]

Arguments

\[
\begin{align*}
\text{.resid} & \quad \text{A vector of residuals from either the training (model accuracy) or test (forecast accuracy) data.}
\end{align*}
\]
middle_out

na.rm

Remove the missing values before calculating the accuracy measure
... Additional arguments for each measure.
.actual

A vector of responses matching the fitted values (for forecast accuracy, new_data must be provided).
.train

A vector of responses used to train the model (for forecast accuracy, the orig_data must be provided).
demean

Should the response be demeaned (MASE)
.period

The seasonal period of the data (defaulting to `smallest` seasonal period). from a model, or forecasted values from the forecast.
d
Should the response model include a first difference?
D

Should the response model include a seasonal difference?
na.action

Function to handle missing values.

Format

An object of class list of length 8.

Description

[Experimental]

Usage

middle_out(models, split = 1)

Arguments

models

A column of models in a mable.
split

The middle level of the hierarchy from which the bottom-up and top-down approaches are used above and below respectively.

Details

Reconciles a hierarchy using the middle out reconciliation method. The response variable of the hierarchy must be aggregated using sums. The forecasted time points must match for all series in the hierarchy.

See Also

reconcile(), aggregate_key() Forecasting: Principles and Practice - Middle-out approach
\section*{min_trace \hspace{1em} \textit{Minimum trace forecast reconciliation}}

\subsection*{Description}
Reconciles a hierarchy using the minimum trace combination method. The response variable of the hierarchy must be aggregated using sums. The forecasted time points must match for all series in the hierarchy (caution: this is not yet tested for beyond the series length).

\subsection*{Usage}
\begin{verbatim}
min_trace(
  models,
  method = c("wls_var", "ols", "wls_struct", "mint_cov", "mint_shrink"),
  sparse = NULL
)
\end{verbatim}

\subsection*{Arguments}
- \texttt{models} \hspace{1em} A column of models in a mable.
- \texttt{method} \hspace{1em} The reconciliation method to use.
- \texttt{sparse} \hspace{1em} If TRUE, the reconciliation will be computed using sparse matrix algebra? By default, sparse matrices will be used if the MatrixM package is installed.

\subsection*{References}

\subsection*{See Also}
\texttt{reconcile()}, \texttt{aggregate_key()}

\section*{model \hspace{1em} \textit{Estimate models}}

\subsection*{Description}
Trains specified model definition(s) to a dataset. This function will estimate the a set of model definitions (passed via \ldots) to each series within \texttt{.data} (as identified by the key structure). The result will be a mable (a model table), which neatly stores the estimated models in a tabular structure. Rows of the data identify different series within the data, and each model column contains all models from that model definition. Each cell in the mable identifies a single model.

\subsection*{Usage}
\begin{verbatim}
model(.data, ...)
\end{verbatim}

\texttt{## S3 method for class 'tbl_ts'}
\begin{verbatim}
model(.data, ..., .safely = TRUE)
\end{verbatim}
model_lhs

**Arguments**

- `.data` A data structure suitable for the models (such as a `tsibble`)
- ...
  Definitions for the models to be used. All models must share the same response variable.
- `.safely` If a model encounters an error, rather than aborting the process a **NULL model** will be returned instead. This allows for an error to occur when computing many models, without losing the results of the successful models.

**Parallel**

It is possible to estimate models in parallel using the `future` package. By specifying a `future::plan()` before estimating the models, they will be computed according to that plan.

**Progress**

Progress on model estimation can be obtained by wrapping the code with `progressr::with_progress()`. Further customisation on how progress is reported can be controlled using the `progressr` package.

**Examples**

```r
library(fable)
library(tsibbledata)

Training an ETS(M,Ad,A) model to Australian beer production
aus_production %>%
 model(ets = ETS(log(Beer) ~ error("M") + trend("Ad") + season("A")))

Training a seasonal naive and ETS(A,A,A) model to the monthly
"Food retailing" turnover for selected Australian states.
library(dplyr)
progressr::with_progress(
 aus_retail %>%
 filter(
 Industry == "Food retailing",
 State %in% c("Victoria", "New South Wales", "Queensland")
) %>%
 model(
 snaive = SNAIVE(Turnover),
 ets = ETS(log(Turnover) ~ error("A") + trend("A") + season("A")),
)
)
```

