Package ‘epca’

July 10, 2023

Type Package
Title Exploratory Principal Component Analysis
Version 1.1.0
Date 2023-07-10
Description Exploratory principal component analysis for large-scale dataset, including sparse principal component analysis and sparse matrix approximation.

URL https://github.com/fchen365/epca
BugReports https://github.com/fchen365/epca/issues
License GPL-3
Depends R (>= 3.5),
Imports clue, irlba, Matrix, GPArotation,
Suggests elasticnet, ggcorrplot, tidyverse, rmarkdown, reshape2,
markdown, RSpectra, matlabr, knitr, PMA, testthat (>= 3.0.0)
VignetteBuilder knitr, rmarkdown
Encoding UTF-8
RoxygenNote 7.2.3
NeedsCompilation no
Author Fan Chen [aut, cre] (<https://orcid.org/0000-0003-4508-6023>)
Maintainer Fan Chen <fan.chen@wisc.edu>
Repository CRAN
Date/Publication 2023-07-10 19:50:11 UTC

R topics documented:

epca-package ... 2
absmin ... 3
absmin.criteria ... 3
cpve ... 4
dist.matrix ... 5
epca-package

Exploratory Principal Component Analysis

Description

epca is for comprehending any data matrix that contains \textit{low-rank} and \textit{sparse} underlying signals of interest. The package currently features two key tools: (1) \texttt{sca} for \textit{sparse principal component analysis} and (2) \texttt{sma} for \textit{sparse matrix approximation}, a two-way data analysis for simultaneously row and column dimensionality reductions.

References

Chen, F. and Rohe K. (2020) "A New Basis for Sparse PCA".
absmin

Description

Given a p x k matrix x, finds the orthogonal matrix (rotation) that minimizes the absmin.criteria.

Usage

absmin(x, r0 = diag(ncol(x)), normalize = FALSE, eps = 1e-05, maxit = 1000L)

Arguments

x a matrix or Matrix, initial factor loadings matrix for which the rotation criterian is to be optimized.
r0 matrix, initial rotation matrix.
normalize logical. Should Kaiser normalization be performed? If so the rows of x are re-scaled to unit length before rotation, and scaled back afterwards.
eps The tolerance for stopping: the relative change in the sum of singular values.
maxit integer, maximum number of iteration (default to 1,000).

Value

A list with three elements:
rotated the rotated matrix.
rotmat the (orthogonal) rotation matrix.
n.iter the number of iteration taken.

See Also

GPArotation::GPForth

absmin.criteria

Description

Calculate the absmin criteria. This is a helper function for absmin.

Usage

absmin.criteria(x)
Arguments

\(x \)
A matrix or Matrix, initial factor loadings matrix for which the rotation criterion is to be optimized.

Description

Calculate the CPVE.

Usage

\[
\text{cpve}(x, v, \text{is.cov} = \text{FALSE})
\]

Arguments

\(x \)
A matrix or Matrix, the original data matrix or the Gram matrix.

\(v \)
A matrix or Matrix, coefficients of linear transformation, e.g., loadings (in PCA).

\(\text{is.cov} \)
Logical, whether the input matrix is a covariance matrix (or a Gram matrix).

Value

A numeric vector of length \(\text{ncol}(v) \), the i-th value is the CPVE of the first i columns in \(v \).

See Also

\(\text{pve} \)

Examples

```R
## use the "swiss" data
## find two sparse PCs
s.sca <- sca(swiss, 2, gamma = sqrt(ncol(swiss)))
ld <- loadings(s.sca)
cpve(as.matrix(swiss), ld)
```
dist.matrix

Matrix Column Distance

Description

Compute the distance between two matrices. The distance between two matrices is defined as the sum of distances between column pairs. This function matches the columns of two matrices, such that the matrix distance (i.e., the sum of paired column distances) is minimized. This is accomplished by solving an optimization over column permutation. Given two matrices, x and y, find permutation p() that minimizes sum_i similarity(x[,p(i)], y[,i]), where the similarity() can be "euclidean" distance, 1 - "cosine", or "maximum" difference (manhattan distance). The solution is computed by clue::solve_LSAP().

