Package ‘ess’

May 24, 2020

Title Efficient Stepwise Selection in Decomposable Models
Version 1.0
Description An implementation of the ESS algorithm following Amol Deshpande, Minos Garofalakis, Michael I Jordan (2013) <arXiv:1301.2267>. The ESS algorithm is used for model selection in decomposable graphical models.

URL https://github.com/mlindsk/ess
Depends R (>= 3.5.0)
License GPL-3
Encoding UTF-8
LazyData true
Imports Rcpp, igraph, Matrix
LinkingTo Rcpp
RoxygenNote 7.1.0
Suggests tinytest

BugReports https://github.com/mlindsk/ess/issues
SystemRequirements C++11
NeedsCompilation yes
Author Mads Lindskou [aut, cre]
Maintainer Mads Lindskou <mads@math.aau.dk>
Repository CRAN
Date/Publication 2020-05-24 15:20:05 UTC

R topics documented:

ess-package ... 2
adj_lst ... 3
adj_mat ... 3
as_adj_lst .. 4
as_adj_mat .. 4
components .. 5
derma ... 5
dfs ... 6
dgm_sim_from_graph .. 6
entropy .. 7
fit_components .. 8
fit_graph .. 9
gengraph .. 10
is_decomposable .. 11
make_complete_graph ... 12
make_null_graph ... 12
mcs ... 13
plot.gengraph .. 13
print.gengraph ... 14
print.tree .. 14
rip ... 15
subgraph .. 15
walk ... 16
walk.bwd ... 17
walk.fwd ... 18

Index 20

ess-package ess: Efficient Stepwise Selection in Decomposable Models

Description

The class of graphical models is a family of probability distributions for which conditional dependencies can be read off from a graph. If the graph is decomposable, the maximum likelihood estimates of the parameters in the model can be shown to be on exact form. This is what enables ESS to be fast and efficient for model selection in decomposable graphical models.

Author(s)

Maintainer: Mads Lindskou <mads@math.aau.dk>

See Also

Useful links:

- https://github.com/mlindsk/ess
- Report bugs at https://github.com/mlindsk/ess/issues
adj_lst

Adjacency List

Description
Extracts the adjacency list of a gengraph

Usage

```r
adj_lst(x)
```

```r
## S3 method for class 'gengraph'
adj_lst(x)
```

Arguments

- `x` gengraph

Value

An adjacency list

adj_mat

Adjacency Matrix

Description
Extracts the adjacency matrix of a gengraph object

Usage

```r
adj_mat(x)
```

```r
## S3 method for class 'gengraph'
adj_mat(x)
```

Arguments

- `x` gengraph object

Value

An adjacency matrix
as_adj_lst

Converts an adjacency matrix to an adjacency list

Description

Converts an adjacency matrix to an adjacency list

Usage

as_adj_lst(A)

Arguments

A Adjacency matrix

as_adj_mat

Converts an adjacency list to an adjacency matrix

Description

Converts an adjacency list to an adjacency matrix

Usage

as_adj_mat(adj)

Arguments

adj Adjacency list

Value

An adjacency matrix

Examples

adj <- list(a = c("b", "d"), b = c("a", "c", "d"), c = c("b", "d"), d = c("a", "c", "b"))
as_adj_mat(adj)
components

components

Finds the components of a graph

Description

Finds the components of a graph

Usage

```r
components(adj)
```

Arguments

- `adj`: Adjacency list or `gengraph` object

Value

A list where the elements are the components of the graph

derma

Dermatology Database

Description

This data set contains 358 observations (we have removed 8 with missing values). It contains 12 clinical attributes and 21 histopathological attributes. The age attribute has been discretized. The class variable "ES" has six levels; each describing a skin disease.

Usage

```r
derma
```

Format

An object of class `tbl_df` (inherits from `tbl.data.frame`) with 358 rows and 35 columns.

