Package ‘embed’

January 16, 2021

Version 0.1.4
Title Extra Recipes for Encoding Categorical Predictors
Description Predictors can be converted to one or more numeric representations using simple generalized linear models <arXiv:1611.09477> or nonlinear models <arXiv:1604.06737>. Most encoding methods are supervised.
Depends R (>= 3.1), recipes (>= 0.1.15)
Imports keras, stats, dplyr, purrr, rlang, generics (>= 0.1.0),
tidy, tibble, tensorflow, uwot, withr, rsample
Suggests rstanarm, lme4, testthat, knitr, rmarkdown, covr, ggplot2,
modeldata, rpart, xgboost
License GPL-2
Encoding UTF-8
LazyData true
RoxygenNote 7.1.1.9000
ByteCompile true
BugReports https://github.com/tidymodels/embed/issues
NeedsCompilation no
Author Max Kuhn [aut, cre],
RStudio [cph]
Maintainer Max Kuhn <max@rstudio.com>
Repository CRAN
Date/Publication 2021-01-16 16:20:02 UTC

R topics documented:

add_woe ... 2
dictionary .. 3
is_tf_available .. 4
add_woe

Add WoE in a data frame

Description

A tidyverse friendly way to plug WoE versions of a set of predictor variables against a given binary outcome.

Usage

```r
add_woe(.data, outcome, ..., dictionary = NULL, prefix = "woe")
```

Arguments

- `.data` A tbl. The data.frame to plug the new woe version columns.
- `outcome` The bare name of the outcome variable.
- `...` Bare names of predictor variables, passed as you would pass variables to `dplyr::select()`. This means that you can use all the helpers like `starts_with()` and `matches()`.
- `dictionary` A tbl. If NULL the function will build a dictionary with those variables passed to `...`. You can pass a custom dictionary too, see `dictionary()` for details.
- `prefix` A character string that will be the prefix to the resulting new variables.

Details

You can pass a custom dictionary to `add_woe()`. It must have the exactly the same structure of the output of `dictionary()`. One easy way to do this is to tweak a output returned from it.

Value

A tibble with the original columns of `.data` plus the woe columns wanted.

Examples

```r
mtcars %>% add_woe("am", cyl, gear:carb)
```
dictionary

Weight of evidence dictionary

Description

Builds the woe dictionary of a set of predictor variables upon a given binary outcome. Convenient to make a woe version of the given set of predictor variables and also to allow one to tweak some woe values by hand.

Usage

dictionary(.data, outcome, ..., Laplace = 1e-06)

Arguments

- **.data** A tbl. The data.frame where the variables come from.
- **outcome** The bare name of the outcome variable with exactly 2 distinct values.
- **...** bare names of predictor variables or selectors accepted by dplyr::select().
- **Laplace** Default to 1e-6. The pseudocount parameter of the Laplace Smoothing estimator. Value to avoid -Inf/Inf from predictor category with only one outcome class. Set to 0 to allow Inf/-Inf.

Details

You can pass a custom dictionary to step_woe(). It must have the exactly the same structure of the output of dictionary(). One easy way to do this is by tweaking an output returned from it.

Value

a tibble with summaries and woe for every given predictor variable stacked up.

References

Examples

mtcars %>% dictionary("am", cyl, gear:carb)
is_tf_available Test to see if tensorflow is available

Description
Test to see if tensorflow is available

Usage
is_tf_available()

Value
A logical

Examples
is_tf_available()

step_discretize_cart Discretize numeric variables with CART

Description
step_discretize_cart creates a specification of a recipe step that will discretize numeric data (e.g. integers or doubles) into bins in a supervised way using a CART model.

Usage
step_discretize_cart(
 recipe,
 ...,
 role = NA,
 trained = FALSE,
 outcome = NULL,
 cost_complexity = 0.01,
 tree_depth = 10,
 min_n = 20,
 rules = NULL,
 skip = FALSE,
 id = rand_id("discretize_cart")
)

