Package ‘fMRIscrub’

August 20, 2021

Type Package
Title Scrubbing and Other Data Cleaning Routines for fMRI
Version 0.8.2
Maintainer Amanda Mejia <mandy.mejia@gmail.com>
Depends R (>= 3.5.0)
License GPL-3
Encoding UTF-8
Imports expm, MASS, e1071, pesel, robustbase, stats, utils, Rcpp
Suggests corpcor, cowplot, ciftiTools, knitr, rmarkdown, RNifti, ggplot2, ggpubr, ica, neurobase, oro.nifti, gridExtra, testthat (>= 2.1.0), covr
LinkingTo Rcpp, RcppArmadillo
RoxygenNote 7.1.1
URL https://github.com/mandymejia/fMRIscrub
BugReports https://github.com/mandymejia/fMRIscrub/issues
LazyData true
VignetteBuilder knitr
NeedsCompilation yes
Author Amanda Mejia [aut, cre].
John Muschelli [aut] (<https://orcid.org/0000-0001-6469-1750>),
Damon Pham [aut] (<https://orcid.org/0000-0001-7563-4727>),
Daniel McDonald [ctb]
R topics documented:

artifact_images .. 2
CompCor ... 3
CompCor_HCP ... 6
Dat1 ... 8
Dat2 ... 8
dct_bases .. 9
DVARS ... 9
erode_vol ... 11
FD ... 11
fMRIscrub ... 13
fsl_bptf .. 13
fusedPCA ... 14
high_kurtosis .. 15
leverage .. 16
nuisance_regression .. 16
pct_sig .. 17
plot.scrub_DVARS ... 17
plot.scrub_FD ... 18
plot.scrub_projection .. 18
pscrub ... 19
rob_scale .. 23
scale_med .. 24
scrub ... 24
scrub_xifti .. 25
summary.scrub_DVARS ... 26
summary.scrub_FD .. 26
summary.scrub_projection ... 27
unmask_vol ... 28

Index 29

artifact_images Artifact images

Description

Visualize artifact patterns from the results of pscrub. Requires pscrub(..., get_dirs==TRUE).

Usage

artifact_images(psx, idx = NULL, use_dt = TRUE)
CompCor

Arguments

- **psx**: A "scrub_projection" object containing projection scrubbing results.
- **idx**: The timepoints or column indexes for which to compute artifact images. If NULL (default), use the outlying timepoints.
- **use_dt**: If detrended components are available (the "U" matrix of PCA or "M" matrix of ICA), should they be used to compute the artifact images? Otherwise, use the non-detrended components. Default: TRUE.

Details

Computes two types: "mean" artifact images based on a weighted sum of the projection directions, with weights determined by the scores for each component at the flagged timepoint, and "top" artifact images based on the projection direction with the greatest score at the flagged timepoint.

Value

A list of three: idx, the timepoints for which the artifact images were computed; mean, the "mean" artifact images; and top, the "top" artifact images. The row names of the top artifact images matrix give the index of the top component ("V" in PCA and "S" in ICA) at each timepoint.

CompCor

Anatomical CompCor

Description

The aCompCor algorithm for denoising fMRI data using noise ROIs data

Usage

```r
CompCor(
X,
ROI_data = "infer",
ROI_noise = NULL,
noise_nPC = 5,
noise_erosion = NULL,
center = TRUE,
scale = TRUE,
nuisance = NULL
)
```

Arguments

- **X**: Wide numeric data matrix (\(T\) observations by \(V\) variables, \(T << V\)). For example, if \(X\) represents an fMRI run, \(T\) should be the number of timepoints and \(V\) should be the number of brainordinate vertices/voxels.
Or, a 4D array or NIFTI or file path to a NIFTI (I by J by K by T observations), in which case ROI_data must be provided. (The vectorized data will be T timepoints by $V_{in-mask voxels}$)

Or, a ciftiTools "xifti" object or a file path to a CIFTI (The vectorized data will be T timepoints by $V_{left+right+subgreyordinates}$).

ROI_data

Indicates the data ROI. Allowed arguments depend on X:

If X is a matrix, this must be a length V logical vector, where the data ROI is indicated by TRUE values. If "infer" (default), all columns of X will be included in the data ROI (rep(TRUE, V)).

If X is an array or NIFTI, this must be either a vector of values to expect for out-of-mask voxels in X, or a (file path to a) 3D NIFTI. In the latter case, each of the volume dimensions should match the first three dimensions of X. Voxels in the data ROI should be indicated by TRUE and all other voxels by FALSE. If "infer" (default), will be set to c(0,NA,NaN) (include all voxels which are not constant 0, NA, or NaN).

If X is a "xifti" this must be the `brainstructures` argument to `read_cifti`.

If "infer" (default), `brainstructures` will be set to "all" (use both left and right cortex vertices, and subcortical voxels).

If NULL, the data ROI will be empty. This is useful for obtaining just the noise ROI, if the data and noise are located in separate files.

ROI_noise

Indicates the noise ROIs for aCompCor. Should be a list where each entry corresponds to a distinct noise ROI. The names of the list should be the ROI names, e.g. "white_matter" and "csf". The expected formats of the list entries depends on X:

For all types of X, ROI_noise entries can be a matrix of noise ROI data. The matrix should have T rows, with each column being a data location’s timeseries.

