Package ‘ecoCopula’

November 10, 2020

Title Graphical Modelling and Ordination using Copulas

Version 1.0.1

Depends R (>= 3.5.0)

Imports mvabund, glasso, plyr, sna, MASS, tweedie, igraph, betareg, doParallel, mgcv, glm2, ordinal, compiler, foreach, stats

License LGPL (>= 2.1)

Encoding UTF-8

LazyData true

RoxygenNote 7.1.1

Suggests knitr, markdown, testthat, tidyr, ggplot2, RColorBrewer, ggraph, labdsv, tidygraph

VignetteBuilder knitr

NeedsCompilation no

Author Gordana Popovic [aut, cre],
 Michelle Lim [ctb],
 Francis K.C. Hui [ctb]

Maintainer Gordana Popovic <g.popovic@unsw.edu.au>

Repository CRAN

Date/Publication 2020-11-10 09:50:03 UTC

R topics documented:

 cgr .. 2
 cord .. 3
 fitted.stackedsdm 5
 plot.cgr ... 6
 plot.cord ... 7
 plot.stackedsdm 9
cgr

Fitting Gaussian copula graphical lasso to co-occurrence data

Description

cgr is used to fit a Gaussian copula graphical model to multivariate discrete data, like species co-occurrence data in ecology. This function fits the model and estimates the shrinkage parameter using BIC. Use plot.cgr to plot the resulting graph.

Usage

cgr(
 obj,
 lambda = NULL,
 n.lambda = 100,
 n.samp = 500,
 method = "BIC",
 seed = NULL
)

Arguments

obj object of either class manyglm, or manyany with ordinal models clm
lambda vector, values of shrinkage parameter lambda for model selection (optional, see detail)
n.lambda integer, number of lambda values for model selection (default = 100), ignored if lambda supplied
n.samp integer (default = 500), number of sets residuals used for importance sampling (optional, see detail)
method method for selecting shrinkage parameter lambda, either "BIC" (default) or "AIC"
seed integer (default = 1), seed for random number generation (optional, see detail)
Value

Three objects are returned; best_graph is a list with parameters for the 'best' graphical model, chosen by the chosen method; all_graphs is a list with likelihood, BIC and AIC for all models along lambda path; obj is the input object.

Details

cgr is used to fit a Gaussian copula graphical model to multivariate discrete data, such as co-occurrence (multi species) data in ecology. The model is estimated using importance sampling with n.samp sets of randomised quantile or "Dunn-Smyth" residuals (Dunn & Smyth 1996), and the glasso package for fitting Gaussian graphical models. Models are fit for a path of values of the shrinkage parameter lambda chosen so that both completely dense and sparse models are fit. The lambda value for the best_graph is chosen by BIC (default) or AIC. The seed is controlled so that models with the same data and different predictors can be compared.

Author(s)

Gordana Popovic <g.popovic@unsw.edu.au>.

References

See also

plot.cgr

Examples

X <- as.data.frame(spider$x)
abund <- spider$abund[,1:5]
spider_mod <- stackedsm(abund,~1, data = X, ncores=2)
spid_graph=cgr(spid_mod)
plot(spid_graph,pad=1)

cord Model based ordination with Gaussian copulas

Description

Model based ordination with Gaussian copulas

Usage

cord(obj, nlv = 2, n.samp = 500, seed = NULL)
Arguments

obj object of either class manyglm, or manyany with ordinal models clm
nLv number of latent variables (default = 2, for plotting on a scatterplot)
n.samp integer (default = 500), number of sets residuals used for importance sampling (optional, see detail)
seed integer (default = NULL), seed for random number generation (optional)

Value

loadings latent factor loadings scores latent factor scores sigma covariance matrix estimated with nLv latent variables theta precision matrix estimated with nLv latent variables BIC BIC of estimated model logL log-likelihood of estimated model

Details

cord is used to fit a Gaussian copula factor analytic model to multivariate discrete data, such as co-occurrence (multi species) data in ecology. The model is estimated using importance sampling with n.samp sets of randomised quantile or "Dunn-Smyth" residuals (Dunn & Smyth 1996), and the factanal function. The seed is controlled so that models with the same data and different predictors can be compared.

Author(s)

Gordana Popovic <g.popovic@unsw.edu.au>.