---

**model_lhs**

*Extract the left hand side of a model*

**Description**

Extract the left hand side of a model

**Usage**

`model_lhs(model)`
**model_sum**

**Arguments**
- `model` A formula

**Description**
Extract the right hand side of a model

**Usage**
`model_rhs(model)`

**Arguments**
- `model` A formula

**model_sum**

**Description**
Similarly to pillar’s `type_sum` and `obj_sum`, `model_sum` is used to provide brief model summaries.

**Usage**
`model_sum(x)`

**Arguments**
- `x` The model to summarise
new_model_class

Create a new class of models

Description

Suitable for extension packages to create new models for fable.

Usage

```r
new_model_class(
 model = "Unknown model",
 train = function(.data, formula, specials, ...)
 abort("This model has not defined a training method."),
 specials = new_specials(),
 check = function(.data) { },
 prepare = function(...) { },
 ...
 .env = caller_env(),
 .inherit = model_definition
)

new_model_definition(.class, formula, ..., .env = caller_env(n = 2))
```

Arguments

- **model**
  The name of the model

- **train**
  A function that trains the model to a dataset. `.data` is a tsibble containing the data's index and response variables only. `formula` is the user's provided formula. `specials` is the evaluated specials used in the formula.

- **specials**
  Special functions produced using `new_specials()`

- **check**
  A function that is used to check the data for suitability with the model. This can be used to check for missing values (both implicit and explicit), regularity of observations, ordered time index, and univariate responses.

- **prepare**
  This allows you to modify the model class according to user inputs. `...` is the arguments passed to `new_model_definition`, allowing you to perform different checks or training procedures according to different user inputs.

- **...**
  Further arguments to `R6::R6Class()`. This can be useful to set up additional elements used in the other functions. For example, to use `common_xregs`, an origin element in the model is used to store the origin for `trend()` and `fourier()` specials. To use these specials, you must add an origin element to the object (say with `origin = NULL`).

- **.env**
  The environment from which functions should inherit from.

- **.inherit**
  A model class to inherit from.

- **.class**
  A model class (typically created with `new_model_class()`).

- **formula**
  The user's model formula.
**Details**

This function produces a new R6 model definition. An understanding of R6 is not required, however could be useful to provide more sophisticated model interfaces. All functions have access to self, allowing the functions for training the model and evaluating specials to access the model class itself. This can be useful to obtain elements set in the %TODO

---

**new_specials**

*Create evaluation environment for specials*

**Description**

Allows extension packages to make use of the formula parsing of specials.

**Usage**

```r
new_specials(..., .required_specials = NULL, .xreg_specials = NULL)
```

**Arguments**

- `...`: A named set of functions which used to parse formula inputs
- `required_specials`: The names of specials which must be provided (and if not, are included with no inputs).
- `xreg_specials`: The names of specials which will be only used as inputs to other specials (most commonly `xreg`).

---

**new_transformation**

*Create a new modelling transformation*

**Description**

Produces a new transformation for fable modelling functions which will be used to transform, back-transform, and adjust forecasts.

**Usage**

```r
new_transformation(transformation, inverse)

invert_transformation(x, ...)
```

**Arguments**

- `transformation`: A function which transforms the data
- `inverse`: A function which is the inverse of a transformation
- `x`: A transformation (such as one created with `new_transformation`).
- `...`: Further arguments passed to other methods.
Details

For more details about transformations, read the vignette: vignette("transformations", package = "fable")

Examples

scaled_logit <- function(x, lower=0, upper=1){
  log((x-lower)/(upper-x))
}
inv_scaled_logit <- function(x, lower=0, upper=1){
  (upper-lower)*exp(x)/(1+exp(x)) + lower
}
my_scaled_logit <- new_transformation(scaled_logit, inv_scaled_logit)
t_vals <- my_scaled_logit(1:10, 0, 100)
t_vals

outliers

Identify outliers

Description

Return a table of outlying observations using a fitted model.

Usage

outliers(object, ...)

## S3 method for class 'mdl_df'
outliers(object, ...)

## S3 method for class 'mdl_ts'
outliers(object, ...)

Arguments

object

An object which can identify outliers.

...

Arguments for further methods.

parse_model

Parse the model specification for specials

Description

Using a list of defined special functions, the user’s formula specification and data is parsed to extract important modelling components.

