Package ‘elfDistr’

October 7, 2019

Title Kumaraswamy Complementary Weibull Geometric (Kw-CWG) Probability Distribution

Version 1.0.0

License MIT + file LICENSE

Encoding UTF-8

LazyData true

URL https://github.com/matheushjs/elfDistr

BugReports https://github.com/matheushjs/elfDistr/issues

RoxygenNote 6.1.1

Depends R (>= 3.1.0)

LinkingTo Rcpp

Imports Rcpp

SystemRequirements C++11

NeedsCompilation yes

Suggests testthat

Author Matheus H. J. Saldanha [aut, cre], Adriano K. Suzuki [aut]

Maintainer Matheus H. J. Saldanha <mhjsaldanha@gmail.com>

Repository CRAN

Date/Publication 2019-10-07 18:00:02 UTC

R topics documented:

elfDistr .. 2
Kw-CWG .. 2

Index 4
Kumaraswamy Complementary Weibull Geometric (Kw-CWG) Probability Distribution

Description
Density, distribution function, quantile function and random generation for the Kumaraswamy Complementary Weibull Geometric probability distribution (Kw-CWG) lifetime distribution.

Details
This package follows naming convention that is consistent with base R, where density (or probability mass) functions, distribution functions, quantile functions and random generation functions names are followed by d, p, q, and r prefixes.

Behaviour of the functions is consistent with base R, where for not valid parameters values NaN’s are returned, while for values beyond function support 0’s are returned (e.g. for non-integers in discrete distributions, or for negative values in functions with non-negative support).

All the functions vectorized and coded in C++ using Rcpp.

Kumaraswamy Complementary Weibull Geometric Probability Distribution

Description
Density, distribution function, quantile function and random generation for the Kumaraswamy Complementary Weibull Geometric (Kw-CWG) probability distribution.

Usage

\begin{verbatim}
dkwcwg(x, alpha, beta, gamma, a, b, log = FALSE)

pkwcwg(q, alpha, beta, gamma, a, b, lower.tail = TRUE, log.p = FALSE)

qkwcwg(p, alpha, beta, gamma, a, b, lower.tail = TRUE, log.p = FALSE)

rkwcwg(n, alpha, beta, gamma, a, b)
\end{verbatim}

Arguments

\begin{itemize}
 \item \texttt{x, q} \hspace{1cm} vector of quantiles.
 \item \texttt{alpha, beta, gamma, a, b} \hspace{1cm} Parameters of the distribution. 0 < alpha < 1, and the other parameters must be positive.
\end{itemize}
log, log.p logical; if TRUE, probabilities p are given as log(p).
lower.tail logical; if TRUE (default), probabilities are $P[X \leq x]$ otherwise, $P[X > x]$.
p vector of probabilities.
n number of observations. If length(n) > 1, the length is taken to be the number required.

Details

Probability density function

$$f(x) = \alpha^a \beta \gamma a b (\gamma x)^{\beta - 1} \exp[-(\gamma x)^{\beta}] \cdot \frac{\{1 - \exp[-(\gamma x)^{\beta}]\}^{a-1}}{\{\alpha + (1 - \alpha) \exp[-(\gamma x)^{\beta}]\}^{a+1}} \cdot \left\{1 - \frac{\alpha^a [1 - \exp[-(\gamma x)^{\beta}]]^a}{\{\alpha + (1 - \alpha) \exp[-(\gamma x)^{\beta}]\}^a}\right\}$$

Cumulative density function

$$F(x) = 1 - \left\{1 - \left[\frac{\alpha (1 - \exp[-(\gamma x)^{\beta}])}{\alpha + (1 - \alpha) \exp[-(\gamma x)^{\beta}]}\right]^a\right\}^b$$

Quantile function

$$Q(u) = \gamma^{-1} \left\{\log \left[\frac{\alpha + (1 - \alpha) \sqrt{1 - \sqrt{1 - u}}}{\alpha (1 - \sqrt{1 - \sqrt{1 - u}})}\right]\right\}^{1/\beta}, 0 < u < 1$$

References

Index

*Topic distribution
 Kw-CWG, 2
*Topic models
 Kw-CWG, 2
*Topic survival
 Kw-CWG, 2
*Topic univar
 Kw-CWG, 2

dkwcwg (Kw-CWG), 2
elfDistr, 2
elfDistr-package (elfDistr), 2
Kw-CWG, 2
pkwcwg (Kw-CWG), 2
qkwcwg (Kw-CWG), 2
rkwcwg (Kw-CWG), 2