If X is a matrix, entries can also indicate a noise ROI within X. These entries must be a length V logical vector with TRUE values indicating locations in X within that noise ROI. Since the ROIs must not overlap, the masks must be mutually exclusive with each other, and with ROI_data.

If X is an array or NIFTI, entries can also indicate a noise ROI within X. These entries must be a logical array or (file path to) a 3D NIFTI with the same spatial dimensions as X, and with TRUE values indicating voxels inside the noise ROI. Since the ROIs must not overlap, the masks must be mutually exclusive with each other, and with ROI_data.

(If X is a "xifti", entries must be data matrices, since no greyordinate locations in X are appropriate noise ROIs).

noise_nPc

The number of principal components to compute for each noise ROI. Alternatively, values between 0 and 1, in which case they will represent the minimum proportion of variance explained by the PCs used for each noise ROI. The smallest number of PCs will be used to achieve this proportion of variance explained.

Should be a list or numeric vector with the same length as ROI_noise. It will be matched to each ROI based on the name of each entry, or if the names are missing, the order of entries. If it is an unnamed vector, its elements will be recycled. Default: 5 (compute the top 5 PCs for each noise ROI).
noise_erosion The number of voxel layers to erode the noise ROIs by. Should be a list or numeric vector with the same length as ROI_noise. It will be matched to each ROI based on the name of each entry, or if the names are missing, the order of entries. If it is an unnamed vector, its elements will be recycled. Default: NULL, which will use a value of 0 (do not erode the noise ROIs). Note that noise erosion can only be performed if the noise ROIs are volumetric.

center, scale Center the columns of the noise ROI data by their medians, and scale by their MADs? Default: TRUE for both. Note that this argument affects the noise ROI data and not the data that is being cleaned with aCompCor. Centering and scaling of the data being cleaned can be done after this function call.

nuisance Nuisance signals to regress from each data column in addition to the noise ROI PCs. Should be a T by N numeric matrix where N represents the number of nuisance signals. To not perform any nuisance regression set this argument to NULL, 0, or FALSE. Default: NULL.

Details
First, the principal components (PCs) of each noise region of interest (ROI) are calculated. For each ROI, voxels are centered and scaled (can be disabled with the arguments center and scale), and then the PCs are calculated via the singular value decomposition.

Next, aCompCor is performed to remove the shared variation between the noise ROI PCs and each location in the data. This is accomplished by a nuisance regression using a design matrix with the noise ROI PCs, any additional regressors specified by nuisance, and an intercept term. (To detrend the data and perform aCompCor in the same regression, nuisance can be set to DCT bases obtained with the function dct_bases.)

Value
A list with entries "data", "noise", and potentially "ROI_data".

The entry "data" will be a V x T matrix where each row corresponds to a data location (if it was originally an array, the locations will be voxels in spatial order). Each row will be a time series with each noise PC regressed from it. This entry will be NULL if there was no data.

The entry "noise" is a list of noise PC scores, their corresponding variance, and their ROI mask, for each noise ROI.

If the data ROI is not all TRUE, the entry "ROI_data" will have the ROI mask for the data.

References

See Also
CompCor_HCP
CompCor_HCP

Anatomical CompCor for HCP NIFTI and CIFTI data

Description

Wrapper to CompCor for HCP-format data. Can be used to clean the surface-based CIFTI data with aCompCor using the noise PCs and ROIs calculated from the NIFTI fMRI data and NIFTI mask. Can also be used to just obtain the noise PCs and ROIs without performing aCompCor, if the CIFTI data is not provided.

Usage

CompCor_HCP(
 nii,
 nii_labels,
 ROI_noise = c("wm_cort", "csf"),
 noise_nPC = 5,
 noise_erosion = NULL,
 idx = NULL,
 cii = NULL,
 brainstructures = c("left", "right"),
 center = TRUE,
 scale = TRUE,
 DCT = 0,
 nuisance_too = NULL,
 verbose = FALSE
)

Arguments

nii

I by J by K by T NIFTI object or array (or file path to the NIFTI) which contains whole-brain data, including the noise ROIs. In the HCP, the corresponding file is e.g. ".//Results/rfMRI_REST1_LR/rfMRI_REST1_LR.nii.gz"

nii_labels

I by J by K NIFTI object or array (or file path to the NIFTI) which contains the corresponding labels to each voxel in nii. Values should be according to this table: https://surfer.nmr.mgh.harvard.edu/fswiki/FsTutorial/AnatomicalROI/FreeSurferColorLUT. In the HCP, the corresponding file is "ROIs/Atlas_wmparc.2.nii.gz".