Usage

parse_model(model)
Arguments

model  A model definition

parse_model_lhs  Parse the RHS of the model formula for transformations

Description

Parse the RHS of the model formula for transformations

Usage

parse_model_lhs(model)

Arguments

model  A model definition

parse_model_rhs  Parse the RHS of the model formula for specials

Description

Parse the RHS of the model formula for specials

Usage

parse_model_rhs(model)

Arguments

model  A model definition
**percentile_score**  

*Description*

These accuracy measures can be used to evaluate how accurately a forecast distribution predicts a given actual value.

*Usage*

```r
define_percentile_score

percentile_score(.dist, .actual, na.rm = TRUE, ...)
```

```r
define_quantile_score

quantile_score(
 .dist,
 .actual,
 probs = c(0.05, 0.25, 0.5, 0.75, 0.95),
 na.rm = TRUE,
 ...)
```

```r
define_CRPS

CRPS(.dist, .actual, n_quantiles = 1000, na.rm = TRUE, ...)
```

*Arguments*

- `.dist` The distribution of fitted values from the model, or forecasted values from the forecast.
- `.actual` A vector of responses matching the fitted values (for forecast accuracy, `new_data` must be provided).
- `.na.rm` Remove the missing values before calculating the accuracy measure
- `probs` A vector of probabilities at which the metric is evaluated.
- `n_quantiles` The number of quantiles to use in approximating CRPS when an exact solution is not available.

*Format*

An object of class `list` of length 2.

**Quantile/percentile score (pinball loss)**

A quantile (or percentile) score evaluates how accurately a set of quantiles (or percentiles) from the distribution match the given actual value. This score uses a pinball loss function, and can be calculated via the average of the score function given below:

The score function $s_p(q_p, y)$ is given by $(1-p)(q_p - y)$ if $y < q_p$, and $p(y - q_p)$ if $y \geq q_p$. Where $p$ is the quantile probability, $q_p = F^{-1}(p)$ is the quantile with probability $p$, and $y$ is the actual value. The resulting accuracy measure will average this score over all predicted points at all desired quantiles (defined via the `probs` argument).

The percentile score is uses the same method with `probs` set to all percentiles `probs = seq(0.01, 0.99, 0.01)`. 
Continuous ranked probability score (CRPS)

The continuous ranked probability score (CRPS) is the continuous analogue of the pinball loss quantile score defined above. Its value is twice the integral of the quantile score over all possible quantiles:

$$CRPS(F, y) = 2 \int_0^1 s_p(q, y) dp$$

It can be computed directly from the distribution via:

$$CRPS(F, y) = \int_{-\infty}^{\infty} (F(x) - 1_{y \leq x})^2 dx$$

For some forecast distribution $F$ and actual value $y$.

Calculating the CRPS accuracy measure is computationally difficult for many distributions, however it can be computed quickly and exactly for Normal and empirical (sample) distributions. For other distributions the CRPS is approximated using the quantile score of many quantiles (using the number of quantiles specified in the n_quantiles argument).

---

### Description

This function allows you to specify the method used to reconcile forecasts in accordance with its key structure.

### Usage

`reconcile(.data, ...)`

```r
S3 method for class 'mdl_df'
reconcile(.data, ...)
```

### Arguments

- `.data` A mable.
- `...` Reconciliation methods applied to model columns within `.data`.

### Examples

```r
library(fable)
lung_deaths_agg <- as_tsibble(cbind(mdeaths, fdeaths)) %>%
 aggregate_key(key, value = sum(value))

lung_deaths_agg %>%
 model(lm = TSLM(value ~ trend() + season())) %>%
 reconcile(lm = min_trace(lm)) %>%
 forecast()
```
Refit a mable to a new dataset

Description

Applies a fitted model to a new dataset. For most methods this can be done with or without re-estimation of the parameters.

Usage

```r
S3 method for class 'mdl_df'
refit(object, new_data, ...)
S3 method for class 'mdl_ts'
refit(object, new_data, ...)
```

Arguments

- `object`: A mable.
- `new_data`: A tsibble dataset used to refit the model.
- `...`: Additional optional arguments for refit methods.

