Package ‘dslice’

November 17, 2018

Type Package
Title Dynamic Slicing
Version 1.2.0
Date 2018-11-16
Author Chao Ye and Bo Jiang
Maintainer Chao Ye <yechao1009@gmail.com>
Description Dynamic slicing is a method designed for dependency detection between a categorical variable and a continuous variable. It could be applied for non-parametric hypothesis testing and gene set enrichment analysis.
License GPL (>= 2)
Depends R (>= 2.10), stats, utils, Rcpp (>= 0.11.1), ggplot2 (>= 0.9.3.1), scales
LinkingTo Rcpp
NeedsCompilation yes
Repository CRAN
Date/Publication 2018-11-17 05:40:07 UTC

R topics documented:

bfslice_c ... 2
bfslice_eqp_c ... 3
bfslice_eqp_u .. 5
bfslice_u ... 6
ds_1 ... 7
ds_eqp_1 ... 8
ds_eqp_k ... 9
ds_gsa ... 10
ds_k ... 12
ds_test ... 13
export_res .. 15
gsa_exp ... 16
gsa_label ... 17
Dependency and conditional dependency detection between a level k ($k > 1$) categorical variable and a continuous variable via Bayes factor.

Description

Conditional dependency detection between a level k_z ($k_z > 1$) categorical variable x and a continuous variable y via Bayes factor given a level k_z categorical variable z. If $k_z = 1$, it is unconditional dependency detection method. It could be applied for non-parametric variable selection.

Usage

```r
bfslice_c(z, x, zdim, xdim, lambda, alpha)
```

Arguments

- z Vector: observations of given (preselected) categorical variable, $0, 1, \ldots, k_z - 1$ for level k_z categorical variable, should be ranked according to values of continuous variable y with x in advanced, either ascending or descending.
- x Vector: observations of categorical variable, $0, 1, \ldots, k_x - 1$ for level k_x categorical variable, should be ranked according to values of continuous variable y with z in advanced, either ascending or descending.
- $zdim$ Level of z, equals k_z.
- $xdim$ Level of x, equals k_x.
- λ lambda corresponds to the probability that makes slice in each possible position. λ should be greater than 0.
- α alpha is hyper-parameter of the prior distribution of frequency in each slice. α should be greater than 0 and less equal than k_z.

Value

Value of Bayes factor (nonnegative). Bayes factor could be treated as a statistic and one can take some threshold then calculates the corresponded Type I error rate. One can also take the value of Bayes factor for judgement.
References

See Also

bfslice_u, *bfslice_eqp_c*.

Examples

```r
n <- 100
mu <- 0.5

## Unconditional test
y <- c(rnorm(n, -mu, 1), rnorm(n, mu, 1))
x <- c(rep(0, n), rep(1, n))
z <- rep(0, 2*n)

## Conditional test
y <- c(rnorm(n, -mu, 1), rnorm(n, mu, 1))
x <- c(rep(0, n/5), rep(1, n), rep(0, 4*n/5))
z <- c(rep(0, n), rep(1, n))
z <- z[order(y)]
x <- x[order(y)]
zdim <- max(z) + 1
xdim <- max(x) + 1
lambda <- 1.0
alpha <- 1.0
bfval <- bfslice_c(z, x, zdim, xdim, lambda, alpha)
```

bfslice_eqp_c
Dependency and conditional dependency detection between a level k
(k > 1) *categorical variable and a continuous variable via Bayes factor.*

Description

Conditional dependency detection between a level \(k_x\) \((k_x > 1)\) categorical variable \(x\) and a continuous variable \(y\) via Bayes factor given a level \(k_z\) categorical variable \(z\) with \(O(n^{1/2})\)-resolution. The basic idea is almost the same as *bfslice_c*. The only different is that *bfslice_eqp_c* groups samples into approximate \(O(n^{1/2})\) groups which contain approximate \(O(n^{1/2})\) samples and treat the groups as a sample to calculate Bayes factor. If \(k_z = 1\), it is unconditional dependency detection method. It could be applied for non-parametric variable selection.