S3 method for class 'step_discretize_cart'
tidy(x, ...)

```
Arguments

**recipe**
A recipe object. The step will be added to the sequence of operations for this recipe.

**role**
Defaults to "predictor".

**trained**
A logical to indicate if the quantities for preprocessing have been estimated.

**outcome**
A call to `vars` to specify which variable is used as the outcome to train CART models in order to discretize explanatory variables.

**cost_complexity**
The regularization parameter. Any split that does not decrease the overall lack of fit by a factor of `cost_complexity` is not attempted. Corresponds to `cp` in `rpart::rpart()`. Defaults to 0.01.

**tree_depth**
The maximum depth in the final tree. Corresponds to `maxdepth` in `rpart::rpart()`. Defaults to 10.

**min_n**
The number of data points in a node required to continue splitting. Corresponds to `minsplit` in `rpart::rpart()`. Defaults to 20.

**rules**
The splitting rules of the best CART tree to retain for each variable. If length zero, splitting could not be used on that column.

**skip**
A logical. Should the step be skipped when the recipe is baked by `recipes::bake.recipe()`? While all operations are baked when `recipes::prep.recipe()` is run, some operations may not be able to be conducted on new data (e.g. processing the outcome variable(s)). Care should be taken when using `skip = TRUE` as it may affect the computations for subsequent operations

**id**
A character string that is unique to this step to identify it.

**x**
A `step_discretize_cart` object.

Details

`step_discretize_cart()` creates non-uniform bins from numerical variables by utilizing the information about the outcome variable and applying a CART model.

The best selection of buckets for each variable is selected using the standard cost-complexity pruning of CART, which makes this discretization method resistant to overfitting.

This step requires the `rpart` package. If not installed, the step will stop with a note about installing the package.

Note that the original data will be replaced with the new bins.

Value

An updated version of `recipe` with the new step added to the sequence of existing steps (if any).

See Also

`step_discretize_xgb()`, `recipes::recipe()`, `recipes::prep.recipe()`, `recipes::bake.recipe()`
Examples

```r
library(modeldata)
data(ad_data)
library(rsample)

split <- initial_split(ad_data, strata = "Class")

ad_data_tr <- training(split)
ad_data_te <- testing(split)

cart_rec <-
 recipe(Class ~ ., data = ad_data_tr) %>%
 step_discretize_cart(tau, age, p_tau, Ab_42, outcome = "Class", id = "cart splits")

cart_rec <- prep(cart_rec, training = ad_data_tr)

The splits:
tidy(cart_rec, id = "cart splits")

bake(cart_rec, ad_data_te, tau)
```

**step_discretize_xgb**  
*Discretize numeric variables with XgBoost*

Description

step_discretize_xgb creates a *specification* of a recipe step that will discretize numeric data (e.g. integers or doubles) into bins in a supervised way using an XgBoost model.

Usage

```r
step_discretize_xgb(
 recipe,
 ...,
 role = NA,
 trained = FALSE,
 outcome = NULL,
 sample_val = 0.2,
 learn_rate = 0.3,
 num_breaks = 10,
 tree_depth = 1,
 min_n = 5,
 rules = NULL,
 skip = FALSE,
 id = rand_id("discretize_xgb")
)
```