Examples

```r
library(fable)

fit <- as_tsibble(mdeaths) %>%
 model(ETS(value ~ error("M") + trend("A") + season("A")))
fit %>% report()

fit %>%
 refit(as_tsibble(fdeaths)) %>%
 report(reinitialise = TRUE)
```

Register a feature function

Description

Allows users to find and use features from your package using `feature_set()`. If the features are being registered from within a package, this feature registration should happen at load time using `[.onLoad()]`.

Usage

```r
register_feature(fn, tags)
```
Arguments

fn  The feature function
tags Identifying tags

Examples

## Not run:
tukey_five <- function(x){
  setNames(fivenum(x), c("min", "hinge_lwr", "med", "hinge_upr", "max"))
}

register_feature(tukey_five, tags = c("boxplot", "simple"))

## End(Not run)

---

Residuals from models

Extract residuals values from models

Description

Extracts the residuals from each of the models in a mable. A tsibble will be returned containing these residuals.

Usage

```r
S3 method for class 'mdl_df'
residuals(object, ...)
```

```r
S3 method for class 'mdl_ts'
residuals(object, type = "innovation", ...)
```
response

Arguments

object A mable or time series model.
... Other arguments passed to the model method for residuals()
type The type of residuals to compute. If type="response", residuals on the back-transformed data will be computed.

---

response Extract the response variable from a model

Description

Returns a tsibble containing only the response variable used in the fitting of a model.

Usage

response(object, ...)

Arguments

object The object containing response data
... Additional parameters passed on to other methods

---

response_vars Return response variables

Description

response_vars() returns a character vector of the response variables in the object.

Usage

response_vars(x)

Arguments

x A dataset containing a response variable (such as a mable, fable, or dable).
scenarios

**A set of future scenarios for forecasting**

**Description**

A set of future scenarios for forecasting

**Usage**

`scenarios(..., names_to = "scenario")`

**Arguments**

- `...`: Input data for each scenario
- `names_to`: The column name used to identify each scenario

---

**skill_score**

**Forecast skill score measure**

**Description**

This function converts other error metrics such as MSE into a skill score. The reference or benchmark forecasting method is the Naïve method for non-seasonal data, and the seasonal naive method for seasonal data. When used within `accuracy.fbl_ts`, it is important that the data contains both the training and test data, as the training data is used to compute the benchmark forecasts.

**Usage**

`skill_score(measure)`

**Arguments**

- `measure`: The accuracy measure to use in computing the skill score.

**Examples**

```r
library(fable)
library(tsibble)

lung_deaths <- as_tsibble(cbind(mdeaths, fdeaths))

lung_deaths %>%
 dplyr::filter(index < yearmonth("1979 Jan")) %>%
 model(
 ets = ETS(value ~ error("M") + trend("A") + season("A")),
 lm = TSLM(value ~ trend() + season())
) %>%
 forecast(h = "1 year") %>%
 accuracy(lung_deaths, measures = list(skill = skill_score(MSE)))
```
Special for producing a model matrix of exogenous regressors

Description
Special for producing a model matrix of exogenous regressors

Usage
special_xreg(...)

Arguments
... Arguments for `fable_xreg_matrix` (see Details)

Details
Currently the `fable_xreg_matrix` helper supports a single argument named `default_intercept`. If this argument is TRUE (passed via ... above), then the intercept will be returned in the matrix if not specified (much like the behaviour of `lm()`). If FALSE, then the intercept will only be included if explicitly requested via 1 in the formula.

Extend a fitted model with new data

Description
Extend the length of data used to fit a model and update the parameters to suit this new data.

Usage
stream(object, ...)

## S3 method for class 'mdl_df'
stream(object, new_data, ...)

Arguments
object An object (such as a model) which can be extended with additional data.
... Additional arguments passed on to stream methods.
new_data A dataset of the same structure as was used to fit the model.
tidy.mdl_df

**Extract model coefficients from a mable**

**Description**

This function will obtain the coefficients (and associated statistics) for each model in the mable.

**Usage**

```
S3 method for class 'mdl_df'
tidy(x, ...)

S3 method for class 'mdl_df'
coef(object, ...)

S3 method for class 'mdl_ts'
tidy(x, ...)

S3 method for class 'mdl_ts'
coef(object, ...)
```

**Arguments**

- `x, object` A mable.
- `...` Arguments for model methods.