Usage

bfslice_eqp_c(z, x, zdim, xdim, lambda, alpha)
Arguments

- **z**: Vector: observations of given (preselected) categorical variable, 0, 1, ..., \(k_z - 1\) for level \(k_z\) categorical variable, should be ranked according to values of continuous variable \(y\) with \(x\) in advanced, either ascending or descending.

- **x**: Vector: observations of categorical variable, 0, 1, ..., \(k_x - 1\) for level \(k_x\) categorical variable, should be ranked according to values of continuous variable \(y\) with \(z\) in advanced, either ascending or descending.

- **zdim**: Level of \(z\), equals \(k_z\).

- **xdim**: Level of \(x\), equals \(k_x\).

- **lambda**: lambda corresponds to the probability that makes slice in each possible position. lambda should be greater than 0.

- **alpha**: alpha is hyper-parameter of the prior distribution of frequency in each slice. alpha should be greater than 0 and less equal than \(k_x\).

Value

Value of Bayes factor (nonnegative). Bayes factor could be treated as a statistic and one can take some threshold then calculates the corresponded Type I error rate. One can also take the value of Bayes factor for judgement.

References

See Also

- bfslice_c, bfslice_eqp_u.

Examples

```r
n <- 1000
mu <- 0.2

## Unconditional test
y <- c(rnorm(n, -mu, 1), rnorm(n, mu, 1))
x <- c(rep(0, n), rep(1, n))
z <- rep(0, 2*n)

## Conditional test
y <- c(rnorm(n, -mu, 1), rnorm(n, mu, 1))
x <- c(rep(0, n/5), rep(1, n), rep(0, 4*n/5))
z <- c(rep(0, n), rep(1, n))
x <- x[order(y)]
zdim <- max(z) + 1
xdim <- max(x) + 1
lambda <- 1.0
```
Dependency detection between a level \(k \) \((k > 1)\) categorical variable and a continuous variable via Bayes factor with given size of each group.

Usage

```
bfslce_eqp_u(x, dim, lambda, alpha)
```

Arguments

- **x**: Vector: observations of categorical variable, 0, 1, ..., \(k - 1 \) for level \(k \) categorical variable, should be ranked according to values of continuous variable \(y \), either ascending or descending.
- **dim**: Level of \(x \), equals \(k \).
- **lambda**: \(\lambda \) corresponds to the probability that makes slice in each possible position. \(\lambda \) should be greater than 0.
- **alpha**: \(\alpha \) is hyper-parameter of the prior distribution of frequency in each slice. \(\alpha \) should be greater than 0 and less equal than \(k \).

Value

Value of Bayes factor (nonnegative). Bayes factor could be treated as a statistic and one can take some threshold then calculates the corresponded Type I error rate. One can also take the value of Bayes factor for judgement.

References

See Also

`bfslce_u`, `bfslce_eqp_c`
Examples

```r
n <- 1000
mu <- 0.2
y <- c(rnorm(n, -mu, 1), rnorm(n, mu, 1))
x <- c(rep(0, n), rep(1, n))
x <- x[order(y)]
dim <- max(x) + 1
lambda <- 1
alpha <- 1.0
bfval <- bfslice_u(x, dim, lambda, alpha)
```

bfslice_u

Dependency detection between a level \(k \) \((k > 1)\) categorical variable and a continuous variable via Bayes factor.

Description

Dependency detection between a level \(k \) \((k > 1)\) categorical variable \(x \) and a continuous variable \(y \) via Bayes factor.

Usage

```r
bfslice_u(x, dim, lambda, alpha)
```

Arguments

- **x**: Vector: observations of categorical variable, \(0, 1, \ldots, k - 1 \) for level \(k \) categorical variable, should be ranked according to values of continuous variable \(y \), either ascending or descending.
- **dim**: Level of \(x \), equals \(k \).
- **lambda**: \(\lambda \) corresponds to the probability that makes slice in each possible position. \(\lambda \) should be greater than \(0 \).
- **alpha**: \(\alpha \) is hyper-parameter of the prior distribution of frequency in each slice. \(\alpha \) should be greater than \(0 \) and less equal than \(k \).

Value

Value of Bayes factor (nonnegative). Bayes factor could be treated as a statistic and one can take some threshold then calculates the corresponded Type I error rate. One can also take the value of Bayes factor for judgement.