ROI_noise

A list of numeric vectors. Each entry should represent labels in nii_labels belonging to a single noise ROI, named by that entry’s name. Or, this can be a character vector of at least one of the following: "wm_cort" (cortical white matter), "wm_cblm" (cerebellar white matter), "csf" (cerebrospinal fluid). In the latter case, these labels will be used:

"wm_cort" c(3000:4035,5001,5002)
"wm_cblm" c(7,46)
"csf" c(4,5,14,15,24,31,43,44,63,250,251,252,253,254,255))
These default ROIs are based on this forum post: https://www.mail-archive.com/hcp-users@humanconnectome.org/msg00931.html
Default: c("wm_cort","csf")

`noise_nPC` The number of principal components to compute for each noise ROI. Alternatively, values between 0 and 1, in which case they will represent the minimum proportion of variance explained by the PCs used for each noise ROI. The smallest number of PCs will be used to achieve this proportion of variance explained. Should be a list or numeric vector with the same length as `ROI_noise`. It will be matched to each ROI based on the name of each entry, or if the names are missing, the order of entries. If it is an unnamed vector, its elements will be recycled. Default: 5 (compute the top 5 PCs for each noise ROI).

`noise_erosion` The number of voxel layers to erode the noise ROIs by. Should be a list or numeric vector with the same length as `ROI_noise`. It will be matched to each ROI based on the name of each entry, or if the names are missing, the order of entries. If it is an unnamed vector, its elements will be recycled. Default: NULL, which will use a value of 0 (do not erode the noise ROIs).

`idx` A numeric vector indicating the timepoints to use, or NULL (default) to use all idx. (Indexing begins with 1, so the first timepoint has index 1 and the last has the same index as the length of the scan.)

`cii` "xifti" (or file path to the CIFTI) from which the noise ROI components will be regressed. In the HCP, the corresponding file is e.g. "/../Results/rfMRI_REST1_LR/rfMRI_REST1_LR_Atlas_MSMAll.dtseries.nii". If not provided, only the noise components will be returned (no data will be cleaned).

`brainstructures` Choose among "left", "right", and "subcortical". Default: c("left","right") (cortical data only)

`center`, `scale` Center the columns of the data by median, and scale the columns of the data by MAD? Default: TRUE for both. Affects both X and the noise data. center also applies to nuisance_too so if it is FALSE, nuisance_too must already be centered.

`DCT` Add DCT bases to the nuisance regression? Use an integer to indicate the number of cosine bases. Use 0 (default) to forgo detrending. The data must be centered, either before input or with center.

`nuisance_too` A matrix of nuisance signals to add to the nuisance regression. Should have T rows. NULL to not add additional nuisance regressors (default).

`verbose` Should occasional updates be printed? Default: FALSE.

Value

The noise components, and if cii is provided, the cleaned surface-based data as a "xifti" object.

References

See Also

CompCor

First Example Time Series from the ABIDE

Description

A sagittal slice from the fMRI time series for subject 0050048. The scan was obtained at the University of Pittsburgh School of Medicine. The scan has been pre-processed with slice time correction, rigid body realignment estimation, spatial normalization to MNI space, and linear detrending. Subject 0050048 was a typically-developing 11-year-old male. The scan has many artifacts. A mask was applied to vectorize the spatial dimensions.

Usage

Dat1

Format

A numeric matrix of 193 time points by 4675 voxels

Details

Source: http://fcon_1000.projects.nitrc.org/indi/abide/abide_I.html

References

Second Example Time Series from the ABIDE

Description

A sagittal slice from the fMRI time series for subject 0051479. The scan was obtained at the California Institute of Technology. The scan has been pre-processed with slice time correction, rigid body realignment estimation, spatial normalization to MNI space, and linear detrending. Subject 0051479 was a typically-developing 20-year-old female. The scan has few visible artifacts. A mask was applied to vectorize the spatial dimensions.

Usage

Dat2
dct_bases

Format

A numeric matrix of 145 time points by 4679 voxels

Details

Source: http://fcon_1000.projects.nitrc.org/indi/abide/abide_I.html

References

dct_bases
Cosine bases for the DCT

Description

Cosine bases for the DCT

Usage

dct_bases(T_, n)

Arguments

- T_
 Length of timeseries
- n
 Number of cosine bases

Value

Matrix with cosine bases along columns

DVARS
DVARS

Description

Computes the DSE decomposition and DVARS-related statistics. Based on code from github.com/asoroosh/DVARS.
DVARS

Usage

DVARS(
 X,
 normalize = TRUE,
 cutoff_DPD = 5,
 cutoff_ZD = qnorm(1 - 0.05/nrow(as.matrix2(X))),
 verbose = FALSE
)

Arguments

X a T by N numeric matrix representing an fMRI run. There should not be any missing data (NA or NaN).

normalize Normalize the data as proposed in the paper? Default: TRUE. Normalization removes constant-zero voxels, scales by $100 / \text{the median of the mean image}$, and then centers each voxel on its mean.

To replicate Afyouni and Nichols’ procedure for the HCP MPP data, since the HCP scans are already normalized to 10,000, just divide the data by 100 and center the voxels on their means:

$Y \leftarrow \frac{Y}{100}$; DVARS(t(Y - apply(Y,1,mean))) where Y is the V by T data matrix.

Note that while voxel centering doesn’t affect DVARS, it does affect DPD and ZD.

cutoff_DPD, cutoff_ZD Numeric outlier cutoffs. Timepoints exceeding these cutoffs will be flagged as outliers.

verbose Should occasional updates be printed? Default is FALSE.

Value

A list with components

- **measure** A data.frame with T rows, each column being a different variant of DVARS.
- **measure_info** "DVARS"
- **outlier_cutoff** The outlier cutoff value(s).
- **outlier_flag** A logical data.frame with T rows, where TRUE indicates suspected outlier presence.