**Examples**

```r
library(fable)
library(tsibbledata)

olympic_running %>%
 model(lm = TSLM(log(Time) ~ trend())) %>%
 tidy()
```

top_down

**Top down forecast reconciliation**

**Description**

[Experimental]

**Usage**

```
top_down(
 models,
 method = c("forecast_proportions", "average_proportions", "proportion_averages")
)
```
traverse

Arguments

models         A column of models in a mable.
method         The reconciliation method to use.

Details

Reconciles a hierarchy using the top down reconciliation method. The response variable of the hierarchy must be aggregated using sums. The forecasted time points must match for all series in the hierarchy.

See Also

reconcile(), aggregate_key()
**pack_hilo**  

*Unpack a hilo column*

**Description**

Allows a hilo column to be unpacked into its component columns: "lower", "upper", and "level".

**Usage**

```r
test <- pack_hilo(high = c(1L, 2L, 3L), low = c(1L, 2L, 3L))
```

**Arguments**

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>data</code></td>
<td>A data frame.</td>
</tr>
<tr>
<td><code>cols</code></td>
<td>Name of hilo columns to unpack.</td>
</tr>
<tr>
<td><code>names_sep</code></td>
<td>If <code>NULL</code>, the default, the names will be left as is. In <code>pack()</code>, inner names will come from the former outer names; in <code>unpack()</code>, the new outer names will come from the inner names. If a string, the inner and outer names will be used together. In <code>pack()</code>, the names of the new outer columns will be formed by pasting together the outer and the inner column names, separated by <code>names_sep</code>. In <code>unpack()</code>, the new inner names will have the outer names (+ <code>names_sep</code>) automatically stripped. This makes <code>names_sep</code> roughly symmetric between packing and unpacking.</td>
</tr>
</tbody>
</table>
| `names_repair` | Used to check that output data frame has valid names. Must be one of the following options:  
- "minimal": no name repair or checks, beyond basic existence,  
- "unique": make sure names are unique and not empty,  
- "check_unique": (the default), no name repair, but check they are unique,  
- "universal": make the names unique and syntactic  
- a function: apply custom name repair.  
- `tidyr_legacy`: use the name repair from tidyr 0.8.  
- a formula: a purrr-style anonymous function (see `rlang::as_function()`)  
See `vctrs::vec_as_names()` for more details on these terms and the strategies used to enforce them. |

**See Also**

`tidyr::unpack()`
validate_formula

Validate the user provided model

Description

Appropriately format the user’s model for evaluation. Typically ran as one of the first steps in a model function.

Usage

validate_formula(model, data = NULL)

Arguments

model A quosure for the user’s model specification
data A dataset used for automatic response selection

winkler_score

Interval estimate accuracy measures

Description

Interval estimate accuracy measures

Usage

winkler_score(.dist, .actual, level = 95, na.rm = TRUE, ...)

pinball_loss(.dist, .actual, level = 95, na.rm = TRUE, ...)

scaled_pinball_loss(.dist, .actual, .train, level = 95, na.rm = TRUE, demean = FALSE, .period, d = .period == 1, D = .period > 1, ...)

interval_accuracy_measures
Arguments

.dist  The distribution of fitted values from the model, or forecasted values from the forecast.
.actual  A vector of responses matching the fitted values (for forecast accuracy, new_data must be provided).
.level  The level of the forecast interval.
.na.rm  Remove the missing values before calculating the accuracy measure
...  Additional arguments for each measure.
.train  A vector of responses used to train the model (for forecast accuracy, the orig_data must be provided).
.demean  Should the response be demeaned (MASE)
.period  The seasonal period of the data (defaulting to 'smallest' seasonal period). from a model, or forecasted values from the forecast.
.d  Should the response model include a first difference?
.D  Should the response model include a seasonal difference?