References

ds_1

See Also

bfslice_c, bfslice_eqp_u.

Examples

```r
n <- 100
mu <- 0.5
y <- c(rnorm(n, -mu, 1), rnorm(n, mu, 1))
x <- c(rep(0, n), rep(1, n))
x <- x[order(y)]
dim <- max(x) + 1
lambda <- 1.0
alpha <- 1.0
bfval <- bfslice_u(x, dim, lambda, alpha)
```

Description

Non-parametric one-sample hypothesis testing via dynamic slicing. By mapping sample values to
the quantile of null distribution, ds_1 test whether they follow uniform distribution on [0, 1] via a
regularized likelihood-ratio. Its calculated is based on a dynamic programming procedure.

Usage

```r
ds_1(y, lambda, alpha)
```

Arguments

- `y`: Vector: quantiles of observations according to null distribution.
- `lambda`: lambda penalizes the number of slices to avoid too many slices. lambda should be greater than 0.
- `alpha`: alpha penalizes both the width and the number of slices to avoid too many slices and degenerate slice (interval). alpha should be greater than 1.

Value

Value of dynamic slicing statistic for one-sample test. It is nonnegative. The null hypothesis that
observations are from the null distribution is rejected if this statistic is greater than zero, otherwise
accept the null hypothesis.

See Also

ds_eqp_1.
Examples

```r
n <- 100
mu <- 0.5
x <- rnorm(n, mu, 1)
y <- pnorm(sort(x), 0, 1)
lambda <- 1.0
alpha <- 1.0
dsres <- ds_1(y, lambda, alpha)
```

Description

Non-parametric one-sample hypothesis testing via dynamic slicing with $O(n)$-resolution. The basic idea of `ds_eqp_1` is almost the same as `ds_1`. Difference between these two functions is that `ds_eqp_1` considers an equal partition on $[0, 1]$ but `ds_1` does not. Candidate slicing boundaries in `ds_eqp_1` only depend on the total number of samples and are unrelated to sample quantiles. In `ds_1` they are immediately to the left or right of sample quantile.

Usage

```r
ds_eqp_1(y, lambda)
```

Arguments

- `y`: Vector: quantiles of observations according to null distribution.
- `lambda`: lambda penalizes the number of slices to avoid too many slices. Since the interval $[0, 1]$ is divided into n equal size element-slice and slicing strategy only consider boundaries of them, this version of dynamic slicing does not require penalty lambda as `ds_1`. lambda should be greater than 0.

Value

Value of dynamic slicing statistic for one-sample test. It is nonnegative. The null hypothesis that observations are from the null distribution is rejected if this statistic is greater than zero, otherwise accept the null hypothesis.

See Also

`ds_1`.

Non-parametric one-sample hypothesis testing via dynamic slicing
Examples

```r
n <- 100
mu <- 0.5
x <- rnorm(n, mu, 1)
y <- pnorm(sort(x), 0, 1)
lambda <- 1.0
dsres <- ds_eqp_1(y, lambda)
```

<table>
<thead>
<tr>
<th>ds_eqp_k</th>
<th>Dependency detection between level k (k > 1) categorical variable and continuous variable</th>
</tr>
</thead>
</table>

Description

Dependency detection between level k ($k > 1$) categorical variable and continuous variable via dynamic slicing with $O(n^{1/2})$-resolution. The basic idea is almost the same as `ds_k`. The only different is that `ds_eqp_k` groups samples into approximate $O(n^{1/2})$ groups which contain approximate $O(n^{1/2})$ samples and performs dynamic slicing on their boundaries. This much faster version could reduce computation time substantially without too much power loss. Based on the strategy of `ds_eqp_k`, we recommend to apply it in large sample size problem and use `ds_k` for ordinary problem. For more details please refer to Jiang, Ye & Liu (2015). Results contains value of dynamic slicing statistic and slicing strategy. It could be applied for non-parametric K-sample hypothesis testing.