```r
S3 method for class 'step_discretize_xgb'
tidy(x, ...)
```
Arguments

- **recipe**: A recipe object. The step will be added to the sequence of operations for this recipe.
- **...**: One or more selector functions to choose which variables are affected by the step. See `selections()` for more details.
- **role**: Defaults to "predictor".
- **trained**: A logical to indicate if the quantities for preprocessing have been estimated.
- **outcome**: A call to `vars` to specify which variable is used as the outcome to train XgBoost models in order to discretize explanatory variables.
- **sample_val**: Share of data used for validation (with early stopping) of the learned splits (the rest is used for training). Defaults to 0.20.
- **learn_rate**: The rate at which the boosting algorithm adapts from iteration-to-iteration. Corresponds to `eta` in the xgboost package. Defaults to 0.3.
- **num_breaks**: The maximum number of discrete bins to bucket continuous features. Corresponds to `max_bin` in the xgboost package. Defaults to 10.
- **tree_depth**: The maximum depth of the tree (i.e. number of splits). Corresponds to `max_depth` in the xgboost package. Defaults to 1.
- **min_n**: The minimum number of instances needed to be in each node. Corresponds to `min_child_weight` in the xgboost package. Defaults to 5.
- **rules**: The splitting rules of the best XgBoost tree to retain for each variable.
- **skip**: A logical. Should the step be skipped when the recipe is baked by `recipes::bake.recipe()`? While all operations are baked when `recipes::prep.recipe()` is run, some operations may not be able to be conducted on new data (e.g. processing the outcome variable(s)). Care should be taken when using `skip = TRUE` as it may affect the computations for subsequent operations.
- **id**: A character string that is unique to this step to identify it.
- **x**: A `step_discretize_xgb` object.

Details

`step_discretize_xgb()` creates non-uniform bins from numerical variables by utilizing the information about the outcome variable and applying the xgboost model. It is advised to impute missing values before this step. This step is intended to be used particularly with linear models because thanks to creating non-uniform bins it becomes easier to learn non-linear patterns from the data.

The best selection of buckets for each variable is selected using an internal early stopping scheme implemented in the xgboost package, which makes this discretization method prone to overfitting.

The pre-defined values of the underlying xgboost learns good and reasonably complex results. However, if one wishes to tune them the recommended path would be to first start with changing the value of `num_breaks` to e.g.: 20 or 30. If that doesn’t give satisfactory results one could experiment with modifying the `tree_depth` or `min_n` parameters. Note that it is not recommended to tune `learn_rate` simultaneously with other parameters.

This step requires the xgboost package. If not installed, the step will stop with a note about installing the package.

Note that the original data will be replaced with the new bins.
step_embed

Encoding Factors into Multiple Columns

Description

step_embed creates a specification of a recipe step that will convert a nominal (i.e. factor) predictor into a set of scores derived from a tensorflow model via a word-embedding model. embed_control is a simple wrapper for setting default options.

Usage

step_embed(
  recipe,
  ..., 
  role = "predictor",
  trained = FALSE,
  outcome = NULL,
  predictors = NULL,
)

Value

An updated version of recipe with the new step added to the sequence of existing steps (if any).

See Also

step_discretize_cart(), recipes::recipe(), recipes::prep.recipe(), recipes::bake.recipe()
num_terms = 2,
hidden_units = 0,
options = embed_control(),
mapping = NULL,
history = NULL,
skip = FALSE,
id = rand_id("lenode_bayes")
)

## S3 method for class 'step_embed'
tidy(x, ...)

embed_control(
  loss = "mse",
  metrics = NULL,
  optimizer = "sgd",
  epochs = 20,
  validation_split = 0,
  batch_size = 32,
  verbose = 0,
  callbacks = NULL
)

Arguments

- **recipe**: A recipe object. The step will be added to the sequence of operations for this recipe.

- **...**: One or more selector functions to choose variables. For `step_embed`, this indicates the variables to be encoded into a numeric format. See `recipes::selections()` for more details. For the `tidy` method, these are not currently used.

- **role**: For model terms created by this step, what analysis role should they be assigned? By default, the function assumes that the embedding variables created will be used as predictors in a model.

- **trained**: A logical to indicate if the quantities for preprocessing have been estimated.

- **outcome**: A call to `vars` to specify which variable is used as the outcome in the neural network. Only numeric and two-level factors are currently supported.

- **predictors**: An optional call to `vars` to specify any variables to be added as additional predictors in the neural network. These variables should be numeric and perhaps centered and scaled.

- **num_terms**: An integer for the number of resulting variables.

- **hidden_units**: An integer for the number of hidden units in a dense ReLu layer between the embedding and output later. Use a value of zero for no intermediate layer (see Details below).

- **options**: A list of options for the model fitting process.

- **mapping**: A list of tibble results that define the encoding. This is `NULL` until the step is trained by `recipes::prep.recipe()`. 
history A tibble with the convergence statistics for each term. This is NULL until the step is trained by `recipes::prep.recipe()`.

skip A logical. Should the step be skipped when the recipe is baked by `recipes::bake.recipe()`? While all operations are baked when `recipes::prep.recipe()` is run, some operations may not be able to be conducted on new data (e.g. processing the outcome variable(s)). Care should be taken when using `skip = TRUE` as it may affect the computations for subsequent operations.

id A character string that is unique to this step to identify it.

x A `step_embed` object.

optimizer, loss, metrics Arguments to pass to `keras::compile()`

ePOCHs, validation_split, batch_size, verbose, callbacks Arguments to pass to `keras::fit()`

Details

Factor levels are initially assigned at random to the new variables and these variables are used in a neural network to optimize both the allocation of levels to new columns as well as estimating a model to predict the outcome. See Section 6.1.2 of Francois and Allaire (2018) for more details.

The new variables are mapped to the specific levels seen at the time of model training and an extra instance of the variables are used for new levels of the factor.

One model is created for each call to `step_embed`. All terms given to the step are estimated and encoded in the same model which would also contain predictors give in `predictors` (if any).

When the outcome is numeric, a linear activation function is used in the last layer while softmax is used for factor outcomes (with any number of levels).

For example, the `keras` code for a numeric outcome, one categorical predictor, and no hidden units used here would be

```r
keras_model_sequential() %>%
 layer_embedding(
 input_dim = num_factor_levels_x + 1,
 output_dim = num_terms,
 input_length = 1
) %>%
 layer_flatten() %>%
 layer_dense(units = 1, activation = 'linear')
```

If a factor outcome is used and hidden units were requested, the code would be

```r
keras_model_sequential() %>%
 layer_embedding(
 input_dim = num_factor_levels_x + 1,
 output_dim = num_terms,
 input_length = 1
) %>%
 layer_flatten() %>%
 layer_dense(units = hidden_units, activation = 'relu') %>%
 layer_dense(units = num_factor_levels_y, activation = 'softmax')
```
Other variables specified by predictors are added as an additional dense layer after layer_flatten and before the hidden layer.

Also note that it may be difficult to obtain reproducible results using this step due to the nature of Tensorflow (see link in References).

tensorflow models cannot be run in parallel within the same session (via foreach or futures) or the parallel package. If using a recipes with this step with caret, avoid parallel processing.

Value

An updated version of recipe with the new step added to the sequence of existing steps (if any). For the tidy method, a tibble with columns terms (the selectors or variables for encoding), level (the factor levels), and several columns containing embed in the name.

References

Francois C and Allaire JJ (2018) *Deep Learning with R*, Manning

"How can I obtain reproducible results using Keras during development?" [https://tinyurl.com/keras-repro](https://tinyurl.com/keras-repro)

"Concatenate Embeddings for Categorical Variables with Keras" [https://flovv.github.io/Embeddings_with_keras_part2/](https://flovv.github.io/Embeddings_with_keras_part2/)

Examples