References

See also

plot.cord

Examples

X <- as.data.frame(spider$x)
abund <- spider$abund
spider_mod <- stackedsm(abund,~1, data = X, ncores=2)
spid_lv=cord(spider_mod)
plot(spid_lv,biplot = TRUE)
Description

Fitted values from a stackedsdm object

Usage

S3 method for class 'stackedsdm'
fitted(object, ...)

Arguments

object
An object of class stackedsdm
...
Not used

Value

A matrix of fitted values.

Details

Extracts the fitted values from stackedsdm object.

Author(s)

Francis K.C. Hui <francis.hui@anu.edu.au>.

Examples

library(mvabund)
data(spider)
X <- as.data.frame(spider$x)
abund <- spider$abund

Example 1: Simple example
myfamily <- "negative.binomial"
Example 1: Funkier example where Species are assumed to have different distributions
Fit models including all covariates are linear terms, but exclude for bare sand
fit0 <- stackedsdm(abund, formula_X = ~. - bare.sand, data = X, family = myfamily, ncores=2)
fitted(fit0)

Example 2: Funkier example where Species are assumed to have different distributions
abund[,1:3] <- (abund[,1:3]>0)*1 # First three columns for presence absence
myfamily <- c(rep(c("binomial"), 3),
 rep(c("negative.binomial"), (ncol(abund)-3)))
fit0 <- stackedsdm(abund, formula_X = ~ bare.sand, data = X, family = myfamily, ncores=2)
fitted(fit0)
S3 method for class 'cgr'
plot(
 x,
 P = NULL,
 vary.edge.lwd = FALSE,
 edge.col = c("light blue", "pink"),
 label = colnames(xobjfitted),
 vertex.col = "blue",
 label.cex = 0.8,
 edge.lwd = ifelse(vary.edge.lwd, 10, 4),
 edge.lty = c(1, 1),
 ...
)

Arguments

- **x** is a cgr object, e.g. from output of `cgr`.
- **P** locations of graph nodes, if NULL (default) these are generated with a Fruchterman Reingold algorithm.
- **vary.edge.lwd** is logical, TRUE will vary line width according to the strength of partial correlation, default (FALSE) uses fixed line width.
- **edge.col** takes two colours as arguments - the first is the colour used for positive partial correlations, the second is the colour of negative partial correlations.
- **label** is a vector of labels to apply to each variable, defaulting to the column names supplied in the data.
- **vertex.col** the colour of graph nodes.
- **label.cex** is the size of labels.
- **edge.lwd** is line width, defaulting to 10*partial correlation when varying edge width, and 4 otherwise.
- **edge.lty** is a vector of two integers specifying the line types for positive and negative partial correlations, respectively. Both default to solid lines.
- **...** other parameters to be passed through to plotting `gplot`, in particular `pad`, the amount to pad the plotting range is useful if labels are being clipped. For details see the `gplot` help file.
plot.cord

Value

A plot of species associations after accounting for the effect of all other species, positive/negative are blue/pink. The matrix of node positions (P) is returned silently.

See Also

gplot, cgr

Examples

```r
X <- as.data.frame(spider$x)
abund <- spider$abund[,1:5]
spider_mod <- stackedsdm(abund,-1, data = X, ncores=2)
spid_graph=cgr(spider_mod)
plot(spid_graph, edge.col=c("forestgreen","darkorchid4"),
     vertex.col = "black", vary.edge.lwd=TRUE)
```

```
library(tidyr)
library(tidygraph)
library(ggraph)
igraph_out<-spid_graph$best_graph$igraph_out
igraph_out %>% ggraph("fr") + # see ?layout_tbl_graph_igraph
  geom_edge_fan0(aes( colour = partcor, width=partcor)) +
  scale_edge_width(range = c(0.5, 3)) +
  scale_edge_color_gradient2(low="#b2182b",mid="white",high="#2166ac")+
  geom_node_text(aes(label=name), repel = TRUE)+
  geom_node_point(aes(size=1.3))+
  theme_void() +
  theme(legend.position = 'none')
```

plot.cord

Plots an ordination of latent variables and their corresponding coefficients (biplot).

Description

Plots an ordination of latent variables and their corresponding coefficients (biplot).

