Package ‘entrymodels’

February 3, 2020

Type Package
Title Estimate Entry Models
Version 0.2.0
Maintainer Guilherme Jardim <gnjardim1@gmail.com>
Description Tools for measuring empirically the effects of entry in concentrated mar-
License MIT + file LICENSE
Encoding UTF-8
LazyData true
Imports stats, magrittr, dplyr, readr
RoxygenNote 6.1.1
NeedsCompilation no
Author Guilherme Jardim [aut, cre],
 Arthur Bragança [ctb],
 Pedro Fernandes [ctb]
Repository CRAN
Date/Publication 2020-02-03 21:40:06 UTC

R topics documented:

 aux_matrix .. 2
 br1 ... 2
 br2 ... 3
 em_2var ... 3
 em_basic .. 5
 load_example_data .. 6

Index 7
aux_matrix

Build our auxiliary matrices to estimate entry models

Description

Build our auxiliary matrices to estimate entry models

Usage

aux_matrix(data, y, N_max, n)

Arguments

data A data.frame object containing your data
y A string indicating the outcome variable
N_max An integer indicating the maximum number of competitors
n Number of observations in data

Value

A list of the auxiliary matrices

br1

Build our optimization function

Description

Build our optimization function

Usage

br1(params, n, N_max, l_params, A1, A2, S, N)

Arguments

params Parameters to construct function
n Number of observations in data
N_max An integer indicating the maximum number of competitors
l_params Length of parameters vector
A1 Auxiliary matrix A1
A2 Auxiliary matrix A2
S Size of the market
N Vector of zeros
Value

The function to be optimized

br2
Build our optimization function

Description

Build our optimization function

Usage

```r
br2(params, n, N_max, A1, A2, S1, S2, N)
```

Arguments

- `params` : Parameters to construct function
- `n` : Number of observations in data
- `N_max` : An integer indicating the maximum number of competitors
- `A1` : Auxiliary matrix A1
- `A2` : Auxiliary matrix A2
- `S1` : First variable for size of the market
- `S2` : Second variable for size of the market
- `N` : Vector of zeros

Value

The function to be optimized

em_2var
Two-Variable Entry Model

Description

Estimate entry model with two variables for the market size.

Usage

```r
em_2var(data, Sm1, Sm2, y, N_max = 5, alpha0 = rep(0.1, N_max),
         gamma0 = rep(1, N_max))
```
Arguments

data A `data.frame` object containing your data
Sm1 A string indicating the main market size variable, present in data
Sm2 A string indicating the second market size variable, present in data
y A string indicating the outcome variable, present in data
N_max An integer indicating the maximum number of competitors. Defaults to 5.
alpha0 A vector of type `numeric` and length `N_max` indicating the initial condition for alpha. Defaults to a vector of 0.1's.
gamma0 A vector of type `numeric` and length `N_max` indicating the initial condition for gamma. Defaults to a vector of 1's.

Value

A tibble with critical market sizes and estimated parameters, as explained in Bresnahan and Reiss (1991)

Author(s)

Guilherme N. Jardim, Department of Economics, Pontifical Catholic University of Rio de Janeiro

References

Examples

tb <- data.frame(Sm1 = 1:5, Sm2 = 1:5, y = 1:5)

estimate default model
em_n5 <- em_2var(tb, "Sm1", "Sm2", "y")

estimate model with 3 competitors only
em_n3 <- em_2var(tb, "Sm1", "Sm2", "y", N_max = 3)

estimate model with different initial conditions
em_difc <- em_2var(tb, "Sm1", "Sm2", "y", alpha0 = rep(0.2, 5), gamma0 = rep(1.1, 5))

Not run:
tb <- load_example_data()
em <- em_2var(tb, "Populacao", "RendaPerCapita", "n_agencias")

End(Not run)
em_basic

Basic Entry Model

Description

Estimate basic entry model with only one variable for the market size.

Usage

```r
em_basic(data, Sm, y, N_max = 5, alpha0 = rep(0.1, N_max), gamma0 = rep(1, N_max))
```

Arguments

- `data`: A `data.frame` object containing your data.
- `Sm`: A string indicating the market size variable, present in `data`.
- `y`: A string indicating the outcome variable, present in `data`.
- `N_max`: An integer indicating the maximum number of competitors. Defaults to 5.
- `alpha0`: A vector of type numeric and length `N_max` indicating the initial condition for `alpha`. Defaults to a vector of 0.1’s.
- `gamma0`: A vector of type numeric and length `N_max` indicating the initial condition for `gamma`. Defaults to a vector of 1’s.

Value

A tibble with critical market sizes and estimated parameters, as explained in Bresnahan and Reiss (1991)

Author(s)

Guilherme N. Jardim, Department of Economics, Pontifical Catholic University of Rio de Janeiro

References

Examples

```r
tb <- data.frame(Sm = 1:5, y = 1:5)

# estimate default model
em_n5 <- em_basic(tb, "Sm", "y")

# estimate model with 3 competitors only
em_n3 <- em_basic(tb, "Sm", "y", N_max = 3)
```
estimate model with different initial conditions
em_difc <- em_basic(tb, "Sm", "y", alpha0 = rep(0.2, 5), gamma0 = rep(1.1, 5))

Not run:
tb <- load_example_data()
em <- em_basic(tb, "Populacao", "n_agencias")
End(Not run)

load_example_data
Load example dataset

Description

Load example dataset

Usage

load_example_data()

Value

Example dataset as tibble

Author(s)

Guilherme N. Jardim, Department of Economics, Pontifical Catholic University of Rio de Janeiro
Index

aux_matrix, 2
br1, 2
br2, 3
em_2var, 3
em_basic, 5
load_example_data, 6