suppressPackageStartupMessages({
library(tidyverse)
library(seqinr)
library(tibble)
library(epitopeR)
})
# system folder to pull out samle data tables
<- "extdata/vgn/data"
fd_dat
# local function for ggplot()
<- function(){
theme_lcl theme(plot.title = element_text(hjust = 0.5, size = 6),
axis.title = element_text(size = 4),
legend.title = element_text(size = 4),
axis.text.x = element_text(angle = 30, hjust = 0.5, vjust = 0.8, size = 4),
axis.text.y = element_text(size = 4),
legend.text = element_text(size = 4),
legend.key.width = unit(0.2, "cm"),
legend.key.height = unit(0.2, "cm"),
legend.position = "bottom")
}
MGI gene expression search results
Field input: ChrY, wild-type only, results from all assay types,
Anatomic location (one spleen, one skin)
Filter: detected==“yes” Two files, one is genes expressed in Skin, the
other is genes expressed in Spleen
<- read.delim(system.file(fd_dat, "MGIgeneExpr_ChrY_spleen.txt", package = "epitopeR")) %>%
spleen select(Gene.Symbol, Strain, Sex, Structure)
<- read.delim(system.file(fd_dat, "MGIgeneExpr_ChrY_skin.txt", package = "epitopeR")) %>%
skin select(Gene.Symbol, Strain, Sex, Structure)
<- spleen %>%
gex bind_rows(skin) %>%
mutate(Gene.Symbol = as.factor(Gene.Symbol)) %>%
select(-c(Strain, Sex)) %>%
unique()
%>%
gex ggplot(aes(Gene.Symbol, fill = Structure)) +
geom_bar() +
ggtitle("HY Gene Expression by Tissue") +
theme_lcl()
# stim, donor, foreign: y
# self: x
# presenting - H2-IAb for class II, "H-2-Db" and "H-2-Db" for class I
<- read.fasta(system.file(fd_dat, "utx_r.fasta", package = "epitopeR"),
utx as.string = TRUE, seqonly = TRUE) %>% unlist
<- read.fasta(system.file(fd_dat, "uty_d.fasta", package = "epitopeR"),
uty as.string = TRUE, seqonly = TRUE) %>% unlist
<- read.fasta(system.file(fd_dat, "ddx3x.fasta", package = "epitopeR"),
ddx3x as.string = TRUE, seqonly = TRUE) %>% unlist
<- read.fasta(system.file(fd_dat, "ddx3y.fasta", package = "epitopeR"),
ddx3y as.string = TRUE, seqonly = TRUE) %>% unlist
<- read.fasta(system.file(fd_dat, "kdm5c.fasta", package = "epitopeR"),
kdm5c as.string = TRUE, seqonly = TRUE) %>% unlist
<- read.fasta(system.file(fd_dat, "kdm5d.fasta", package = "epitopeR"),
kdm5d as.string = TRUE, seqonly = TRUE) %>% unlist
rm(fd_dat)
<- function(pres_in, stim_in, self_in, len_in, mth_in){
mhcI_wrapper <- mhcI(ag_present = pres_in,
out ag_stim = stim_in,
ag_self = self_in,
seq_len = len_in, method = mth_in)
return(out)
}
<- c("H-2-Db", "H-2-Kb")
pres1 <- "9"
len1 <- "recommended"
mth1
<- re_ddx3 <- re_kdm5 <- data.frame()
re_ut
for (i in 1:length(pres1))
{<- mhcI_wrapper(pres_in = pres1[i], stim_in = uty, self_in = utx,
tmp len_in = len1, mth_in = mth1)
<- re_ut %>% rbind(tmp)
re_ut rm(tmp)
<- mhcI_wrapper(pres_in = pres1[i], stim_in = ddx3y, self_in = ddx3x,
tmp len_in = len1, mth_in = mth1)
<- re_ddx3 %>% rbind(tmp)
re_ddx3 rm(tmp)
<- mhcI_wrapper(pres_in = pres1[i], stim_in = kdm5d, self_in = kdm5c,
tmp len_in = len1, mth_in = mth1)
<- re_kdm5 %>% rbind(tmp)
re_kdm5 rm(tmp)
}
<- rbind(re_ut, re_ddx3, re_kdm5)
re_mhc1
rm(mhcI_wrapper, pres1, len1, mth1, re_ut, re_ddx3, re_kdm5)
<- c("H2-IAb")
pres2 <- "15"
len2 <- "recommended"
mth2
<- mhcII(ag_stim = uty,
re_ut ag_self = utx,
ag_present = pres2, seq_len = len2, method = mth2,
nm_stim = "uty",
nm_self = "utx")
<- mhcII(ag_stim = ddx3y,
re_ddx3 ag_self = ddx3x,
ag_present = pres2, seq_len = len2, method = mth2,
nm_stim = "ddx3y",
nm_self = "ddx3x")
<- mhcII(ag_stim = kdm5d,
re_kdm5 ag_self = kdm5c,
ag_present = pres2, seq_len = len2, method = mth2,
nm_stim = "kdm5d",
nm_self = "kdm5c")
<- rbind(re_ut, re_ddx3, re_kdm5)
re_mhc2
rm(pres2, len2, mth2, re_ut, re_ddx3, re_kdm5)
<- c("WMHHNMDLI", "KCSRNRQYL", "NAGFNSNRANSSRSS") HY_peptides
<- re_mhc2 %>%
out select(allele, antigen, pep_stim, score_val, rank_val) %>%
rbind(re_mhc1 %>% select(allele, antigen, pep_stim,
score_val = score, rank_val = percentile_rank)) %>%
#mutate(known = ifelse(pep_stim %in% HY_peptides, "known", "other"))
mutate(known = ifelse(pep_stim %in% HY_peptides, "yes", "no"))
%>%
out filter(allele %in% c("H-2-Kb", "H-2-Db")) %>%
ggplot(aes(rank_val, score_val, color = known)) +
geom_jitter(size = 0.5, alpha = 0.7, position = position_jitter(width = .2)) +
scale_color_manual(values=c("cornflowerblue", "red")) +
facet_grid(allele~antigen, scales = "free") +
ggtitle("Predicted Peptides by Score and Percent Rank") +
ylab("Elution Likelihood Score") +
xlab("Adjusted Percent Rank") +
scale_size_continuous(guide = "none") +
theme_lcl()
%>%
out filter(allele %in% c("H2-IAb")) %>%
ggplot(aes(rank_val, score_val, color = known)) +
geom_jitter(size = 0.5, alpha = 0.7, position = position_jitter(width = .2)) +
scale_color_manual(values=c("cornflowerblue", "red")) +
facet_grid(allele~antigen, scales = "free") +
ylab("IC50") +
xlab("Adjusted Percent Rank") +
ggtitle("Predicted Peptides by Score and Percent Rank") +
#scale_size_continuous(guide = "none") +
theme_lcl()