Usage

```r
dist.matrix(x, y, method = "euclidean")
```

Arguments

- `x, y` matrix or Matrix, of the same number of rows. The columns of x and y will be scaled to unit length.
- `method` distance measure, "maximum", "cosine", or "euclidean" are implemented.

Value

A list of four components:

- `dist` dist, the distance matrix.
- `match` solve_LSAP, the column matches.
- `value` numeric vector, the distance between pairs of columns.
- `method` character, the distance measure used.
- `nrow` integer, the dimension of the input matrices, i.e., `nrow(x)`.

See Also

clue::solve_LSAP

Examples

```r
x <- diag(4)
y <- x + rnorm(16, sd = 0.05) # add some noise
y = t(t(y) / sqrt(colSums(y ^ 2))) ## normalize the columns
## euclidian distance between column pairs, with minimal matches
dist.matrix(x, y, "euclidean")
```
distance

Matrix Distance

Description

Matrix Distance

Usage

```r
distance(x, y, method = "euclidean")
```

Arguments

- `x`, `y`: matrix or `Matrix`, of the same number of rows. The columns of `x` and `y` will be scaled to unit length.
- `method`: distance measure, "maximum", "cosine", or "euclidean" are implemented.

Value

numeric, the distance between two matrices.

exp.frac

Calculate fractional exponent/power

Description

Calculate fractional exponent/power, \(a^{\frac{num}{den}}\), where `a` could be negative.

Usage

```r
## S3 method for class 'frac'
exp(a, num, den)
```

Arguments

- `a`: numeric(1), base (could be negative).
- `num`: a positive integer, numerator of the exponent.
- `den`: a positive integer, denominator of the exponent.

Value

numeric, the evaluated \(a^{\frac{num}{den}}\)
hard

Hard-thresholding

Description

Perform hard-thresholding given the cut-off value.

Usage

`hard(x, t)`

Arguments

- `x` any numerical matrix or vector.
- `t` numeric, the amount to hard-threshold, i.e., `sgn(x_{ij})(|x_{ij} - t|)_+`.

inner

Matrix Inner Product

Description

Calculate the custom matrix inner product z of two matrices, x and y, where `z[i,j] = FUN(x[,i], y[,j])`.

Usage

`inner(x, y, FUN = "crossprod", ...)`

Arguments

- `x, y` matrix or Matrix.
- `FUN` function or a character(1) name of base function. The function should take in two vectors as input and output a numeric(1) result.
- `...` additional parameters for FUN.

Value

matrix, inner product of x and y.
Examples

```r
x <- matrix(1:6, 2, 3)
y <- matrix(7:12, 2, 3)
## The default is equivalent to `crossprod(x, y)`
inner(x, y)
## We can compute the pair-wise Euclidean distance of columns.
EuclideanDistance = function(x, y) crossprod(x, y)^2
inner(x, y, EuclideanDistance)
```

labelCluster

Label Cluster

Description

Assign cluster labels to each row from the membership matrix.

Usage

```r
labelCluster(x, ties.method = "random")
```

Arguments

- `x` matrix with non-negative entries, where `x[i, j]` is the estimated likelihood (or any equivalent measure) of node `i` belongs to block `j`. The higher the more likely.
- `ties.method` character, how should ties be handled, "random", "first", "last" are allowed. See `base::rank()` for details.

Value

integer vector of the same length as `x`. Each entry is one of 1, 2, ..., `ncol(x)`.

misClustRate

Mis-Classification Rate (MCR)

Description

Compute the empirical MCR, assuming that `#cluster = #block`. This calculation allows a permutation on clusters.

Usage

```r
misClustRate(cluster, truth)
```
norm.Lp

Arguments

- **cluster**: vector of integer or factor, estimated cluster membership.
- **truth**: a vector of the same length as clusters, the true cluster labels.

Value

numeric, the MCR.

Examples

```r
truth = rep(1:3, each = 30)
cluster = rep(3:1, times = c(25, 32, 33))
misClustRate(cluster, truth)
```

norm.Lp

Element-wise Matrix Norm

Description

Compute element-wise matrix Lp-norm. This is a helper function to `shrinkage()`.