Format

An object of class list of length 1.
Index

* datasets
  common_xregs, 18
  MDA, 35
  ME, 36
  percentile_score, 45
  winkler_score, 55

* package
  fabletools-package, 4
  .data, 34
  .env, 34
  accuracy, 4
  accuracy.fbl_ts, 50
  ACF1 (ME), 36
  agg_vec, 8
  aggregate_index, 5
  aggregate_key, 7, 32
  aggregate_key(), 8, 14, 37, 38, 53
  as_dable, 8
  as_fable, 9
  as_mable, 10
  augment.mdl_df, 10
  augment.mdl_ts (augment.mdl_df), 10
  autolayer.fbl_ts (autolayer.fbl_ts), 12
  autolayer.tbl_ts (autolayer.tbl_ts), 13
  autoplot.dcmp_ts, 11
  autoplot.fbl_ts, 12
  autoplot.tbl_ts, 13
  base::formals(), 23
  base::mean(), 23
  bias_adjust, 13
  bottom_up, 14
  box_cox, 14
  coef.mdl_df (tidy.mdl_df), 52
  coef.mdl_ts (tidy.mdl_df), 52
  combination_ensemble, 15
  combination_ensemble(), 17
  combination_model, 16
  combination_weighted, 17
  combination_weighted(), 15
  common_periods, 17
  common_xregs, 18
  components(), 21
  components.mdl_df, 19
  components.mdl_ts (components.mdl_df), 19
  construct_fc, 20
  CRPS (percentile_score), 45
  dable, 20
  decomposition_model, 21
  difftime, 6
  directional_accuracy_measures (MDA), 35
  distribution_accuracy_measures, 5
  distribution_accuracy_measures (percentile_score), 45
  distribution_var, 22
  estimate, 22
  fable, 23
  fabletools (fabletools-package), 4
  fabletools-package, 4
  feature_set, 25
  feature_set(), 23–25, 47
  features, 23
  Features by package, 24, 25
  Features by tag, 24, 25
  features_all (features), 23
  features_at (features), 23
  features_by_pkg, 24, 25
  features_by_tag, 24, 25
  features_if (features), 23
  fitted.mdl_df, 26
  fitted.mdl_ts (fitted.mdl_df), 26
  forecast, 26
  future::plan(), 39
  generate.mdl_df, 28
  generate.mdl_ts (generate.mdl_df), 28
  get_frequencies (common_periods), 17
  ggplot2::geom_line(), 11, 13
  ggplot2::vars(), 13
  glance.mdl_df, 30
  glance.mdl_ts (glance.mdl_df), 30
  hfitted (fitted.mdl_df), 26
hilo().27
hypothesize.mdl_df.30
interpolate.mdl_df.31
interpolate.mdl_ts
  (interpolate.mdl_df).31
interval_accuracy_measures.5
interval_accuracy_measures
  (winkler_score).55
inv_box_cox (box_cox).14
invert_transformation
  (new_transformation).42
is_aggregated.32
is_aggregated().7
is_dable.32
is_fable.32
is_mable.33
is_model.33
MAAPE.33
mable.34
mable_vars.34
MAE (ME).36
MAPE (ME).36
MASE (ME).36
MDA.35
MDPV (MDA).35
MDV (MDA).35
ME.36
middle_out.37
min_trace.38
model.38
model_lhs.39
model_rhs.40
model_sum.40
MPE (ME).36
MSE (ME).36
new_model_class.41
new_model_class().41
new_model_definition (new_model_class).41
new_specials.42
new_specials().41
new_transformation.42
NULL model.39
outliers.43
parse_model.43
parse_model_lhs.44
parse_model_rhs.44
percentile_score.45
pinball_loss (winkler_score).55
point_accuracy_measures.5
point_accuracy_measures (ME).36
quantile_score (percentile_score).45
R6::R6Class().41
reconcile.46
reconcile().7, 14, 37, 38, 53
refit.mdl_df.47
refit.mdl_ts (refit.mdl_df).47
register_feature.47
register_feature().25
report.48
report().27
residuals.mdl_df.48
residuals.mdl_ts (residuals.mdl_df).48
response.49
response_vars.49
rlang::as_function().54
rlang::quos().34
RMSE (ME).36
RMSSE (ME).36
scaled_pinball_loss (winkler_score).55
scenarios.50
skill_score.50
special_xreg.51
stats::var().23
stream.51
tidy.mdl_df.52
tidy.mdl_ts (tidy.mdl_df).52
tidyr::unpack().54
tidyr_legacy.54
top_down.52
traverse.53
tsibble::tsibble().20, 23
unpack_hilo.54
unpack_hilo().27
validate_formula.55
vctrs::vec_as_names().54
winkler_score.55