Usage

```r
## S3 method for class 'cord'
plot(
  x,
  biplot = FALSE,
  site.col = "black",
```

```r
```
sp.col = "blue",
alpha = 0.7,
arrow = TRUE,
site.text = FALSE,
labels = dimnames(xobjfitted),
...
)

Arguments

x is a cord object, e.g. from output of cord
biplot TRUE if both latent variables and their coefficients are plotted, FALSE if only latent variables
site.col site number colour (default is black), vector of length equal to the number of sites
sp.col species name colour (default is blue), vector of length equal to the number of sites (if arrow=TRUE)
alpha scaling factor for ratio of scores to loadings (default is 0.7)
arrow should arrows be plotted for species loadings (default is TRUE)
site.text should sites be labeled by row names of data (default is FALSE, points are drawn)
labels the labels for sites and species (for biplots only) (default is data labels)
... other parameters to be passed through to plotting functions.

Value

an ordination plot.

Examples

X <- as.data.frame(spider$x)
abund <- spider$abund
spider_mod <- stackedsdm(abund,~1, data = X, ncores=2)
spid_lv=cord(spider_mod)
#colour sites according to second column of x (bare sand)
cols=ifelse(spider$x[,2]>0, "black", "red")
plot(spid_lv,biplot = FALSE,site.col=cols, site.text = TRUE)

library(ggplot2)
library(RColorBrewer)
alpha= 2.5
site_res <- data.frame(spid_lv$scores,X)
sp_res <- data.frame(spid_lv$loadings,species=colnames(abund))
ggplot()+
geom_point(aes(x=Factor1,y=Factor2,color = reflection),site_res)+
geom_text(aes(x = Factor1*alpha, y = Factor2*alpha,label = species),data=sp_res)+
scale_color_gradientn(colours = brewer.pal(n = 10, name = "PuOr"))+
plot.stackedsdm

theme_classic()

plot.stackedsdm Plot residuals of stackedsdm.

Description

Plot residuals of stackedsdm.

Usage

S3 method for class 'stackedsdm'
plot(x, ...)

Arguments

x is a stackedsdm object.

... not used

Examples

X <- as.data.frame(spider$x)
abund <- spider$abund
spider_mod <- stackedsdm(abund, ~1, data = X)
plot(spider_mod)

predict.stackedsdm Predictions from a stackedsdm object

Description

Predictions from a stackedsdm object

Usage

S3 method for class 'stackedsdm'
predict(
 object,
 newdata = NULL,
 type = "link",
 se.fit = FALSE,
 na.action = na.pass,
 ...)

Arguments

- **object**: An object of class `stackedsdm`
- **newdata**: Optionally, a data frame in which to look for variables with which to predict. If omitted, the covariates from the existing dataset are used.
- **type**: The type of prediction required. This can be supplied as either a single character string, when is applied to all species, or a vector of character strings of the same length as `nrow(object$y)` specifying the type of predictions desired for each species. The exact type of prediction allowed depends precisely on the distribution, but for many there is at least ”link” which is on the scale of the linear predictors, and ”response” which is on the scale of the response variable. The values of this argument can be abbreviated.
- **se.fit**: Logical switch indicating if standard errors are required.
- **na.action**: Function determining what should be done with missing values in ”newdata”. The default is to predict NA.

Value

A list where the k-th element is the result of applying the `predict` method to the k-th fitted model in `object$fits`.

Details

This function simply applies a for loop, cycling through each fitted model from the `stackedsdm` object and then attempting to construct the relevant predictions by applying the relevant `predict` method. Please keep in mind no formatting is done to the predictions.

Author(s)

Francis K.C. Hui <francis.hui@anu.edu.au>.

Examples

```r
X <- as.data.frame(spider$x)
abund <- spider$abund

# Example 1: Simple example
myfamily <- "negative.binomial"
# Fit models including all covariates are linear terms, but exclude for bare sand
fit0 <- stackedsdm(abund, formula_X = ~. -bare.sand, data = X, family = myfamily, ncores=2)
predict(fit0, type = "response")

# Example 2: Funkier example where Species are assumed to have different distributions
abund[,1:3] <- (abund[,1:3]>0)*1 # First three columns for presence absence
myfamily <- c(rep(c("binomial"), 3),
              rep(c("negative.binomial"), 5),
              rep(c("tweedie"), 4)
)```
fit0 <- stackedsm(abund, formula_X = ~ bare.sand, data = X, family = myfamily, ncores=2)
predict(fit0, type = "response")
residuals.stackedsdm

Arguments

- `x`: is a cord object, e.g. from output of `cord`.
- `...`: not used

See Also

cord

Examples