Usage

```r
norm.Lp(x, p = 1)
```

Arguments

- **x**: a matrix or Matrix.
- **p**: numeric(1), the p for defining the Lp norm.

Value

numeric(1), the absolute sum of all elements.
permColumn

Permute columns of a block membership matrix

Description

Perform column permutation of block membership matrix for aesthetic visualization. That is, the k-th column gives k-th cluster. This is done by ranking the column sums of squares (by default).

Usage

```r
permColumn(x, s = 2)
```

Arguments

- `x`: a non-negative matrix, nNode x nBlock,
- `s`: integer, order of non-linear

pitprops

Pitprops correlation data

Description

The `pitprops` data is a correlation matrix that was calculated from 180 observations. There are 13 explanatory variables. Jeffers (1967) tried to interpret the first six PCs. This is a classical example showing the difficulty of interpreting principal components.

References

Examples

```r
## NOT TEST
data(pitprops)
ggcorrplot::ggcorrplot(pitprops)
```
Polar Decomposition

Description

Perform the polar decomposition of an \(n \times p \) (\(n > p \)) matrix \(x \) into two parts: \(u \) and \(h \), where \(u \) is an \(n \times p \) unitary matrix with orthogonal columns (i.e., \(\text{crossprod}(u) \) is the identity matrix), and \(h \) is a \(p \times p \) positive-semidefinite Hermitian matrix. The function returns the \(u \) matrix. This is a helper function of \(\text{prs}() \).

Usage

\texttt{polar(x)}

Arguments

\(x \)

a matrix or \texttt{Matrix}, which is presumed full-rank.

Value

a matrix of the unitary part of the polar decomposition.

References

Examples

\begin{verbatim}
x <- matrix(1:6, nrow = 3)
polar_x <- polar(x)
\end{verbatim}

Print SCA

Description

Print SCA

Usage

\begin{verbatim}
S3 method for class 'sca'
print(x, verbose = FALSE, ...)
\end{verbatim}
Arguments

x an `sca` object.
verbose logical(1), whether to print out loadings.
... additional input to generic `print`.

Value

Print an `sca` object interactively.

`print.sma` *Print SMA*

Description

Print SMA

Usage

```r
## S3 method for class 'sma'
print(x, verbose = FALSE, ...)
```

Arguments

x an `sma` object.
verbose logical(1), whether to print out loadings.
... additional input to generic `print`.

Value

Print an `sma` object interactively.

`prs` *Polar-Rotate-Shrink*

Description

This function is a helper function of `sma()`. It performs polar decomposition, orthogonal rotation, and soft-thresholding shrinkage in order. The three steps together enable sparse estimates of the SMA and SCA.

Usage

```r
prs(x, z.hat, gamma, rotate, shrink, normalize, order, flip, epsilon)
```
Arguments

- **x, z.hat**: the matrix product `crossprod(x, z.hat)` is the actual Polar-Rotate-Shrink object. x and z.hat are input separately because the former is additionally used to compute the proportion of variance explained, in the case when `order = TRUE`.
- **gamma**: numeric, the sparsity parameter.
- **rotate**: character(1), rotation method. Two options are currently available: "varimax" (default) or "absmin" (see details).
- **shrink**: character(1), shrinkage method, either "soft"- (default) or "hard"-thresholding (see details).
- **normalize**: logical, whether to rows normalization should be done before and undone afterward the rotation (see details).
- **order**: logical, whether to re-order the columns of the estimates (see Details below).
- **flip**: logical, whether to flip the signs of the columns of estimates such that all columns are positive-skewed (see details).
- **epsilon**: numeric, tolerance of convergence precision (default to 0.00001).