```r
library(modeldata)
data(okc)
if (is_tf_available()) {
 rec <- recipe(Class ~ age + location, data = okc) %>%
 step_embed(location, outcome = vars(Class),
 options = embed_control(epochs = 10))
}
See https://embed.tidymodels.org for examples
```

---

## step_feature_hash

**Dummy Variables Creation via Feature Hashing**

**Description**

step_feature_hash creates a *specification* of a recipe step that will convert nominal data (e.g. character or factors) into one or more numeric binary columns using the levels of the original data.
Usage

```r
step_feature_hash(
 recipe,
 ...,
 role = "predictor",
 trained = FALSE,
 num_hash = 2^6,
 preserve = FALSE,
 columns = NULL,
 skip = FALSE,
 id = rand_id("feature_hash")
)
```

```r
S3 method for class 'step_feature_hash'
tidy(x, ...)
```

Arguments

- `recipe` A recipe object. The step will be added to the sequence of operations for this recipe.
- `...` One or more selector functions to choose which `factor` variables will be used to create the dummy variables. See `selections()` for more details. The selected variables must be factors. For the `tidy` method, these are not currently used.
- `role` For model terms created by this step, what analysis role should they be assigned? By default, the function assumes that the binary dummy variable columns created by the original variables will be used as predictors in a model.
- `trained` A logical to indicate if the quantities for preprocessing have been estimated.
- `num_hash` The number of resulting dummy variable columns.
- `preserve` A single logical; should the selected column(s) be retained (in addition to the new dummy variables)?
- `columns` A character vector for the selected columns. This is `NULL` until the step is trained by `recipes::prep.recipe()`.
- `skip` A logical. Should the step be skipped when the recipe is baked by `recipes::bake.recipe()`?
- `id` A character string that is unique to this step to identify it.
- `x` A `step_feature_hash` object.

Details

`step_feature_hash()` will create a set of binary dummy variables from a factor or character variable. The values themselves are used to determine which row that the dummy variable should be assigned (as opposed to having a specific column that the value will map to).
Since this method does not rely on a pre-determined assignment of levels to columns, new factor levels can be added to the selected columns without issue. Missing values result in missing values for all of the hashed columns.

Note that the assignment of the levels to the hashing columns does not try to maximize the allocation. It is likely that multiple levels of the column will map to the same hashed columns (even with small data sets). Similarly, it is likely that some columns will have all zeros. A zero-variance filter (via `recipes::step_zv()`) is recommended for any recipe that uses hashed columns.

Value

An updated version of `recipe` with the new step added to the sequence of existing steps (if any). For the `tidy` method, a tibble with columns `terms` (the selectors or original variables selected).

References


See Also

`recipes::step_dummy()`, `recipes::step_zv()`

Examples

data(okc, package = "modeldata")

if (is_tf_available()) {
  # This may take a while:
  rec <-
  recipe(Class ~ age + location, data = okc) %>%
  step_feature_hash(location, num_hash = 2^6, preserve = TRUE) %>%
  prep()

  # How many of the 135 locations ended up in each hash column?
  results <-
  juice(rec, starts_with("location")) %>%
  distinct()

  apply(results %>% select(-location), 2, sum) %>% table()
}
**step_lencode_bayes**  

**Supervised Factor Conversions into Linear Functions using Bayesian Likelihood Encodings**

**Description**

step_lencode_bayes creates a specification of a recipe step that will convert a nominal (i.e. factor) predictor into a single set of scores derived from a generalized linear model estimated using Bayesian analysis.

**Usage**