References

Dermatology Data Set
dfs

Depth First Search

Description

Finds the elements in the component of `root`

Usage

```r
dfs(adj, root)
```

Arguments

- `adj` A named adjacency list of a decomposable graph
- `root` The node from which the component should be found

Value

All nodes connected to `root`

Examples

```r
x <- list(a = c("b", "d"), b = c("a", "d"), c = c("b", "a"),
        d = c("e", "f"), e = c("d", "f"), f = c("d", "e"))
dfs(x, "a")
```

dgm_sim_from_graph

Simulate observations from a decomposable graphical model

Description

Simulate observations from a decomposable graphical model

Usage

```r
dgm_sim_from_graph(g, lvls, nsim = 1000, cell_rate = 0.5)
```

Arguments

- `g` An adjacency list
- `lvls` Named list with levels of the discrete variables
- `nsim` Number of simulations
- `cell_rate` Control discrete cell probabilities
entropy

Value

This function returns a matrix of dimension where each row correspond to a simulated observation from a DGM represented by g.

Examples

g = list(
 A = c("B", "X", "Y"),
 B = c("A", "Y"),
 X = c("A", "Y"),
 Y = c("A", "X", "B")
)

lvls <- list(
 A = c("0", "1"),
 B = c("0", "1"),
 X = c("a", "b", "c"),
 Y = c("0", "1", "2")
)

dgm_sim_from_graph(g, lvls, nsim = 10)

Converting the g to a gengraph object and plot

d <- data.frame(A = "", B = "", X = "", Y = "") # auxillary data
g <- gengraph(d, adj = g)
plot(g)

tenropy

Joint Entropy

Description

Calculates the joint entropy over discrete variables in df

Usage

entropy(df, thres = 5)

Arguments

 df data.frame
 thres A threshold mechanism for choosing between two different ways of calculating the entropy. Can Speed up the procedure with the "correct" value.
Value

A number representing the entropy of the variables in df.

Examples

entropy(derma[1:100, 1:3])

fit_components

Fit a decomposable graphical model on each component

Description

Structure learning in decomposable graphical models on several components

Usage

fit_components(
 df, comp, type = "fwd", q = 0.5, as_gen = TRUE, trace = TRUE, thres = 5, wrap = TRUE
)

Arguments

df data.frame
comp A list with character vectors. Each element in the list is a component in the graph (using expert knowledge)
type Character ("fwd", "bwd", "tree" or "tfwd")
q Penalty term in the stopping criterion (0 = AIC and 1 = BIC)
as_gen Logical. Convert to gengraph or not. If true, the graph can be plotted.
trace Logical indicating whether or not to trace the procedure
thres A threshold mechanism for choosing between two different ways of calculating the entropy.
wrap logical specifying if the result of a run with type = "tree" should be converted to a "fwd" object

Value

A gengraph object
fit_graph

See Also

`fit_graph`, `adj_lst.gengraph`, `adj_mat.gengraph`, `walk.fwd`, `walk.bwd`, `gengraph`

fit_graph

Fit a decomposable graphical model

Description

A generic method for structure learning in decomposable graphical models

Usage

```r
fit_graph(
  df,
  type = "fwd",
  adj = NULL,
  q = 0.5,
  trace = TRUE,
  thres = 5,
  wrap = TRUE
)
```

Arguments

- **df**: Character data.frame
- **type**: Character ("fwd", "bwd", "tree" or "tfwd")
- **adj**: Adjacency list of a decomposable graph
- **q**: Penalty term in the stopping criterion (0 = AIC and 1 = BIC)
- **trace**: Logical indicating whether or not to trace the procedure
- **thres**: A threshold mechanism for choosing between two different ways of calculating the entropy.
- **wrap**: logical specifying if the result of a run with type = "tree" should be converted to a "fwd" object

Details

The types are

- "fwd": forward selection
- "bwd": backward selection
- "tree": Chow-Liu tree (first order interactions only)
- "tfwd": A combination of "tree" and "fwd". This can speed up runtime considerably in high dimensions.

Using `adj_lst` on an object returned by `fit_graph` gives the adjacency list corresponding to the graph. Similarly one can use `adj_mat` to obtain an adjacency matrix. Applying the `rip` function on an adjacency list returns the cliques and separators of the graph.
A generic and extendable structure for decomposable graphical models

Usage

gengraph(df, type = "gen", adj = NULL, q = 0.5, ...)