Details

- **rotate**: The rotate option specifies the rotation technique to use. Currently, there are two build-in options—"varimax" and "absmin". The "varimax" rotation maximizes the element-wise L4 norm of the rotated matrix. It is faster and computationally more stable. The "absmin" rotation minimizes the absolute sum of the rotated matrix. It is sharper (as it directly minimizes the L1 norm) but slower and computationally less stable.
- **shrink**: The shrink option specifies the shrinkage operator to use. Currently, there are two build-in options—"soft"- and "hard"-thresholding. The "soft"-thresholding universally reduce all elements and sets the small elements to zeros. The "hard"-thresholding only sets the small elements to zeros.
- **normalize**: The argument normalize gives an indication of if and how any normalization should be done before rotation, and then undone after rotation. If normalize is FALSE (the default) no normalization is done. If normalize is TRUE then Kaiser normalization is done. (So squared row entries of normalized x sum to 1.0. This is sometimes called Horst normalization.) For rotate="absmin", if normalize is a vector of length equal to the number of indicators (i.e., the number of rows of x), then the columns are divided by normalize before rotation and multiplied by normalize after rotation. Also, If normalize is a function then it should take x as an argument and return a vector which is used like the vector above.
- **order**: In PCA (and SVD), the principal components (and the singular vectors) are ordered. For this, we order the sparse components (i.e., the columns of z or y) by their explained variance in the data, which is defined as $\sum((x \%*% y)^2)$, where y is a column of the sparse component. Note: not to be confused with the cumulative proportion of variance explained by y (and z), particularly when y (and z) is may not be strictly orthogonal.
- **flip**: The argument flip gives an indication of if and the columns of estimated sparse component should be flipped. Note that the estimated (sparse) loadings, i.e., the weights on original variables, are column-wise invariant to a sign flipping. This is because flipping of a principal direction does not influence the amount of the explained variance by the component. If flip=TRUE, then the columns of loadings will be flip accordingly, such that each column is positive-skewed. This means that for each column, the sum of cubic elements (i.e., $\sum(x^3)$) are non-negative.
Value

A matrix of the sparse estimate, of the same dimension as crossprod(x, z.hat).

References

See Also

sma, sca, polar, rotation, shrinkage

Description

Calculate the Proportion of variance explained by a set of linear transformation, (e.g. eigenvectors).

Usage

pve(x, v, is.cov = FALSE)

Arguments

x matrix or Matrix, the original data matrix or the Gram matrix.
v matrix or Matrix, coefficients of linear transformation, e.g., loadings (in PCA).
is.cov logical, whether the input matrix is a covariance matrix (or a Gram matrix).

Value

A numeric value between 0 and 1, the proportion of total variance in x explained by the PCs whose loadings are in v.

References

Examples

```r
## use the "swiss" data
## find two sparse PCs
s.sca <- sca(swiss, 2, gamma = sqrt(ncol(swiss)))
ld <- loadings(s.sca)
pve(as.matrix(swiss), ld)
```
rootmatrix

Find root matrix

Description
Find the root matrix \((x)\) from the Gram matrix (i.e., `crossprod(x)`). This is also useful when the input is a covariance matrix, up to a scaling factor of \(n-1\), where \(n\) is the sample size.

Usage
\[
\text{rootmatrix}(x)
\]

Arguments
\[
\begin{align*}
x & \quad \text{a symmetric matrix (will trigger error if not symmetric).}
\end{align*}
\]

rotation
Varimax Rotation

Description
Perform varimax rotation. Flip the signs of columns so that the resulting matrix is positive-skewed.

Usage
\[
\text{rotation}(x, \\
\quad \text{rotate = c("varimax", "absmin"),} \\
\quad \text{normalize = FALSE,} \\
\quad \text{flip = TRUE,} \\
\quad \text{eps = 1e-06})
\]

Arguments
\[
\begin{align*}
x & \quad \text{a matrix or Matrix.} \\
\text{rotate} & \quad \text{character(1), rotation method. Two options are currently available: "varimax" (default) or "absmin" (see details).} \\
\text{normalize} & \quad \text{logical, whether to rows normalization should be done before and undone afterward the rotation (see details).} \\
\text{flip} & \quad \text{logical, whether to flip the signs of the columns of estimates such that all columns are positive-skewed (see details).} \\
\text{eps} & \quad \text{numeric precision tolerance.}
\end{align*}
\]
Details

rotate: The rotate option specifies the rotation technique to use. Currently, there are two build-in options—“varimax” and “absmin”. The “varimax” rotation maximizes the element-wise L4 norm of the rotated matrix. It is faster and computationally more stable. The “absmin” rotation minimizes the absolute sum of the rotated matrix. It is sharper (as it directly minimizes the L1 norm) but slower and computationally less stable.