References

erode_vol

Erode volumetric mask

Description

Erode a volumetric mask by a certain number of voxel layers. For each layer, any in-mask voxel adjacent to at least one out-of-mask voxel is removed from the mask.

Usage

```r
erode_vol(vol, n_erosion = 1, out_of_mask_val = NA)
```

Arguments

- `vol` The volume to erode. Out-of-mask voxels should be indicated by a value in `out_of_mask_val`.
- `n_erosion` The number of layers to erode the mask by.
- `out_of_mask_val` A voxel is not included in the mask if and only if its value is in this vector. The first value in this vector will be used to replace the eroded voxels. Default: `NA`.

Details

Diagonal voxels are not considered adjacent, i.e. the voxel at (0,0,0) is not adjacent to the voxel at (1,1,0) or (1,1,1), although it is adjacent to (1,0,0).

Value

The eroded `vol`. It is the same as `vol` but with eroded voxels replaced with the value `out_of_mask_val[1]`.

FD

Framewise Displacement

Description

Calculate Framewise Displacement (FD)

Usage

```r
FD(  
X,  
trans_units = c("mm", "cm", "in"),  
rot_units = c("deg", "rad", "mm", "cm", "in"),  
brain_radius = NULL,  
detrend = FALSE,  
cutoff = 0.3  
)
```
Arguments

X
An N by 6 matrix in which the first three columns represent the translational RPs (trans_units), and the second three columns represent the rotational RPs (rot_units). If rot_units measures an angle, it will be converted to trans_units by measuring displacement on a sphere of radius brain_radius trans_units. Alternatively, this can be the file path to an N by 6 matrix which can be read with read.table (fields separated by white-space; no header).

trans_units
"mm" for millimeters (default), "cm" for centimeters, or "in" for inches.

rot_units
"deg" for degrees (default), "rad" for radians, or one of the trans_units options.

brain_radius
If rot_units measures an angle, the rotational RPs are transformed to a spatial measurement representing the displacement on a sphere of radius brain_radius trans_units. If brain_radius is NULL (default), its value will be set to (the equivalent of) 50 mm.

detrend
Detrend each RP with the DCT before computing FD? Default: FALSE. Can be a number of DCT bases to use, or TRUE to use 4.

cutoff
FD values higher than this will be flagged. Default: .3.

Details

The FD formula is taken from Power et. al. (2012):

\[
FD_i = |\Delta x_i| + |\Delta y_i| + |\Delta z_i| + |\Delta \alpha_i| + |\Delta \beta_i| + |\Delta \gamma_i|
\]

where \(i\) is the timepoint; \(x, y\) and \(z\) are the translational realignment parameters (RPs); \(\alpha, \beta\) and \(\gamma\) are the rotational RPs; and \(\Delta x_i = x_{i-1} - x_i\) (and similarly for the other RPs).

Value

A list with components

measure A length N vector of FD values in trans_units.

measure_info "FD"

outlier_cutoff cutoff

outlier_flag A length-N logical vector, where TRUE indicates suspected outlier presence.

References

Description

See `help(package="fMRIscrub")` for a list of functions.

fsl_bptf

bptf function from FSL

Description

Copy of highpass filter as implemented by `bptf` in FSL. The results are very similar but not identical.

Usage

`fsl_bptf(orig_data, HP_sigma = 2000)`

Arguments

- `orig_data`
 - `T` by `V` data matrix whose columns will be detrended
- `HP_sigma`
 - The frequency parameter for the highpass filter

Details

Value

The data with detrended columns

References

Description

From: https://github.com/Lei-D/PCATF and https://github.com/glmgen/glmgen/blob/master/c_lib/glmgen/src/tf/tf_dp.c

Usage

fusedPCA(
 X,
 X.svd = NULL,
 solve_directions = TRUE,
 K = NULL,
 lambda = 5,
 niter_max = 1000,
 TOL = 1e-08,
 verbose = FALSE
)

Arguments

X A numerical data matrix (observations x variables).
X.svd (Optional) The svd decomposition of X. Save time by providing this argument if the svd has already been computed. Default NULL.
solve_directions Should the principal directions be solved for? These will be needed to display the artifact images for outlying observations.
K (Optional) The number of fused PCs to solve for. If not provided, it will be set to the number of regular PCs with variance above the mean, up to 100 PCs.
lambda The trend filtering parameter; roughly, the filtering intensity. Default is 5.
niter_max The number of iterations to use for approximating the PC.
TOL The maximum 2-norm between iterations to accept as convergence.
verbose Print statements about convergence?

Details

Inheriting from glmgen, this code is under the GNU Lesser General Public License: http://www.gnu.org/licenses/ .

Value

SVD The fused SVD decomposition of X (list with u, d, v).
References

high_kurtosis

Which components have high kurtosis?

Description

The kurtosis cutoff is a high quantile (default 0.99) of the sampling distribution of kurtosis for Normal iid data of the same length as the components; it is estimated by simulation or calculated from the theoretical asymptotic distribution if the components are long enough.