```r
X <- as.data.frame(spider$x)
abund <- spider$abund
spider_mod <- stackedsdm(abund, ~1, data = X, ncores=2)
spid_lv=cord(spider_mod)
print(spid_lv)
```

Description

Calculate residuals from a stackedsdm object

Usage

```r
S3 method for class 'stackedsdm'
residuals(object, type = "dunnsmyth", seed = NULL, ...)
```

Arguments

- `object`: An object of class stackedsdm;
- `type`: Determines what type of residuals to calculate. The current options include Dunn-Smyth residuals (default; "dunnsmyth"), raw response residuals ("response") or probability integral transform residuals ("PIT");
- `seed`: For Dunn-Smyth and PIT residuals applied to discrete responses, random jittering is added, and the seed can be used to seed to jittering.
- `...`: not used

Value

A matrix of residuals

Details

Calculated the residuals from stackedsdm object.
## simulate.cord

Simulates new data from a given cord object

### Description

Simulates new data from a given cord object

### Usage

```r
S3 method for class 'cord'
simulate(object, nsim = 1, seed = NULL, newdata = objectobjdata, ...)
```

### Arguments

- `object` is a cord object, e.g. from output of cord
- `nsim` Number of simulations, defaults to 1. If nsim > 1, the simulated data will be appended.
- `seed` Random number seed, defaults to a random seed number.
- `newdata` A data frame in which to look for X covariates with which to simulate.
- `...` not used Defaults to the X covariates in the fitted model.
Examples

```r
abund = spider$abund
X = data.frame(spider$x)

spider_mod_ssdm = stackedsdm(abund, ~1, data = X, ncores=2)
spid_lv_ssdm = cord(spider_mod_ssdm)
simulate(spid_lv_ssdm, nsim=2)

using mvabund
library(mvabund) #for manyglm
abund=mvabund(abund)
spider_mod = manyglm(abund~1)
spid_lv = cord(spider_mod)
simulate(spid_lv)

spider_mod_X = manyglm(abund ~ soil.dry + bare.sand, data=X)
spid_lv_X = cord(spider_mod_X)
Xnew = X[1:10,]
simulate(spid_lv_X, newdata = Xnew)
simulate(spid_lv_X, nsim=2, newdata = Xnew)

spider_mod_X_ssdm = stackedsdm(abund, formula_X = ~. ~ bare.sand, data = X, ncores=2)
spid_lv_X_ssdm = cord(spider_mod_X_ssdm)
simulate(spid_lv_X_ssdm, newdata = Xnew)
```

---

**spider**  
*Spider data*

**Description**

Abundance of hunting spiders and associated environmental variables

**Usage**

`spider`

**Format**

A list containing the elements

- **abund**: A data frame with 28 observations of abundance of 12 hunting spider species.
- **x**: A matrix of six (transformed) environmental variables at each of the 28 sites.
Details

The data frame `abund` has the following species abundances (column name abbreviation in brackets):

- Alopecosa accentuata (Alopacce)
- Alopecosa cuneata (Alopcune)
- Alopecosa fabrilis (Alopfabr)
- Arctosa lutetiana (Arclute)
- Arctosa perita (Arctperi)
- Aulonia albimana (Auloalbi)
- Pardosa lugubris (Pardlugu)
- Pardosa monticola (Pardmont)
- Pardosa nigriceps (Pardnigr)
- Pardosa pullata (Pardpull)
- Trochosa terricola (Trocterr)
- Zora spinimana (Zoraspin)

The matrix `x` has the following log(x+1)-transformed environmental variables:

- soil.dry - Soil dry mass
- bare.sand - Cover bare sand
- fallen.leaves - Cover fallen leaves / twigs
- moss - Cover moss
- herb.layer - Cover herb layer
- reflection - Reflection of the soil surface with a cloudless sky

Source

Data attributed to van der Aart & Smeenk-Enserink (1975), obtained from the spider2 directory, CANOCO FORTRAN package exported from mvabund R package.

---

**Stacked species regression models, possibly fitted in parallel**

**Description**

Stacked species regression models, possibly fitted in parallel
stackedsdm

Usage

stackedsdm(
  y,  
  formula_X = ~1,
  data = NULL,
  family = "negative.binomial",
  trial_size = 1,
  do_parallel = FALSE,
  ncores = NULL,
  trace = FALSE
)

Arguments

y
  A matrix of species responses

formula_X
  An object of class formula representing the relationship to the covariates to be fitted. There should be nothing to the left hand side of the "~" sign.

data
  Data frame of the covariates

family
  Either a single character vector, in which case all responses are assumed to be from this family, or a vector of character strings of the same length as the number of columns of y. Families as strings and not actual family class objects. This could be changed though if desired in the future e.g., for custom link functions. Currently, the following families are supported (hopefully properly!): "gaussian", "negative.binomial" (with quadratic mean-variance relationship), "poisson", "binomial" (with logit link), "tweedie", "Gamma" (with log link), "exponential", "beta" (with logit link), "ordinal" (cumulative logit model), "ztpoisson", "ztnegative.binomial", "zipoisson", "zinegative.binomial".

trial_size
  The trial size if any of the responses are binomial. Is either a single number or a matrix with the same dimension as y. If the latter, then all columns that do not correspond to binomial responses are ignored.

do_parallel
  Do the separate species model fits in parallel? Defaults to TRUE

ncores
  The number of cores to use if separate the species model fits are done in parallel. If do_parallel = TRUE, then it defaults to detectCores() - 2

trace
  Print information. This is not actually used currently

Value

A object of class stackedsdm with the following components: call The function call; fits A list where the j-th element corresponds to the to the fitted model for species j i.e., the j-th column in y; linear_predictor A matrix of the fitted linear predictors fitted A matrix of the fitted values

Details

stackedsdm behaves somewhat like the manyglm or manyany function in the package mvabund, in the sense that it fits a separate regression to each species response i.e., column of y. The main difference is that different families can be permitted for each species, which thus allows for mixed responses types.
Author(s)
Francis K.C. Hui &lt;francis.hui@anu.edu.au&gt;.

Examples