normalize: The argument normalize gives an indication of if and how any normalization should be done before rotation, and then undone after rotation. If normalize is FALSE (the default) no normalization is done. If normalize is TRUE then Kaiser normalization is done. (So squared row entries of normalized x sum to 1.0. This is sometimes called Horst normalization.) For rotate="absmin”, if normalize is a vector of length equal to the number of indicators (i.e., the number of rows of x), then the columns are divided by normalize before rotation and multiplied by normalize after rotation. Also, if normalize is a function then it should take x as an argument and return a vector which is used like the vector above.

flip: The argument flip gives an indication of if and the columns of estimated sparse component should be flipped. Note that the estimated (sparse) loadings, i.e., the weights on original variables, are column-wise invariant to a sign flipping. This is because flipping of a principal direction does not influence the amount of the explained variance by the component. If flip=TRUE, then the columns of loadings will be flip accordingly, such that each column is positive-skewed. This means that for each column, the sum of cubic elements (i.e., \(\sum(x^3) \)) are non-negative.

Value

the rotated matrix of the same dimension as x.

References

See Also

prs, varimax

Examples

```r
## use the "swiss" data
fa <- factanal(~., 2, data = swiss, rotation = "none")
rotation(loadings(fa))
```

sca
Sparse Component Analysis

Description

sca performs sparse principal components analysis on the given numeric data matrix. Choices of rotation techniques and shrinkage operators are available.
Usage

sca(
 x,
 k = min(5, dim(x)),
 gamma = NULL,
 is.cov = FALSE,
 rotate = c("varimax", "absmin"),
 shrink = c("soft", "hard"),
 center = TRUE,
 scale = FALSE,
 normalize = FALSE,
 order = TRUE,
 flip = TRUE,
 max.iter = 1000,
 epsilon = 1e-05,
 quiet = TRUE
)

Arguments

x matrix or Matrix to be analyzed.

k integer, rank of approximation.

gamma numeric(1), sparsity parameter, default to \sqrt{pk}, where n x p is the dimension of x.

is.cov logical, default to FALSE, whether the x is a covariance matrix (or Gram matrix, i.e., crossprod() of some design matrix). If TRUE, both center and scale will be ignored/skipped.

rotate character(1), rotation method. Two options are currently available: "varimax" (default) or "absmin" (see details).

shrink character(1), shrinkage method, either "soft"- (default) or "hard"-thresholding (see details).

center logical, whether to center columns of x (see scale()).

scale logical, whether to scale columns of x (see scale()).

normalize logical, whether to rows normalization should be done before and undone afterward the rotation (see details).

order logical, whether to re-order the columns of the estimates (see Details below).

flip logical, whether to flip the signs of the columns of estimates such that all columns are positive-skewed (see details).

max.iter integer, maximum number of iteration (default to 1,000).

epsilon numeric, tolerance of convergence precision (default to 0.00001).

quiet logical, whether to mute the process report (default to TRUE)
Details

rotate: The `rotate` option specifies the rotation technique to use. Currently, there are two built-in options—"varimax" and "absmin". The "varimax" rotation maximizes the element-wise L4 norm of the rotated matrix. It is faster and computationally more stable. The "absmin" rotation minimizes the absolute sum of the rotated matrix. It is sharper (as it directly minimizes the L1 norm) but slower and computationally less stable.

shrink: The `shrink` option specifies the shrinkage operator to use. Currently, there are two built-in options—"soft"- and "hard"-thresholding. The "soft"-thresholding universally reduce all elements and sets the small elements to zeros. The "hard"-thresholding only sets the small elements to zeros.