Arguments

df data.frame
type character ("fwd", "bwd", "tree", "tfwd", "gen")
adj A user-specified adjacency list
q Penalty term in the stopping criterion (0 = AIC and 1 = BIC)
... Not used (for extendibility)

Examples

g <- fit_graph(derma, trace = FALSE, q = 0)
print(g)
plot(g)

Adjacency matrix and adjacency list
adjm <- adj_mat(g)
adjl <- adj_lst(g)

Cliques in the graph
rip(adjl)$C

Components of the graph
components(adjl) # only one here
is_decomposable

Value

A gengraph object with child class type used for model selection.

See Also

adj_lst.gengraph, adj_mat.gengraph, fit_graph, walk.fwd, walk.bwd

Examples

```r
# 4-cycle:
adj1 <- list(a = c("b", "d"), b = c("a", "c"), c = c("b", "d"), d = c("a", "c"))
is_decomposable(adj1) # FALSE

# Two triangles:
adj2 <- list(a = c("b", "d"), b = c("a", "c", "d"), c = c("b", "d"), d = c("a", "c", "b"))
is_decomposable(adj2) # TRUE
```

Description

This function returns TRUE if the graph is decomposable and FALSE otherwise

Usage

```r
is_decomposable(adj)
```

Arguments

- `adj`: Adjacency list of an undirected graph

Value

Logical describing whether or not `adj` is decomposable

Examples

```r
# 4-cycle:
adj1 <- list(a = c("b", "d"), b = c("a", "c"), c = c("b", "d"), d = c("a", "c"))
is_decomposable(adj1) # FALSE

# Two triangles:
adj2 <- list(a = c("b", "d"), b = c("a", "c", "d"), c = c("b", "d"), d = c("a", "c", "b"))
is_decomposable(adj2) # TRUE
```
make_complete_graph
Make a complete graph

Description
A helper function to make an adjacency list corresponding to a complete graph

Usage
```r
make_complete_graph(nodes)
```

Arguments
- `nodes`
 A character vector containing the nodes to be used in the graph

Value
An adjacency list of a complete graph

Examples
```r
d <- derma[, 5:8]
cg <- make_complete_graph(colnames(d))
```

make_null_graph
Make a null graph

Description
A helper function to make an adjacency list corresponding to a null graph (no edges)

Usage
```r
make_null_graph(nodes)
```

Arguments
- `nodes`
 A character vector containing the nodes to be used in the graph

Value
An adjacency list the null graph with no edges

Examples
```r
d <- derma[, 5:8]
ng <- make_null_graph(colnames(d))
```
Maximum Cardinality Search

Usage

mcs(adj, check = TRUE)

Arguments

adj A named adjacency list of a decomposable graph
check Boolean: check if adj is decomposable

Details

If adj is not the adjacency list of a decomposable graph an error is raised

Value

A list with a perfect numbering of the nodes and a perfect sequence of sets

Examples

x <- list(a = c("b", "d"), b = c("a", "c", "d"), c = c("b", "d"), d = c("a", "c", "b"))
mcs(x)

Plot

Description

A wrapper around igraphs plot method for gengraph objects

Usage

S3 method for class 'gengraph'
plot(x, vc = NULL, ...)

Arguments

x A gengraph object
vc Named character vector; the names are the vertices and the elements are the colors of the nodes
... Extra arguments. See the igraph package
Value

No return value, called for side effects

Examples

d <- derma[, 10:25]
g <- fit_graph(d)
vs <- colnames(d)
vcoll <- structure(vector("character", length(vs)), names = vs)
vcoll[1:4] <- "lightsteelblue2"
vcoll[5:7] <- "orange"
vcoll[8:16] <- "pink"
plot(g, vcol)

print.tree

Description

A print method for tree objects

Usage

S3 method for class 'tree'
print(x, ...)

Arguments

x A tree object
...
Not used (for S3 compatibility)
Description

Given a decomposable graph, this functions finds a perfect numbering on the vertices using maximum cardinality search, and hereafter returns a list with two elements: “C” - A RIP-ordering of the cliques and ”S” - A RIP ordering of the separators.

