Package ‘epsiwal’

July 2, 2019

Version 0.1.0
Date 2019-06-28
License LGPL-3
Title Exact Post Selection Inference with Applications to the Lasso
BugReports https://github.com/shabbychef/epsiwal/issues
Description Implements the conditional estimation procedure of
Lee, Sun, Sun and Taylor (2016) <doi:10.1214/15-AOS1371>. This procedure allows hypothesis testing on the mean of
a normal random vector subject to linear constraints.
Depends R (>= 3.0.2)
Suggests testthat
URL https://github.com/shabbychef/epsiwal
Collate 'ci_connorm.r' 'epsiwal.r' 'pconnorm.r' 'ptruncnorm.r'
 'utils.r'
RoxygenNote 6.1.1
NeedsCompilation no
Author Steven E. Pav [aut, cre] (<https://orcid.org/0000-0002-4197-6195>)
Maintainer Steven E. Pav <shabbychef@gmail.com>
Repository CRAN
Date/Publication 2019-07-02 12:10:10 UTC

R topics documented:

 ci_connorm .. 2
 epsiwal .. 3
 epsiwal-NEWS .. 4
 pconnorm .. 4
 ptruncnorm .. 6

Index 7
ci_connorm

Description

Confidence intervals on normal mean, subject to linear constraints.

Usage

```r
ci_connorm(y, A, b, eta, Sigma = NULL, p = c(level/2, 1 - (level/2)),
level = 0.05, Sigma_eta = Sigma %*% eta)
```

Arguments

- `y` an `n` vector, assumed multivariate normal with mean `µ` and covariance `Σ`.
- `A` an `k` × `n` matrix of constraints.
- `b` a `k` vector of inequality limits.
- `eta` an `n` vector of the test contrast, `η`.
- `Sigma` an `n` × `n` matrix of the population covariance, `Σ`. Not needed if `Sigma_eta` is given.
- `p` a vector of probabilities for which we return equivalent `η^T µ`.
- `level` if `p` is not given, we set it by default to `c(level/2, 1-level/2)`.
- `Sigma_eta` an `n` vector of `Ση`.

Details

Inverts the constrained normal inference procedure described by Lee et al.

Let `y` be multivariate normal with unknown mean `µ` and known covariance `Σ`. Conditional on `Ay ≤ b` for conformable matrix `A` and vector `b`, and given constrast vector `eta` and level `p`, we compute `η^T µ` such that the cumulative distribution of `η^T y` equals `p`.

Value

The values of `η^T µ` which have the corresponding CDF.

Note

An error will be thrown if we do not observe `Ay ≤ b`.

Author(s)

Steven E. Pav <shabbychef@gmail.com>
References

See Also

the CDF function, pconnorm.

Examples

```r
set.seed(1234)
n <- 10
y <- rnorm(n)
A <- matrix(rnorm(n*(n-3)),ncol=n)
b <- A%*%y + runif(nrow(A))
Sigma <- diag(runif(n))
mu <- rnorm(n)
eta <- rnorm(n)
pval <- pconnorm(y=y,A=A,b=b,eta=eta,mu=mu,Sigma=Sigma)
cival <- ci_connorm(y=y,A=A,b=b,eta=eta,Sigma=Sigma,p=pval)
stopifnot(abs(cival - sum(eta*mu)) < 1e-4)
```

Description

Exact Post Selection Inference with Applications to the Lasso.

Details

This simple package supports the simple procedure outlined in Lee et al. where one observes a normal random variable, then performs inference conditional on some linear inequalities.

Suppose y is multivariate normal with mean μ and covariance Σ. Conditional on $Ay \leq b$, one can perform inference on $\eta^T \mu$ by transforming y to a truncated normal. Similarly one can invert this procedure and find confidence intervals on $\eta^T \mu$.

Legal Mumbo Jumbo

epsiwal is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details.

Note

This package is maintained as a hobby.
Author(s)
Steven E. Pav <shabbychef@gmail.com>

References
Lee, J. D., Sun, D. L., Sun, Y. and Taylor, J. E. "Exact post-selection inference, with application to

Description
News for package 'epsiwal'

epsiwal Initial Version 0.1.0 (2019-06-28)
• first CRAN release.

pconnorm

Description
CDF of the conditional normal variate.

Usage
pconnorm(y, A, b, eta, mu = NULL, Sigma = NULL, Sigma_eta = Sigma
 %*% eta, eta.mu = as.numeric(t(eta) %*% mu), lower.tail = TRUE,
 log.p = FALSE)

Arguments
y an n vector, assumed multivariate normal with mean \(\mu \) and covariance \(\Sigma \).
A an \(k \times n \) matrix of constraints.
b a \(k \) vector of inequality limits.
etas an n vector of the test contrast, \(\eta \).
mu an n vector of the population mean, \(\mu \). Not needed if \(\text{eta.mu} \) is given.
Sigma an \(n \times n \) matrix of the population covariance, \(\Sigma \). Not needed if \(\text{Sigma.eta} \) is given.
Sigma_eta an n vector of $\Sigma \eta$.
eta_mu the scalar $\eta^\top \mu$.
lower.tail logical; if TRUE (default), probabilities are $P[X \leq x]$ otherwise, $P[X > x]$.
log.p logical; if TRUE, probabilities p are given as log(p).

Details

Computes the CDF of the truncated normal conditional on linear constraints, as described in section 5 of Lee et al.

Let y be multivariate normal with mean μ and covariance Σ. Conditional on $Ay \leq b$ for conformable matrix A and vector b we compute the CDF of a truncated normal maximally aligned with η. Inference depends on the population parameters only via $\eta^\top \mu$ and $\Sigma \eta$, and only these need to be given.

The test statistic is aligned with y, meaning that an output p-value near one casts doubt on the null hypothesis that $\eta^\top \mu$ is less than the posited value.

Value

The CDF.

Note

An error will be thrown if we do not observe $Ay \leq b$.

Author(s)

Steven E. Pav <shabbychef@gmail.com>

References

See Also

the confidence interval function, ci_connorm.
Description

Cumulative distribution of the truncated normal function.

Usage

ptruncnorm(q, mean = 0, sd = 1, a = -Inf, b = Inf,
 lower.tail = TRUE, log.p = FALSE)

Arguments

- q: vector of quantiles.
- mean: vector of means.
- sd: vector of standard deviations.
- a: vector of the left truncation value(s).
- b: vector of the right truncation value(s).
- lower.tail: logical; if TRUE (default), probabilities are \(P[X \leq x] \) otherwise, \(P[X > x] \).
- log.p: logical; if TRUE, probabilities \(p \) are given as \(\log(p) \).

Value

The distribution function of the truncated normal.
Invalid arguments will result in return value NaN with a warning.

Note

Input are recycled as possible.

Author(s)

Steven E. Pav <shabbychef@gmail.com>

References

Examples

y <- ptruncnorm(seq(-5,5,length.out=101), a=-1, b=2)
Index

>Topic package
 epsiwal, 3

 ci_connorm, 2

 epsiwal, 3
 epsiwal-NEWS, 4
 epsiwal-package (epsiwal), 3

 pconnorm, 4
 ptruncnorm, 6