```r
step_lencode_bayes(
 recipe,
 ...,
 role = NA,
 trained = FALSE,
 outcome = NULL,
 options = list(seed = sample.int(10^5, 1)),
 verbose = FALSE,
 mapping = NULL,
 skip = FALSE,
 id = rand_id("lencode_bayes")
)
```

## S3 method for class 'step_lencode_bayes'

tidy(x, ...)

**Arguments**

- **recipe**  
  A recipe object. The step will be added to the sequence of operations for this recipe.

- **...**  
  One or more selector functions to choose variables. For step_lencode_bayes, this indicates the variables to be encoded into a numeric format. See recipes::selections() for more details. For the tidy method, these are not currently used.

- **role**  
  Not used by this step since no new variables are created.

- **trained**  
  A logical to indicate if the quantities for preprocessing have been estimated.

- **outcome**  
  A call to vars to specify which variable is used as the outcome in the generalized linear model. Only numeric and two-level factors are currently supported.

- **options**  
  A list of options to pass to rstanarm::stan_glmer().

- **verbose**  
  A logical to control the default printing by rstanarm::stan_glmer().

- **mapping**  
  A list of tibble results that define the encoding. This is NULL until the step is trained by recipes::prep.recipe().
A logical. Should the step be skipped when the recipe is baked by `recipes::bake.recipe()`?
While all operations are baked when `recipes::prep.recipe()` is run, some operations may not be able to be conducted on new data (e.g. processing the outcome variable(s)). Care should be taken when using `skip = TRUE` as it may affect the computations for subsequent operations.

**id**
A character string that is unique to this step to identify it.

**x**
A `step_lencode_bayes` object.

**Details**
For each factor predictor, a generalized linear model is fit to the outcome and the coefficients are returned as the encoding. These coefficients are on the linear predictor scale so, for factor outcomes, they are in log-odds units. The coefficients are created using a no intercept model and, when two factor outcomes are used, the log-odds reflect the event of interest being the **first** level of the factor. For novel levels, a slightly trimmed average of the coefficients is returned.

A hierarchical generalized linear model is fit using `rstanarm::stan_glmer()` and no intercept via

```
stan_glmer(outcome ~ (1 | predictor), data = data, ...)
```

where the `...` include the family argument (automatically set by the step) as well as any arguments given to the options argument to the step. Relevant options include `chains`, `iter`, `cores`, and arguments for the priors (see the links in the References below). `prior_intercept` is the argument that has the most effect on the amount of shrinkage.

**Value**
An updated version of `recipe` with the new step added to the sequence of existing steps (if any).
For the tidy method, a tibble with columns `terms` (the selectors or variables for encoding), `level` (the factor levels), and `value` (the encodings).

**References**


"Hierarchical Partial Pooling for Repeated Binary Trials" https://tinyurl.com/stan-pooling

"Prior Distributions for ‘rstanarm’ Models" https://tinyurl.com/stan-priors

"Estimating Generalized (Non-)Linear Models with Group-Specific Terms with ‘rstanarm’" https://tinyurl.com/stan-glm-grouped

**Examples**

```r
library(recipes)
library(dplyr)
library(modeldata)

data(okc)
```
step_lencode_glm

reencoded <- recipe(Class ~ age + location, data = okc) %>%
  step_lencode_bayes(location, outcome = vars(Class))

# See https://embed.tidymodels.org for examples

---

### Description

**step_lencode_glm** creates a **specification** of a recipe step that will convert a nominal (i.e. factor) predictor into a single set of scores derived from a generalized linear model.

#### Usage

```r
step_lencode_glm(
 recipe,
 ..., role = NA,
 trained = FALSE,
 outcome = NULL,
 mapping = NULL,
 skip = FALSE,
 id = rand_id("lencode_glm")
)
```

数额 S3 method for class 'step_lencode_glm'

```r
tidy(x, ...)
```

#### Arguments

- **recipe**: A recipe object. The step will be added to the sequence of operations for this recipe.
- **...**: One or more selector functions to choose variables. For step_lencode_glm, this indicates the variables to be encoded into a numeric format. See `recipes::selections()` for more details. For the tidy method, these are not currently used.
- **role**: Not used by this step since no new variables are created.
- **trained**: A logical to indicate if the quantities for preprocessing have been estimated.
- **outcome**: A call to `vars` to specify which variable is used as the outcome in the generalized linear model. Only numeric and two-level factors are currently supported.
- **mapping**: A list of tibble results that define the encoding. This is NULL until the step is trained by `recipes::prep.recipe()`. 
The `step_lencode_glm` function is used to encode factor predictors in a recipe using a generalized linear model (GLM). Here's a breakdown of its key components:

- **skip**: A logical. Should the step be skipped when the recipe is baked by `recipes::bake.recipe()`? While all operations are baked when `recipes::prep.recipe()` is run, some operations may not be able to be conducted on new data (e.g., processing the outcome variable(s)). Care should be taken when using `skip = TRUE` as it may affect the computations for subsequent operations.

- **id**: A character string that is unique to this step to identify it.

- **x**: A `step_lencode_glm` object.

### Details

For each factor predictor, a generalized linear model is fit to the outcome and the coefficients are returned as the encoding. These coefficients are on the linear predictor scale so, for factor outcomes, they are in log-odds units. The coefficients are created using a no intercept model and, when two factor outcomes are used, the log-odds reflect the event of interest being the first level of the factor.

For novel levels, a slightly trimmed average of the coefficients is returned.

### Value

An updated version of `recipe` with the new step added to the sequence of existing steps (if any). For the `tidy` method, a tibble with columns `terms` (the selectors or variables for encoding), `level` (the factor levels), and `value` (the encodings).

### References


### Examples