Usage

`high_kurtosis(Comps, kurt_quantile = 0.99, n_sim = 5000, min_1 = FALSE)`

Arguments

- **Comps**: A matrix; each column is a component. For PCA, this is the U matrix. For ICA, this is the M matrix.
- **kurt_quantile**: The number of simulation data to use for estimating the sampling distribution of kurtosis. Only used if a new simulation is performed. (If n < 1000 and the quantile is 90%, a pre-computed value is used instead. If n > 1000, the theoretical asymptotic distribution is used instead.)
- **n_sim**: The number of simulation data to use for estimating the sampling distribution of kurtosis. Only used if a new simulation is performed. (If n < 1000 and the quantile is 90%, a pre-computed value is used instead. If n > 1000, the theoretical asymptotic distribution is used instead.)
- **min_1**: Require at least one component to be selected? In other words, if no components meet the quantile cutoff, should the component with the highest kurtosis be returned? Default: FALSE.

Details

The components should not have any strong low-frequency trends, because trends can affect kurtosis in unpredictable ways unrelated to outlier presence.

Value

A logical vector indicating whether each component has high kurtosis.
leverage

Leverage

Description

Computes the leverage of each observation in the PC score / IC mixing matrix (U/M) for projection scrubbing. Optionally can threshold the leverage values to flag potential outliers.

Usage

```r
leverage(Comps, are_orthogonal = FALSE, median_cutoff = NULL)
```

Arguments

- **Comps**: The \(n \) by \(Q \) PC score matrix/IC mixing matrix.
- **are_orthogonal**: Can the columns of \(\text{Comps} \) be assumed to be orthogonal and have a 2-norm of 1? Speeds up the computation.
- **median_cutoff**: The outlier cutoff, in multiples of the median leverage. Default: NULL (do not compute outliers).

Value

A list with entries "meas" (the leverage values), "cut" (the leverage cutoff value) and "flag" (logical vector indicating the outliers). If !is.null(median_cutoff), "cut" and "flag" are omitted.

nuisance_regression

Nuisance regression

Description

Performs nuisance regression. The data and design matrix must both be centered, or an intercept must be included in the design matrix!

Usage

```r
nuisance_regression(Y, design)
```

Arguments

- **Y**: The \(T \) by \(V \) or \(V \) by \(T \) data.
- **design**: The \(T \) by \(Q \) matrix of nuisance regressors.

Value

The data after nuisance regression.
pct_sig

Convert data values to percent signal.

Description

Convert data values to percent signal.

Usage

```r
pct_sig(X, center = median, by = c("column", "all"))
```

Arguments

- `X` a T by N numeric matrix. The columns will be normalized to percent signal.
- `center` A function that computes the center of a numeric vector. Default: `median`. Other common options include `mean` and `mode`.
- `by` Should the center be measured individually for each "column" (default), or should the center be the same across "all" columns?

Value

`X` with its columns normalized to percent signal. (A value of 85 will represent a -15% signal change.)

plot.scrub_DVARS

Plot a "scrub_DVARS" object

Description

Plot a "scrub_DVARS" object

Usage

```r
## S3 method for class 'scrub_DVARS'
plot(x, title = NULL, ...)
```

Arguments

- `x` The "scrub_DVARS" object
- `title` (Optional) If provided, will add a title to the plot.
- `...` Additional arguments to `ggplot`, e.g. `main`, `sub`, `xlab`, `ylab`, `legend.position`

Value

A `ggplot`
plot.scrub_FO

Plot a "scrub_FO" object

Description

Plot a "scrub_FO" object

Usage

```r
## S3 method for class 'scrub_FO'
plot(x, title = NULL, ...)
```

Arguments

- `x`
The "scrub_FO" object
- `title`
 (Optional) If provided, will add a title to the plot.
- `...`
 Additional arguments to ggplot, e.g. `main`, `sub`, `xlab`, `ylab`, `legend.position`

Value

A ggplot

plot.scrub_projection

Plot a "scrub_projection" object

Description

Plot a "scrub_projection" object

Usage

```r
## S3 method for class 'scrub_projection'
plot(x, title = NULL, ...)
```

Arguments

- `x`
The "scrub_projection" object
- `title`
 (Optional) If provided, will add a title to the plot.
- `...`
 Additional arguments to ggplot, e.g. `main`, `sub`, `xlab`, `ylab`, `legend.position`

Value

A ggplot
Description

Projection scrubbing is a data-driven method for identifying artifactual volumes in fMRI scans. It works by identifying component directions in the data likely to represent artifactual patterns, and then computing a composite measure for the amount of these signals at each volume. The projection can be PCA, ICA, or "fused PCA," and the composite measure is based on the linear model concept of leverage. Projection scrubbing can also be used for other outlier detection tasks involving high-dimensional data.