normalize: The argument `normalize` gives an indication of if and how any normalization should be done before rotation, and then undone after rotation. If `normalize` is `FALSE` (the default) no normalization is done. If `normalize` is `TRUE` then Kaiser normalization is done. (So squared row entries of normalized x sum to 1.0. This is sometimes called Horst normalization.) For `rotate=absmin`, if `normalize` is a vector of length equal to the number of indicators (i.e., the number of rows of `x`), then the columns are divided by `normalize` before rotation and multiplied by `normalize` after rotation. Also, If `normalize` is a function then it should take `x` as an argument and return a vector which is used like the vector above.

order: In PCA (and SVD), the principal components (and the singular vectors) are ordered. For this, we order the sparse components (i.e., the columns of `z` or `y`) by their explained variance in the data, which is defined as `sum((x %*% y.^2)`, where `y` is a column of the sparse component. Note: not to be confused with the cumulative proportion of variance explained by `y` (and `z`), particularly when `y` (and `z`) is may not be strictly orthogonal.

flip: The argument `flip` gives an indication of if and the columns of estimated sparse component should be flipped. Note that the estimated (sparse) loadings, i.e., the weights on original variables, are column-wise invariant to a sign flipping. This is because flipping of a principal direction does not influence the amount of the explained variance by the component. If `flip=TRUE`, then the columns of loadings will be flip accordingly, such that each column is positive-skewed. This means that for each column, the sum of cubic elements (i.e., `sum(x.^3)`) are non-negative.

Value

an `sca` object that contains:

- `loadings` matrix, sparse loadings of PCs.
- `scores` an `n x k` matrix, the component scores, calculated using centered (and/or scaled) `x`. This will only be available when `is.cov = FALSE`.
- `cpve` a numeric vector of length `k`, cumulative proportion of variance in `x` explained by the top `PCs` (after center and/or scale).
- `center` logical, this records the center parameter.
- `scale` logical, this records the scale parameter.
- `n.iter` integer, number of iteration taken.
- `n.obs` integer, sample size, that is, `nrow(x)`.

References

shrinkage

See Also

sma, prs

Examples

```r
## ------ example 1 ------
## simulate a low-rank data matrix with some additive Gaussian noise
n <- 300
p <- 50
k <- 5  ## rank
z <- shrinkage(polar(matrix(rnorm(n * k), n, k)), sqrt(n))
b <- diag(5) * 3
y <- shrinkage(polar(matrix(rnorm(p * k), p, k)), sqrt(p))
e <- matrix(rnorm(n * p, sd = .01), n, p)
x <- scale(z %*% b %*% t(y) + e)

## perform sparse PCA
s.sca <- sca(x, k)
s.sca

## ------ example 2 ------
## use the `pitprops` data from the `elasticnet` package
data(pitprops)

## find 6 sparse PCs
s.sca <- sca(pitprops, 6, gamma = 6, is.cov = TRUE)
print(s.sca, verbose = TRUE)
```

<table>
<thead>
<tr>
<th>shrinkage</th>
<th>Shrinkage</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Description

Shrink a matrix using soft-thresholding or hard-thresholding.

Usage

```
shrinkage(x, gamma, shrink = c("soft", "hard"), epsilon = 1e-11)
```

Arguments

- `x` matrix or Matrix, to be threshold.
- `gamma` numeric, the constraint of Lp norm, i.e. $\|x\| \leq \gamma$.
- `shrink` character(1), shrinkage method, either "soft"-(default) or "hard"-thresholding (see details).
- `epsilon` numeric, precision tolerance. This should be greater than `.Machine$double.eps`.
Details

A binary search to find the cut-off value.

shrink: The shrink option specifies the shrinkage operator to use. Currently, there are two build-in options—"soft"- and "hard"-thresholding. The "soft"-thresholding universally reduce all elements and sets the small elements to zeros. The "hard"-thresholding only sets the small elements to zeros.

Value

a list with two components:

- matrix: matrix, the matrix that results from soft-thresholding
- norm: numeric, the norm of the matrix after soft-thresholding. This value is close to constraint if using the second option.

References

See Also

prs

Examples

```r
x <- matrix(1:6, nrow = 3)
shrink_x <- shrinkage(x, 1)
```

sma
Sparse Matrix Approximation

Description

Perform the sparse matrix approximation (SMA) of a data matrix x as three multiplicative components: z, b, and t(y), where z and y are sparse, and b is low-rank but not necessarily diagonal.