Usage

```r
ds_eqp_k(x, xdim, lambda, slice = FALSE)
```

Arguments

- **x** Vector: observations of categorical variable, $0, 1, \ldots, k - 1$ for level k categorical variable, should be ranked according to values of continuous variable in advanced, either ascending or descending.
- **xdim** Level of x, equals k.
- **lambda** Penalty for introducing an additional slice, which is used to avoid making too many slices. It corresponds to the type I error under the scenario that the two variables are independent. `lambda` should be greater than 0.
- **slice** Indicator for reporting slicing strategy or not.

Value

- **dsval** Value of dynamic slicing statistic. It is nonnegative. If it equals zero, the categorical variable and continuous variable will be treated as independent of each other, otherwise they will be treated as dependent.
slices Slicing strategy that maximize dynamic slicing statistic based on currently ranked vector \textit{x}. It will be reported if slice is true. Each row stands for a slice. Each column except the last one stands for the number of observations take each value in each slice. The last column is the number of observations in each slice \textit{i.e.}, the sum of the first column to the \textit{k}th column.

References

See Also
ds_k.

Examples

```r
n <- 100
mu <- 0.5
y <- c(rnorm(n, -mu, 1), rnorm(n, mu, 1))
x <- c(rep("1", n), rep("2", n))
x <- relabel(x)
x <- x[order(y)]
xdim <- max(x) + 1
lambda <- 1.0
dsres <- ds_eqp_k(x, xdim, lambda, slice = TRUE)
```

\textit{ds_gsa} \hspace{1cm} \textit{Gene set analysis via dynamic slicing}

Description

Gene set analysis via dynamic slicing.

Usage

```
ds_gsa(expdat, geneset, label, generank, ..., lambda = 1, bycol = FALSE, minsize = 15, maxsize = 500, randseed = 11235, rounds = 1000)
```

Arguments

\textbf{expdat} Either a character string of gene expression file name (.gct file), or an expression matrix with rownames, each row is a gene and each column is a sample.

\textbf{geneset} Either a character string of gene set file name (.gmt file), or a list contains a vector of gene set names, a vector of gene set description and a list of gene symbols in each gene set.

\textbf{label} Either a character string of phenotypes file (.cls file), or a list contains a vector of types of phenotype and a vector of encoded phenotypes of samples. It should match gene expression matrix.
ds_gsa

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>generank</td>
<td>Either an integer vector of rank of each gene according to some statistic, or a character string naming a function which takes gene expression matrix as input and returns a vector of gene rank (not tie).</td>
</tr>
<tr>
<td>lambda</td>
<td>Penalty for introducing an additional slice in dynamic slicing procedure, which is used to avoid making too many slices. It corresponds to the type I error under the scenario that the two variables are independent. (\lambda) should be greater than 0.</td>
</tr>
<tr>
<td>bycol</td>
<td>Type of permutation, by row (default) or by column. Permutation by row means shuffling the gene rank. Permutation by column means shuffling phenotypes then obtain gene rank.</td>
</tr>
<tr>
<td>minsize</td>
<td>Minimum number of genes in genesets to be considered.</td>
</tr>
<tr>
<td>maxsize</td>
<td>Maximum number of genes in genesets to be considered.</td>
</tr>
<tr>
<td>randseed</td>
<td>Optional initial seed for random number generator (integer).</td>
</tr>
<tr>
<td>rounds</td>
<td>Number of permutations for estimating significant level of results.</td>
</tr>
</tbody>
</table>

Details

\(\text{ds}_\text{gsa} \) performs gene set analysis via dynamic slicing. It returns the DS statistics and slicing strategy of each gene set. \(\text{ds}_\text{gsa} \) does not attempt to integrate the ranking method into it. It requires ranking method or directly the gene rank as a parameter. Leaving ranking method as an optional input parameter is convenience for users who would like to use any ranking methods they want.

Value

A list with informations of gene sets whose size satisfy the minimum and maximum size thresholds. It contains the following components:

<table>
<thead>
<tr>
<th>Component</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>set_name</td>
<td>A vector of gene set names.</td>
</tr>
<tr>
<td>set_size</td>
<td>A vector of gene set sizes.</td>
</tr>
<tr>
<td>DS_value</td>
<td>A vector of dynamic slicing statistic of each gene set.</td>
</tr>
<tr>
<td>pvalue</td>
<td>A vector of (p)-value of each gene set.</td>
</tr>
<tr>
<td>FDR</td>
<td>A vector of FDR of each gene set.</td>
</tr>
<tr>
<td>slices</td>
<td>A list of slicing strategy of each gene set. Each component is a matrix of slices.</td>
</tr>
</tbody>
</table>

References

See Also
ds_k.