```r
library(recipes)
library(dplyr)
library(modeldata)

data(okc)

glm_est <- recipe(Class ~ age + location, data = okc) %>%
 step_lencode_glm(location, outcome = vars(Class))

See https://embed.tidymodels.org for examples
```
step_lencode_mixed

Supervised Factor Conversions into Linear Functions using Bayesian Likelihood Encodings

Description

step_lencode_mixed creates a specification of a recipe step that will convert a nominal (i.e. factor) predictor into a single set of scores derived from a generalized linear mixed model.

Usage

```r
step_lencode_mixed(
 recipe,
 ...,
 role = NA,
 trained = FALSE,
 outcome = NULL,
 options = list(verbos = 0),
 mapping = NULL,
 skip = FALSE,
 id = rand_id("lencode_mixed")
)
```

## S3 method for class 'step_lencode_mixed'
tidy(x, ...)

Arguments

- **recipe**: A recipe object. The step will be added to the sequence of operations for this recipe.
- **...**: One or more selector functions to choose variables. For `step_lencode_mixed`, this indicates the variables to be encoded into a numeric format. See `recipes::selections()` for more details. For the `tidy` method, these are not currently used.
- **role**: Not used by this step since no new variables are created.
- **trained**: A logical to indicate if the quantities for preprocessing have been estimated.
- **outcome**: A call to `vars` to specify which variable is used as the outcome in the generalized linear model. Only numeric and two-level factors are currently supported.
- **options**: A list of options to pass to `lme4::lmer()` or `lme4::glmer()`.
- **mapping**: A list of tibble results that define the encoding. This is `NULL` until the step is trained by `recipes::prep.recipe()`.
- **skip**: A logical. Should the step be skipped when the recipe is baked by `recipes::bake.recipe()`? While all operations are baked when `recipes::prep.recipe()` is run, some operations may not be able to be conducted on new data (e.g. processing the outcome variable(s)). Care should be taken when using `skip = TRUE` as it may affect the computations for subsequent operations.
**step_lencode_mixed**

- **id**: A character string that is unique to this step to identify it.
- **x**: A `step_lencode_mixed` object.

**Details**

For each factor predictor, a generalized linear model is fit to the outcome and the coefficients are returned as the encoding. These coefficients are on the linear predictor scale so, for factor outcomes, they are in log-odds units. The coefficients are created using a no intercept model and, when two factor outcomes are used, the log-odds reflect the event of interest being the *first* level of the factor.

For novel levels, a slightly trimmed average of the coefficients is returned.

A hierarchical generalized linear model is fit using `lme4::lmer()` or `lme4::glmer()`, depending on the nature of the outcome, and no intercept via

```r
lmer(outcome ~ 1 + (1 | predictor), data = data, ...)
```

where the `...` include the family argument (automatically set by the step) as well as any arguments given to the `options` argument to the step. Relevant options include `control` and others.

**Value**

An updated version of `recipe` with the new step added to the sequence of existing steps (if any). For the tidy method, a tibble with columns `terms` (the selectors or variables for encoding), `level` (the factor levels), and `value` (the encodings).

**References**


**Examples**

```r
library(recipes)
library(dplyr)
library(modeldata)

data(okc)

reencoded <- recipe(Class ~ age + location, data = okc) %>%
 step_lencode_mixed(location, outcome = vars(Class))

See https://embed.tidymodels.org for examples
step_umap
Supervised and unsupervised uniform manifold approximation and projection (UMAP)

Description

`step_umap` creates a specification of a recipe step that will project a set of features into a smaller space.

Usage

```r
step_umap(
  recipe,
  ..., 
  role = "predictor",
  trained = FALSE,
  outcome = NULL,
  neighbors = 15,
  num_comp = 2,
  min_dist = 0.01,
  learn_rate = 1,
  epochs = NULL,
  options = list(verbose = FALSE, n_threads = 1),
  seed = sample(10^5, 2),
  retain = FALSE,
  object = NULL,
  skip = FALSE,
  id = rand_id("umap")
)
```

```r
tidy(x, ...)
```

Arguments

- **recipe**
 A recipe object. The step will be added to the sequence of operations for this recipe.

- **...**
 One or more selector functions to choose variables. For `step_umap`, this indicates the variables to be encoded into a numeric format. Numeric and factor variables can be used. See `recipes::selections()` for more details. For the tidy method, these are not currently used.

- **role**
 For model terms created by this step, what analysis role should they be assigned?. By default, the function assumes that the new embedding columns created by the original variables will be used as predictors in a model.

- **trained**
 A logical to indicate if the quantities for preprocessing have been estimated.
A call to `vars` to specify which variable is used as the outcome in the encoding process (if any).

An integer for the number of nearest neighbors used to construct the target simplicial set.

An integer for the number of UMAP components.

The effective minimum distance between embedded points.

Positive number of the learning rate for the optimization process.