Usage

```r
sma(
x,
k = min(5, dim(x)),
gamma = NULL,
rotate = c("varimax", "absmin"),
shrink = c("soft", "hard"),
center = FALSE,
scale = FALSE,
normalize = FALSE,
)```

Arguments

- **x**: matrix or Matrix to be analyzed.
- **k**: integer, rank of approximation.
- **gamma**: numeric(2), sparsity parameters. If gamma is numeric(1), it is used for both left and right sparsity component (i.e., z and y). If absent, the two parameters are set as (default): sqrt(nk) and sqrt(pk) for z and y respectively, where n x p is the dimension of x.
- **rotate**: character(1), rotation method. Two options are currently available: "varimax" (default) or "absmin" (see details).
- **shrink**: character(1), shrinkage method, either "soft"- (default) or "hard"-thresholding (see details).
- **center**: logical, whether to center columns of x (see scale()).
- **scale**: logical, whether to scale columns of x (see scale()).
- **normalize**: logical, whether to rows normalization should be done before and undone afterward the rotation (see details).
- **order**: logical, whether to re-order the columns of the estimates (see Details below).
- **flip**: logical, whether to flip the signs of the columns of estimates such that all columns are positive-skewed (see details).
- **max.iter**: integer, maximum number of iteration (default to 1,000).
- **epsilon**: numeric, tolerance of convergence precision (default to 0.00001).
- **quiet**: logical, whether to mute the process report (default to TRUE)

Details

- **rotate**: The **rotate** option specifies the rotation technique to use. Currently, there are two build-in options—"varimax" and "absmin". The "varimax" rotation maximizes the element-wise L4 norm of the rotated matrix. It is faster and computationally more stable. The "absmin" rotation minimizes the absolute sum of the rotated matrix. It is sharper (as it directly minimizes the L1 norm) but slower and computationally less stable.

- **shrink**: The **shrink** option specifies the shrinkage operator to use. Currently, there are two build-in options—"soft"- and "hard"-thresholding. The "soft"-thresholding universally reduce all elements and sets the small elements to zeros. The "hard"-thresholding only sets the small elements to zeros.

- **normalize**: The argument normalize gives an indication of if and how any normalization should be done before rotation, and then undone after rotation. If normalize is FALSE (the default) no normalization is done. If normalize is TRUE then Kaiser normalization is done. (So squared row entries of normalized x sum to 1.0. This is sometimes called Horst normalization.) For rotate="absmin", if normalize is a vector of length equal to the number of indicators (i.e., the number of rows of
x), then the columns are divided by normalize before rotation and multiplied by normalize after rotation. Also, If normalize is a function then it should take x as an argument and return a vector which is used like the vector above.

order: In PCA (and SVD), the principal components (and the singular vectors) are ordered. For this, we order the sparse components (i.e., the columns of z or y) by their explained variance in the data, which is defined as \( \text{sum}(x \%\% y)^2 \), where y is a column of the sparse component. Note: not to be confused with the cumulative proportion of variance explained by y (and z), particularly when y (and z) is may not be strictly orthogonal.

flip: The argument flip gives an indication of if and the columns of estimated sparse component should be flipped. Note that the estimated (sparse) loadings, i.e., the weights on original variables, are column-wise invariant to a sign flipping. This is because flipping of a principal direction does not influence the amount of the explained variance by the component. If flip=TRUE, then the columns of loadings will be flip accordingly, such that each column is positive-skewed. This means that for each column, the sum of cubic elements (i.e., \( \text{sum}(x^3) \)) are non-negative.

Value

an `sma` object that contains:

- `z`, `b`, `t(y)` the three parts in the SMA. z is a sparse n x k matrix that contains the row components (loadings). The row names of z inherit the row names of x. b is a k x k matrix that contains the scores of SMA; the Frobenius norm of b equals to the total variance explained by the SMA. y is a sparse n x k matrix that contains the column components (loadings).

The row names of y inherit the column names of x.

- `score` the total variance explained by the SMA. This is the optimal objective value obtained.

- `n.iter` integer, the number of iteration taken.

References


See Also

`sca`, `prs`

Examples