Usage

```r
pscrub(
  X,
  projection = c("ICA", "fusedPCA", "PCA"),
  nuisance = "DCT4",
  center = TRUE,
  scale = TRUE,
  comps_mean_dt = FALSE,
  comps_var_dt = FALSE,
  PESEL = TRUE,
  kurt_quantile = 0.99,
  fusedPCA_kwargs = NULL,
  get_dirs = FALSE,
  full_PCA = FALSE,
  get_outliers = TRUE,
  cutoff = 4,
  seed = 0,
  verbose = FALSE
)
```

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>Wide numeric data matrix (T observations by V variables, T << V). If X represents an fMRI run, T should be the number of timepoints and V should be the number of brainordinate vertices/voxels. Projection scrubbing will measure the outlyingness of each row in X.</td>
</tr>
<tr>
<td>projection</td>
<td>One of the following: "ICA" (default), "PCA", or "fusedPCA".</td>
</tr>
<tr>
<td>nuisance</td>
<td>Nuisance signals to regress from each column of X. Should be specified as a design matrix: a T by N numeric matrix where N represents the number of nuisance signals. Or can be "DCT4" (default), which will create a matrix with a constant column (the intercept term) and four DCT bases. This default nuisance regression will have the effect of demeaning and detrending the data by removing low-frequency components. To not perform any nuisance regression set this argument to NULL, 0, or FALSE.</td>
</tr>
</tbody>
</table>
Detrending is highly recommended for time-series data, especially if there are many time points or evolving circumstances affecting the data. Additionally, if kurtosis is being used to select the projection directions, trends can induce positive or negative kurtosis, contaminating the connection between high kurtosis and outlier presence. Detrending should not be used with non-time-series data because the observations are not temporally related.

Additional nuisance regressors can be specified like so: `cbind(1, dct_bases(nrow(x), 4), more_nuisance)`.

center: Center the columns of the data by their medians, and scale the columns of the data by their median absolute deviations (MADs)? Default: TRUE. Centering is necessary for computing the projections, so if `center` is FALSE, the data must already be centered.

Note that centering and scaling occur after nuisance regression, so even if `center` is FALSE, the data will be centered on the means if the nuisance regression included an intercept term, as it does by default.

scale: Center the columns of the data by their medians, and scale the columns of the data by their median absolute deviations (MADs)? Default: TRUE. Centering is necessary for computing the projections, so if `center` is FALSE, the data must already be centered.

Note that centering and scaling occur after nuisance regression, so even if `center` is FALSE, the data will be centered on the means if the nuisance regression included an intercept term, as it does by default.

comps_mean_dt: Stabilize the mean and variance of each projection component’s timecourse prior to computing kurtosis and leverage? These arguments should be TRUE, FALSE (default), or the number of DCT bases to use for detrending (TRUE will use 4). Note that these arguments affect the projection components and not the data itself. Also, if variance-stabilizing but not mean-stabilizing, the components must already be expected to be mean-stabilized, for example if the data was rigorously detrended; otherwise, the results will be invalid.

Slow-moving mean and variance patterns in the components will interfere with the roles of kurtosis and leverage in identifying outliers. While nuisance can be used to detrend the data, this nuisance regression is estimated *non-robustly*, since a robust model takes too long to estimate at each data location. On the other hand, `comps_mean_dt` and `comps_var_dt` can be used to apply a *robust* nuisance regression at each component, since there are much fewer components than original data locations. Thus, even if the data has been detrended with nuisance it may be helpful to detrend the components with `comps_mean_dt`; furthermore, the data nuisance regression does not address the potential existence of variance patterns in the components.

Overall, we recommend enabling `comps_mean_dt` and `comps_var_dt` unless the data has been cleaned not only with a low-pass filter like DCT nuisance regression, but also with anatomical CompCor, ICA-FIX, or a similar data-driven strategy that takes into account common sources of artifactual trends such as respiration and heartbeat.

comps_var_dt: Stabilize the mean and variance of each projection component’s timecourse prior to computing kurtosis and leverage? These arguments should be TRUE, FALSE (default), or the number of DCT bases to use for detrending (TRUE will use 4). Note that these arguments affect the projection components and not the data.
itself. Also, if variance-stabilizing but not mean-stabilizing, the components must already be expected to be mean-stabilized, for example if the data was rigorously detrended; otherwise, the results will be invalid.

Slow-moving mean and variance patterns in the components will interfere with the roles of kurtosis and leverage in identifying outliers. While nuisance can be used to detrend the data, this nuisance regression is estimated non-robustly, since a robust model takes too long to estimate at each data location. On the other hand, \texttt{comps_mean_dt} and \texttt{comps_var_dt} can be used to apply a robust nuisance regression at each component, since there are much fewer components than original data locations. Thus, even if the data has been detrended with nuisance it may be helpful to detrend the components with \texttt{comps_mean_dt}; furthermore, the data nuisance regression does not address the potential existence of variance patterns in the components.

Overall, we recommend enabling \texttt{comps_mean_dt} and \texttt{comps_var_dt} unless the data has been cleaned not only with a low-pass filter like DCT nuisance regression, but also with anatomical CompCor, ICA-FIX, or a similar data-driven strategy that takes into account common sources of artifactual trends such as respiration and heartbeat.

PESEL

Use \texttt{pesel} to select the number of components? Default: \texttt{TRUE}. Otherwise, use the number of principal components with above-average variance.

kurt_quantile

What quantile cutoff should be used to select the components? Default: 0.99. Use 0 to select all high-variance components regardless of kurtosis value.