Number of iterations for the neighbor optimization. See `uwot::umap()` for more details.

A list of options to pass to `uwot::umap()`. The arguments `X`, `n_neighbors`, `n_components`, `min_dist`, `n_epochs`, `ret_model`, and `learning_rate` should not be passed here. By default, `verbose` and `n_threads` are set.

Two integers to control the random numbers used by the numerical methods. The default pulls from the main session's stream of numbers and will give reproducible results if the seed is set prior to calling `prep.recipe()` or `bake.recipe()`.

A single logical for whether the original predictors should be kept (in addition to the new embedding variables).

An object that defines the encoding. This is `NULL` until the step is trained by `recipes::prep.recipe()`.

A logical. Should the step be skipped when the recipe is baked by `recipes::bake.recipe()`?

A character string that is unique to this step to identify it.

A step_umap object.

Details

UMAP, short for Uniform Manifold Approximation and Projection, is a nonlinear dimension reduction technique that finds local, low-dimensional representations of the data. It can be run unsupervised or supervised with different types of outcome data (e.g. numeric, factor, etc).

Value

An updated version of `recipe` with the new step added to the sequence of existing steps (if any). For the `tidy` method, a tibble with a column called `terms` (the selectors or variables for embedding) is returned.

References

Examples

```r
library(recipes)
library(dplyr)
library(ggplot2)

split <- seq.int(1, 150, by = 9)
tr <- iris[-split,]
te <- iris[split,]

set.seed(11)
supervised <-
  recipe(Species ~ ., data = tr) %>%
  step_center(all_predictors()) %>%
  step_scale(all_predictors()) %>%
  step_umap(all_predictors(), outcome = vars(Species), num_comp = 2) %>%
  prep(training = tr)

theme_set(theme_bw())

bake(supervised, new_data = te, Species, starts_with("umap")) %>%
  ggplot(aes(x = umap_1, y = umap_2, col = Species)) +
  geom_point(alpha = .5)
```

step_woe
Weight of evidence transformation

Description

step_woe creates a *specification* of a recipe step that will transform nominal data into its numerical transformation based on weights of evidence against a binary outcome.

Usage

```r
step_woe(
  recipe,
  ..., 
  role = "predictor",
  outcome,
  trained = FALSE,
  dictionary = NULL,
  Laplace = 1e-06,
  prefix = "woe",
  skip = FALSE,
  id = rand_id("woe")
)

## S3 method for class 'step_woe'
tidy(x, ...)
```
Arguments

recipe A recipe object. The step will be added to the sequence of operations for this recipe.

... One or more selector functions to choose which variables will be used to compute the components. See selections() for more details. For the tidy method, these are not currently used.

role For model terms created by this step, what analysis role should they be assigned? By default, the function assumes that the new woe components columns created by the original variables will be used as predictors in a model.

outcome The bare name of the binary outcome encased in vars().

trained A tbl. A map of levels and woe values. It must have the same layout than the output returned from dictionary(). If `NULL` the function will build a dictionary with those variables passed to See dictionary() for details.

Laplace The Laplace smoothing parameter. A value usually applied to avoid -Inf/Inf from predictor category with only one outcome class. Set to 0 to allow Inf/-Inf. The default is 1e-6. Also known as 'pseudocount' parameter of the Laplace smoothing technique.

prefix A character string that will be the prefix to the resulting new variables. See notes below.

skip A logical. Should the step be skipped when the recipe is baked by recipes::bake.recipe()?

While all operations are baked when recipes::prep.recipe() is run, some operations may not be able to be conducted on new data (e.g. processing the outcome variable(s)). Care should be taken when using skip = TRUE as it may affect the computations for subsequent operations

id A character string that is unique to this step to identify it.

x A step_woe object.

Details

WoE is a transformation of a group of variables that produces a new set of features. The formula is

$$woe_c = \log \left(\frac{P(X = c|Y = 1)}{P(X = c|Y = 0)} \right)$$

where c goes from 1 to C levels of a given nominal predictor variable X.

These components are designed to transform nominal variables into numerical ones with the property that the order and magnitude reflects the association with a binary outcome. To apply it on numerical predictors, it is advisable to discretize the variables prior to running WoE. Here, each variable will be binarized to have woe associated later. This can achieved by using step_discretize().

The argument Laplace is an small quantity added to the proportions of 1’s and 0’s with the goal to avoid log(p/0) or log(0/p) results. The numerical woe versions will have names that begin with woe_ followed by the respective original name of the variables. See Good (1985).

One can pass a custom dictionary tibble to step_woe(). It must have the same structure of the output from dictionary() (see examples). If not provided it will be created automatically. The
role of this tibble is to store the map between the levels of nominal predictor to its woe values. You may want to tweak this object with the goal to fix the orders between the levels of one given predictor. One easy way to do this is by tweaking an output returned from dictionary().