```r
simulate a rank-5 data matrix with some additive Gaussian noise
n <- 300
p <- 50
k <- 5 ## rank
z <- shrinkage(polar(matrix(runif(n * k), n, k)), sqrt(n))
b <- diag(5) * 3
y <- shrinkage(polar(matrix(runif(p * k), p, k)), sqrt(p))
e <- matrix(rnorm(n * p, sd = .01), n, p)
x <- scale(z %*% b %*% t(y) + e)
```
## perform sparse matrix approximation
s.sma <- sma(x, k)
s.sma

---

**soft**

*Soft-thresholding*

**Description**

Perform soft-thresholding given the cut-off value.

**Usage**

`soft(x, t)`

**Arguments**

- `x`: any numerical matrix or vector.
- `t`: numeric, the amount to soft-threshold, i.e., $\text{sgn}(x_{ij})(|x_{ij} - t|)_+$. 

---

**varimax**

*Varimax Rotation*

**Description**

This is a re-implementation of `stats::varimax`, which (1) adds a parameter for the maximum number of iterations, (2) sets the default `normalize` parameter to `FALSE`, (3) outputs the number of iteration taken, and (4) returns regular matrix rather than in `loadings` class.

**Usage**

`varimax(x, normalize = FALSE, eps = 1e-05, maxit = 1000L)`

**Arguments**

- `x`: A loadings matrix, with $p$ rows and $k < p$ columns
- `normalize`: logical. Should Kaiser normalization be performed? If so the rows of `x` are re-scaled to unit length before rotation, and scaled back afterwards.
- `eps`: The tolerance for stopping: the relative change in the sum of singular values.
- `maxit`: integer, maximum number of iteration (default to 1,000).
Value

A list with three elements:

- \texttt{rotated} the rotated matrix.
- \texttt{rotmat} the (orthogonal) rotation matrix.
- \texttt{n.iter} the number of iterations taken.

See Also

\texttt{stats::varimax}

---

\textbf{varimax.criterion \quad The varimax criterion}

Description

Calculate the varimax criterion

Usage

\texttt{varimax.criterion(x)}

Arguments

- \texttt{x} a matrix or Matrix.

Value

a numeric of evaluated varimax criterion.

References

Varimax rotation (Wikipedia)

Examples

```r
use the "swiss" data
fa <- factanal(~., 2, data = swiss, rotation = "none")
lds <- loadings(fa)

compute varimax criterion:
varimax.criterion(lds)

compute varimax criterion (after the varimax rotation):
rllds <- rotation(lds, rotate = "varimax")
varimax.criterion(rllds)
```
vgQ.absmin

Description
This is a helper function for absmin and is not to be used directly by users.

Usage
vgQ.absmin(x)

Arguments
x a matrix or Matrix, initial factor loadings matrix for which the rotation criterion
is to be optimized.

Value
a list required by GPArotation::GPForth for the absmin rotation.

Examples
## Not run:
## NOT RUN
## NOT for users to call.

## End(Not run)
Index

* datasets
  pitprops, 10
* package
  epca-package, 2
  absmin, 3, 3, 25
  absmin.criteria, 3, 3
  base::rank(), 8
  clue::solve_LSAP, 5
  clue::solve_LSAP(), 5
  cpve, 4
  dist.matrix, 5
  distance, 6
  epca-package, 2
  exp.frac, 6
  hard, 7
  inner, 7
  labelCluster, 8
  misClustRate, 8
  norm.Lp, 9
  permColumn, 10
  pitprops, 10
  polar, 11, 14
  print, 12
  print.sca, 11
  print.sma, 12
  prs, 12, 16, 19, 20, 22
  prs(), 11
  pve, 4, 14
  rootmatrix, 15
  rotation, 14, 15

sca, 14, 16, 22
scale(), 17, 21
shrinkage, 14, 19
shrinkage(), 9
sma, 14, 19, 20
sma(), 12
soft, 23
stats::varimax, 23, 24

varimax, 16, 23
varimax.criteria, 24
vgQ.absmin, 25