Examples

```r
## Loading data from files
### Not run:
gctpath <- "P53.gct"
clspath <- "P53.cls"
gmtpath <- "C2.gmt"
expdat <- load_gct(gctpath)
label <- load_cls(clspath)
geneset <- load_gmt(gmtpath)
fc <- function(x, label)
  {
    d0 <- apply(x[,which(label == 0)], 1, mean)
    d1 <- apply(x[,which(label == 1)], 1, mean)
    d <- d1 / d0
    return(order(d))
  }
ds_gsa_obj <- ds_gsa(expdat, geneset, label, "fc", lambda = 1.2, bycol = TRUE,
                     minsize = 15, maxsize = 500, randseed = 11235, rounds = 100)
## End(Not run)
```

ds_k

Dependency detection between level \(k \) \((k > 1)\) **categorical variable** and **continuous variable**

Description

Dependency detection between level \(k \) \((k > 1)\) categorical variable and continuous variable. The basic idea is that the different values of categorical variable correspond to different distribution of continuous variable if there exist dependency between this two variables, otherwise the distributions of continuous variable do not show difference conditioning on the values of categorical variable. Statistic for this dynamic slicing method is a regularized likelihood-ratio calculated via a dynamic programming procedure. For more details please refer to Jiang, Ye & Liu (2015). Results contains value of dynamic slicing statistic and slicing strategy. It could be applied for non-parametric \(K\)-sample hypothesis testing.

Usage

ds_k(x, xdim, lambda, slice = FALSE)

Arguments

- **x** Vector: observations of categorical variable, 0, 1, ..., \(k - 1 \) for level \(k \) categorical variable, should be ranked according to values of continuous variable in advanced, either ascending or descending.
Description

Perform a one- or \(K \)-sample (\(K > 1 \)) hypothesis testing via dynamic slicing.

Usage

\[
ds_test(y, x, \ldots, type = c("ds", "eqp"), lambda = 1, alpha = 1, rounds = 0)\]
Arguments

y A numeric vector of data values.
x Either an integer vector of data values, from 0 to $K - 1$, or a character string naming a cumulative distribution function or an actual cumulative distribution function such as pnorm. Only continuous CDFs are valid.

... Parameters of the distribution specified (as a character string) by x.
type Methods applied for dynamic slicing. "ds" (default) stands for original dynamic slicing scheme. "eqp" stands for dynamic slicing scheme with $n^{1/2}$-resolution (for K-sample test, $K > 1$) or n-resolution (for one-sample test).

lambda Penalty for introducing an additional slice, which is used to avoid making too many slices. It corresponds to the type I error under the scenario that the two variables are independent. lambda should be greater than 0.

alpha Penalty required for "ds" type in one-sample test. It penalizes both the width and the number of slices to avoid too many slices and degenerate slice (interval). alpha should be greater than 1.

rounds Number of permutations for estimating empirical p-value.

Details

If x is an integer vector, ds_test performs K-sample test ($K > 1$).

Under this scenario, suppose that there are observations y drawn from some continuous populations. Let x be a vector that stores values of indicator of samples from different populations, i.e., x has values $0, 1, \ldots, K - 1$. The null hypothesis is that these populations have the same distribution.

If x is a character string naming a continuous (cumulative) distribution function, ds_test performs one-sample test with the null hypothesis that the distribution function which generated y is distribution x with parameters specified by The parameters specified in must be pre-specified and not estimated from the data.

Only empirical p-values are available by specifying the value of parameter rounds, the number of permutation. lambda and alpha (for one-sample test with type "ds") contributes to p-value.

The procedure of choosing parameter lambda was described in Jiang, Ye & Liu (2015). Refer to http://www.people.fas.harvard.edu/~junliu/D5/lambda-table.html for the empirical relationship of lambda, sample size and type I error.