We model each component as a length T vector of Normal iid random variables, for which the distribution of kurtosis values can be approximated. The quantile is estimated based on this distribution.

fusedPCA_kwargs

Arguments to \texttt{fusedPCA} in list form. Valid entries are:

- \texttt{lambda} Trend-filtering parameter. Default: 5.
- \texttt{niter_max} Maximum number of iterations. Default: 1000.
- \texttt{TOL} Convergence tolerance parameter. Default: $1e^{-8}$.
- \texttt{verbose} Print updates? Default: \texttt{FALSE}.

get_dirs

Do the projection directions need to be returned? This is the V matrix in PCA and S matrix in ICA. The default is \texttt{FALSE} to save memory. However, \texttt{get_dirs==TRUE} is required for \texttt{artifact_images}.

full_PCA

Only applies to the PCA projection. Return the full SVD? Default: \texttt{FALSE} (return only the high-variance components).

get_outliers

Should outliers be flagged based on \texttt{cutoff}? Default: \texttt{TRUE}.

cutoff

seed

Set a seed right before the call to \texttt{pesel::pesel} or \texttt{ica::icaimax}? If \texttt{NULL}, do not set a seed. If numeric (default: 0), will use as the seed.

verbose

Should occasional updates be printed? Default: \texttt{FALSE}.

Details

Refer to the projection scrubbing vignette for a demonstration and an outline of the algorithm: \texttt{vignette("projection_scrubbing",package="cubature")}
Value

A "pscrub" object, i.e. a list with components

- **measure**: A numeric vector of leverage values.
- **outlier_cutoff**: The numeric outlier cutoff value (cutoff times the median leverage).
- **outlier_flag**: A logical vector where TRUE indicates where leverage exceeds the cutoff, signaling suspected outlier presence.
- **mask**: A length P numeric vector corresponding to the data locations in X. Each value indicates whether the location was masked:
 - 0: The data location was not masked out.
 - -1: The data location was masked out, because it had at least one NA or NaN value.
 - -2: The data location was masked out, because it was constant.
- **PCA**: This will be a list with components:
 - **U**: The T by Q PC score matrix.
 - **D**: The standard deviation of each PC.
 - **V**: The P by Q PC directions matrix. Included only if `get_dirs`.
 - **highkurt**: The length Q logical vector indicating scores of high kurtosis.
 - **U_dt**: Detrended components of U. Included only if components were mean- or variance-detrended.
 - **highkurt**: The length Q logical vector indicating detrended scores of high kurtosis.
 - **nPCs_PESEL**: The number of PCs selected by PESEL.
 - **nPCs_avgvar**: The number of above-average variance PCs.

 where Q is the number of PCs selected by PESEL or of above-average variance (or the greater of the two if both were used). If PCA was not used, all entries except `nPCs_PESEL` and/or `nPCs_avgvar` will not be included, depending on which method(s) was used to select the number of PCs.

- **fusedPCA**: If fusedPCA was used, this will be a list with components:
 - **U**: The T by Q PC score matrix.
 - **D**: The standard deviation of each PC.
 - **V**: The P by Q PC directions matrix. Included only if `get_dirs`.
 - **highkurt**: The length Q logical vector indicating scores of high kurtosis.
 - **U_dt**: Detrended components of U. Included only if components were mean- or variance-detrended.
 - **highkurt**: The length Q logical vector indicating detrended scores of high kurtosis. Included only if components were mean- or variance-detrended.

- **ICA**: If ICA was used, this will be a list with components:
 - **S**: The P by Q source signals matrix. Included only if `get_dirs`.
 - **M**: The T by Q mixing matrix.
 - **highkurt**: The length Q logical vector indicating mixing scores of high kurtosis.
 - **M_dt**: Detrended components of M. Included only if components were mean- or variance-detrended.
 - **highkurt**: The length Q logical vector indicating detrended mixing scores of high kurtosis. Included only if components were mean- or variance-detrended.
rob_scale

References

Examples

```r
n_voxels = 1e4
n_timepoints = 100
X = matrix(rnorm(n_timepoints*n_voxels), ncol = n_voxels)

psx = pscrub(X)
```

rob_scale

Stabilize the center and scale of a timeseries robustly

Description

Stabilize the center and scale of a timeseries using robust regression of DCT bases on the first and second moments.

Usage

```r
rob_scale(x, center = TRUE, scale = TRUE, lmrob_method = "MM", rescale = TRUE)
```

Arguments

- `x` The timeseries to stabilize.
- `center, scale` Center and scale? Default: TRUE for both. If scaling but not centering, the data must already be centered; otherwise, the results will be invalid. Can also be the number of DCT bases to use for robust stabilization of center/scale; TRUE will use 4.
- `lmrob_method` The lmrob_method argument to robustbase::lmrob.
- `rescale` After stabilizing x, re-center and re-scale to the original mean and variance? Default: TRUE.

Value

The timeseries with its center and scale stabilized
scale_med

Scale data columns robustly

Description
Centers and scales the columns of a matrix robustly for the purpose of covariance estimation.

Usage
scale_med(mat)

Arguments
mat A numerical matrix.

Details
Centers each column on its median, and scales each column by its median absolute deviation (MAD). If any column MAD is zero, its values become zero and a warning is raised. If all MADs are zero, an error is raised.

Value
The input matrix with its columns centered and scaled.

scrub

Data-driven scrubbing

Description
Performs projection scrubbing or DVARS scrubbing, and optionally thresholds to identify artifactual time points.

Usage
scrub(X, method = c("projection", "DVARS"), ...)