Usage

```r
rip(adj, check = TRUE)
```

Arguments

- `adj`: A named adjacency list of a decomposable graph
- `check`: Boolean: check if adj is decomposable

Value

A list with cliques and separators of `adj`

See Also

`mcs`, `is_decomposable`

Examples

```r
x <- list(a = c("b", "d"), b = c("a", "c", "d"), c = c("b", "d"), d = c("a", "c", "b"))
y <- rip(x)
# Cliques:
y$C
# Separators:
y$S
```

subgraph

Subgraph

Description

Construct a subgraph with a given set of nodes removed

Usage

```r
subgraph(x, g)
```
Arguments

x Character vector of nodes

g Adjacency list (named) or a adjacency matrix with dimnames given as the nodes

Value

An adjacency list or adjacency matrix.

Examples

adj1 <- list(a = c("b", "d"), b = c("a", "c", "d"), c = c("b", "d"), d = c("a", "c", "b"))
d <- data.frame(a = "", b = "", c = "", d = "") # Toy data so we can plot the graph
g <- gengraph(d, type = "gen", adj = adj1)
plot(g)
subgraph(c("c", "b"), adj1)
subgraph(c("b", "d"), as_adj_mat(adj1))

walk Stepwise model selection

Description

Stepwise model selection in decomposable graphical models

Usage

walk(x, df, q, thres)

Arguments

x fwd or bwd objects

df data.frame

q Penalty term in the stopping criterion (0 = AIC and 1 = BIC)

thres A threshold mechanism for choosing between two different ways of calculating the entropy. Can Speed up the procedure with the "correct" value.

Details

A fwd (or bwd) object can be created using the gengraph constructor with type = "fwd".

Value

A fwd or bwd object with one additional edge than the input object.

See Also

fit_graph, walk.fwd, gengraph
Examples

d <- derma[, 10:25]
g <- gengraph(d, type = "fwd")
s <- walk(g, d)
print(s)
plot(s)
adj_lst(s)
adj_mat(s)

walk.bwd

Stepwise backward selection

Description

Stepwise backward selection in decomposable graphical models

Usage

S3 method for class 'bwd'
walk(x, df, q = 0.5, thres = 5)

Arguments

x gengraph
df data.frame
q Penalty term in the stopping criterion (0 = AIC and 1 = BIC)
thsres A threshold mechanism for choosing between two different ways of calculating the entropy. Can Speed up the procedure with the "correct" value.

Details

A bwd object can be created using the gengraph constructor with type = "bwd"

Value

A bwd object; a subclass of gengraph) used for backward selection.

See Also

fit_graph, walk.fwd, gengraph
Examples

d <- derma[, 10:25]
g <- gengraph(d, type = "bwd")
s <- walk(g, d)
print(s)
plot(s)
adj_lst(s)
adj_mat(s)

Description

Stepwise efficient forward selection in decomposable graphical models

Usage

```r
## S3 method for class 'fwd'
walk(x, df, q = 0.5, thres = 5)
```

Arguments

- `x` A `fwd` object
- `df` data.frame
- `q` Penalty term in the stopping criterion (0 = AIC and 1 = BIC)
- `thres` A threshold mechanism for choosing between two different ways of calculating the entropy. Can speed up the procedure with the "correct" value.

Details

A `fwd` object can be created using the `gengraph` constructor with `type = "fwd"

Value

A `fwd` object; a subclass of `gengraph` used for forward selection.

References

See Also

`fit_graph`, `walk.bwd`, `gengraph`
Examples

d <- derma[, 10:25]

g <- gengraph(d, type = "fwd")
s <- walk(g, d)
print(s)
plot(s)
adj_lst(s)
adj_mat(s)
Index

*Topic datasets
 derma, 5

adj_lst, 3
adj_lst.gengraph, 9–11
adj_mat, 3
adj_mat.gengraph, 9–11
as_adj_lst, 4
as_adj_mat, 4

components, 5
derma, 5
dfs, 6
dgm_sim_from_graph, 6

entropy, 7
ess (ess-package), 2
ess-package, 2

fit_components, 8, 10
fit_graph, 9, 9, 11, 16–18
gengraph, 9, 10, 10, 16–18
is_decomposable, 11, 15
make_complete_graph, 12
make_null_graph, 12
mcs, 13, 15

plot.gengraph, 13
print.gengraph, 14
print.tree, 14

rip, 15

subgraph, 15

walk, 16
walk.bwd, 9–11, 17, 18
walk.fwd, 9–11, 16, 17, 18