```r
X <- as.data.frame(spider$x)
abund <- spider$abund

Example 1: Simple example
myfamily <- "negative.binomial"
Example 1: Funkier example where Species are assumed to have different distributions
Fit models including all covariates are linear terms, but exclude for bare sand
fit0 <- stackedsdm(abund, formula_X = ~. - bare.sand, data = X, family = myfamily, ncores = 2)

Example 2: Funkier example where Species are assumed to have different distributions
abund[,1:3] <- (abund[,1:3]>0)*1 # First three columns for presence absence
myfamily <- c(rep(c("binomial"), 3),
 rep(c("negative.binomial"), (ncol(abund)-3)))
fit0 <- stackedsdm(abund, formula_X = ~ bare.sand, data = X, family = myfamily, ncores = 2)
```

Summary function for cgr object

Description
Summary function for cgr object

Usage

```r
S3 method for class 'cgr'
summary(object, ...)
```

Arguments

- `object` is a cgr object, e.g. from output of `cgr`
- `...` not used

See Also

- `cgr`

Examples

```r
X <- as.data.frame(spider$x)
abund <- spider$abund[,1:5]
spider_mod <- stackedsdm(abund,~1, data = X, ncores=2)
spid_graph=cgr(spider_mod)
summary(spid_graph)
```
Description

Summary function for cgr object

Usage

## S3 method for class 'cord'
summary(object, ...)

Arguments

object is a cord object, e.g. from output of cgr.
...

not used

See Also

cord

Examples

X <- as.data.frame(spider$x)
abund <- spider$abund[,1:5]
spider_mod <- stackedsdm(abund,~1, data = X, ncores=2)
spid_lv=cord(spider_mod)
summary(spid_lv)
Index

* datasets
  spider, 14
  cgr, 2, 6, 7, 11, 17, 18
  clm, 2, 4
  cord, 3, 12, 18
  factanal, 4
  fitted.stackedsdm, 5
  glasso, 3
  gplot, 6, 7
  manyany, 2, 4
  manyglm, 2, 4
  mvabund, 16
  plot.cgr, 2, 3, 6
  plot.cord, 4, 7
  plot.stackedsdm, 9
  predict.stackedsdm, 9
  print.cgr, 11
  print.cord, 11
  residuals.stackedsdm, 12
  simulate.cord, 13
  spider, 14
  stackedsdm, 15
  summary.cgr, 17
  summary.cord, 18