Value
An updated version of recipe with the new step added to the sequence of existing steps (if any). For the tidy method, a tibble with the woe dictionary used to map categories with woe values.

References

Examples
```r
library(modeldata)
data("credit_data")

set.seed(111)
in_training <- sample(1:nrow(credit_data), 2000)

credit_tr <- credit_data[in_training, ]
credit_te <- credit_data[-in_training, ]

rec <- recipe(Status ~ ., data = credit_tr) %>%
  step_woe(Job, Home, outcome = vars(Status))

woe_models <- prep(rec, training = credit_tr)

# the encoding:
bake(woe_models, new_data = credit_te %>% slice(1:5), starts_with("woe"))
# the original data
credit_te %>% slice(1:5) %>% dplyr::select(Job, Home)
# the details:
tidy(woe_models, number = 1)

# Example of custom dictionary + tweaking
# custom dictionary
woe_dict_custom <- credit_tr %>% dictionary(Job, Home, outcome = "Status")
woe_dict_custom[4, "woe"] <- 1.23 #tweak

#passing custom dict to step_woe()
rec_custom <- recipe(Status ~ ., data = credit_tr) %>%
  step_woe(Job, Home, outcome = vars(Status), dictionary = woe_dict_custom) %>%
  prep

rec_custom_baked <- bake(rec_custom, new_data = credit_te)
rec_custom_baked %>% dplyr::filter(woe_Job == 1.23) %>% head
```
woe_table

Crosstable with woe between a binary outcome and a predictor variable.

Description
Calculated some summaries and the WoE (Weight of Evidence) between a binary outcome and a given predictor variable. Used to build the dictionary.

Usage
woe_table(predictor, outcome, Laplace = 1e-06)

Arguments
- predictor: A atomic vector, usually with few distinct values.
- outcome: The dependent variable. A atomic vector with exactly 2 distinct values.
- Laplace: The pseudocount parameter of the Laplace Smoothing estimator. Default to 1e-6. Value to avoid -Inf/Inf from predictor category with only one outcome class. Set to 0 to allow Inf/-Inf.

Value
A tibble with counts, proportions and woe. Warning: woe can possibly be -Inf. Use 'Laplace' arg to avoid that.

References
Index

* binning
 step_discretize_cart, 4
 step_discretize_xgb, 6
* datagen
 step_embed, 8
 step_feature_hash, 11
 step_lencode_bayes, 14
 step_lencode_glm, 16
 step_lencode Mixed, 18
 step_umap, 20
 step_woe, 22
* discretization
 step_discretize_cart, 4
 step_discretize_xgb, 6
* dummy_variables
 step_feature_hash, 11
* factors
 step_discretize_cart, 4
 step_discretize_xgb, 6
* model specification
 step_feature_hash, 11
* preprocessing encoding
 step_embed, 8
 step_lencode_bayes, 14
 step_lencode_glm, 16
 step_lencode Mixed, 18
 step_umap, 20
* preprocessing woe
 transformation_methods
 step_woe, 22

* preprocessing
 step_discretize_cart, 4
 step_discretize_xgb, 6
 step_feature_hash, 11
* variable encodings
 step_feature_hash, 11
* xgboost
 step_discretize_xgb, 6

add_woe, 2
bake.recipe, 21
dictionary, 3
dictionary(), 2, 3, 23
embed.control(step_embed), 8
is_tfa.is_available, 4
keras::compile, 10
keras::fit(), 10
lme4::glmer, 18, 19
lme4::lmer, 18, 19
prep.recipe, 21
recipes::bake.recipe(), 5, 7, 8, 10, 12, 15, 17, 18, 21, 23
recipes::prep.recipe(), 5, 7–10, 12, 14–18, 21, 23
recipes::recipe(), 5, 8
recipes::selections(), 9, 14, 16, 18, 20
recipes::step_dummy(), 13
recipes::step_zv(), 13
rpart::rpart(), 5
rstanarm::stan_glmer(), 14, 15
selections(), 5, 7, 12, 23
step_discretize(), 23
step_discretize_cart, 4
step_discretize_cart(), 8
step_discretize_xgb, 6
step_discretize_xgb(), 5
step_embed, 8
step_feature_hash, 11
step_lencode_bayes, 14
step_lencode_glm, 16
step_lencode Mixed, 18
26
index

step_umap, 20
step_woe, 22

tidy.step_discretize_cart (step_discretize_cart), 4
tidy.step_discretize_xgb (step_discretize_xgb), 6
tidy.step_embed (step_embed), 8
tidy.step_feature_hash (step_feature_hash), 11
tidy.step_lencode_bayes (step_lencode_bayes), 14
tidy.step_lencode_glm (step_lencode_glm), 16
tidy.step_lencode_mixed (step_lencode_mixed), 18
tidy.step_umap (step_umap), 20
tidy.step_woe (step_woe), 22

uwot::umap(), 21

woe_table, 25