Arguments

X A T by V numeric matrix representing an fMRI run. There should not be any missing data (NA or NaN).

method "projection" (default) or "DVARS"

... Additional arguments to the specific scrubbing function: see pscrub or DVARS.
scrub_xifti

Value

A list with components

- **measure**: A length T vector or data.frame with T rows, giving the outlyingness measure(s)
- **measure_info**: Describes the outlyingness measure(s)
- **outlier_cutoff**: The outlier cutoff value(s).
- **outlier_flag**: A length T vector or data.frame with T rows, where TRUE indicates suspected outlier presence.

scrub_xifti
Scrub fMRI data in CIFTI format

Description

Performs projection scrubbing or DVARS scrubbing, and optionally thresholds to identify artifactual time points. Requires ciftiTools and the Connectome Workbench.

Usage

```r
scrub_xifti(
  X,
  method = c("projection", "DVARS"),
  brainstructures = c("left", "right"),
  ...)
```

Arguments

- **X**: Path to a CIFTI file, or a "xifti" object.
- **method**: "projection" or "DVARS"
- **brainstructures**: Character vector indicating which brain structure(s) to use: "left" (left cortical surface), "right" (right cortical surface) and/or "subcortical" (subcortical and cerebellar gray matter). Can also be "all" (obtain all three brain structures). Default: c("left","right") (excludes the subcortex).
- **...**: Additional arguments to each specific scrubbing function: pscrub or DVARS.

Value

A list with components

- **measure**: A length T vector or data.frame with T rows, giving the outlyingness measure(s)
- **measure_info**: Describes the outlyingness measure(s)
- **outlier_cutoff**: The outlier cutoff value(s).
- **outlier_flag**: A length T vector or data.frame with T rows, where TRUE indicates suspected outlier presence.
summary.scrub_DVARS

Summarize a "scrub_DVARS" object

Description

Summary method for class "scrub_DVARS"

Usage

```r
## S3 method for class 'scrub_DVARS'
summary(object, ...)

## S3 method for class 'summary.scrub_DVARS'
print(x, ...)

## S3 method for class 'scrub_DVARS'
print(x, ...)
```

Arguments

- `object` Object of class "scrub_DVARS".
- `...` further arguments passed to or from other methods.
- `x` Object of class "scrub_DVARS".

Value

A plot of the scrubbing results

summary.scrub_FD

Summarize a "scrub_FD" object

Description

Summary method for class "scrub_FD"

Usage

```r
## S3 method for class 'scrub_FD'
summary(object, ...)

## S3 method for class 'summary.scrub_FD'
print(x, ...)

## S3 method for class 'scrub_FD'
print(x, ...)
```
summary.scrub_projection

Arguments

object Object of class "scrub_FD".

... further arguments passed to or from other methods.

x Object of class "scrub_FD".

Value

A plot of the scrubbing results

summary.scrub_projection

Summarize a "scrub_projection" object

Description

Summary method for class "scrub_projection"

Usage

S3 method for class 'scrub_projection'
summary(object, ...)

S3 method for class 'summary.scrub_projection'
print(x, ...)

S3 method for class 'scrub_projection'
print(x, ...)

Arguments

object Object of class "scrub_projection".

... further arguments passed to or from other methods.

x Object of class "scrub_projection".

Value

A plot of the scrubbing results
unmask_vol

Undo a volumetric mask

Description

Un-applies a mask to vectorized data to yield its volumetric representation. The mask and data should have compatible dimensions: the number of rows in `dat` should equal the number of locations within the `mask`.

Usage

```r
unmask_vol(dat, mask, fill = NA)
```

Arguments

- `dat`: Data matrix with locations along the rows and measurements along the columns. If only one set of measurements were made, this may be a vector.
- `mask`: Volumetric binary mask. TRUE indicates voxels inside the mask.
- `fill`: The value for locations outside the mask. Default: NA.

Value

The 3D or 4D unflattened volume array
Index

* datasets
 Dat1, 8
 Dat2, 8

artifact_images, 2, 21

CompCor, 3, 6
CompCor_HCP, 6

Dat1, 8
Dat2, 8
dct_bases, 5, 9
DVARS, 9, 24, 25

erode_vol, 11

FD, 11
fMRIscrub, 13
fsl_bptf, 13
fusedPCA, 14, 21

high_kurtosis, 15

leverage, 16

nuisance_regression, 16

pct_sig, 17
pesel, 21
plot.scrub_DVARS, 17
plot.scrub_FD, 18
plot.scrub_projection, 18
print.scrub_DVARS
 (summary.scrub_DVARS), 26
print.scrub_FD (summary.scrub_FD), 26
print.scrub_projection
 (summary.scrub_projection), 27
print.summary.scrub_DVARS
 (summary.scrub_DVARS), 26
print.summary.scrub_FD
 (summary.scrub_FD), 26

pscrub, 2, 19, 24, 25

read.table, 12
read_cifti, 4
rob_scale, 23

scale_med, 24
scrub, 24
scrub_xifti, 25
summary.scrub_DVARS, 26
summary.scrub_FD, 26
summary.scrub_projection, 27

unmask_vol, 28

print.summary.scrub_projection
 (summary.scrub_projection), 27