Value

A list with class "htest" containing the following components:

statistic The value of the dynamic slicing statistic.
p.value The p-value of the test.
alternative A character string describing the alternative hypothesis.
method A character string indicating what type of test was performed.
data.name A character string giving the name(s) of the data.
slices Slicing strategy that maximize dynamic slicing statistic in K-sample test. Each row stands for a slice. Each column except the last one stands for the number of observations take each value in each slice. The last column is the number of observations in each slice i.e., the sum of the first column to the kth column.
export_res

References

Examples

```r
## One-sample test
n <- 100
mu <- 0.5
y <- rnorm(n, mu, 1)
lambda <- 1.0
alpha <- 1.0
dsres <- ds_test(y, "pnorm", 0, 1, lambda = 1, alpha = 1, rounds = 100)
dsres <- ds_test(y, "pnorm", 0, 1, type = "ds", lambda = 1, alpha = 1)
dsres <- ds_test(y, "pnorm", 0, 1, type = "eqp", lambda = 1, rounds = 100)
dsres <- ds_test(y, "pnorm", 0, 1, type = "eqp", lambda = 1)

## K-sample test
n <- 100
mu <- 0.5
y <- c(rnorm(n, -mu, 1), rnorm(n, mu, 1))

generate x in this way:
x <- c(rep(0, n), rep(1, n))
x <- as.integer(x)

## or in this way:
x <- c(rep("G1", n), rep("G2", n))
x <- relabel(x)

lambda <- 1.0
dsres <- ds_test(y, x, lambda = 1, rounds = 100)
dsres <- ds_test(y, x, type = "eqp", lambda = 1, rounds = 100)
```

export_res

Export gene set analysis result

Description

Export gene set analysis result.

Usage

```r
export_res(ds_gsa_obj, file = "", ..., cutoff = 1, decreasing = FALSE,
type = c("name", "size", "DS", "p-value", "FDR", "slice"))
```
Arguments

ds_gsa_obj Object returned by ds_gsa function.
file Either a character string naming a file or a connection open for writing. "" indicates output to the console.
... Parameters of write.table.
cutoff threshold for selecting gene set analysis result according to parameter type.
decreasing Ranking results decreasingly (default) or ascendingly.
type Options for ranking results by gene set name ("name"), gene set size ("size"), value of dynamic slicing statistic ("DS"), p-value ("p-value"), false discovery rate ("FDR") or number of slices ("slice").

Details

The usage of export_res is similar to write.table.

See Also

The ‘R Data Import/Export’ manual.

Examples

Not run:
ds_gsa_obj <- ds_gsa(expdat, geneset, label, fc, lambda = 1.2, bycol = TRUE,
 minsize = 15, maxsize = 500, randseed = 11235, rounds = 100)
export_res(ds_gsa_obj, "ds_gsa_res.txt", sep = "\t", type = "DS", cutoff = 0,
 row.names = F, col.names = T, quote = F, append = F)

End(Not run)

gsa_exp

Gene expression matrix in gene set analysis

Description

P53 NCI-60 data set provided by Subramanian et al., (2005). A gene expression matrix whose rows correspond to genes and column correspond to samples.

Usage

data(gsa_exp)

Format

A matrix.
Source

http://www.broadinstitute.org/gsea

References

Examples

data(gsa_exp)

gsa_label

Sample labels in gene set analysis

Description

P53 NCI-60 data set provided by Subramanian et al., (2005). A list with phenotypes vector and a vector of sample label values.

Usage

data(gsa_label)

Format

A list on the following 2 variables.

phenoType a character vector contains two genotypes.

describe a numeric vector contains sample label 0 and 1, where 0 and 1 stands for “MUT” and “WT”, respectively.

Source

http://www.broadinstitute.org/gsea

References

Examples

data(gsa_label)
gsa_set

Gene set list in gene set analysis

Description

Usage

data(gsa_set)

Format

A list with three elements: gene set name, gene set description and genes in gene set.

- set_name: a character vector of gene set name.
- set_description: a list whose elements are vector. Each of them contains genes in each gene set.

Source

http://www.broadinstitute.org/gsea

References

Examples

data(gsa_set)

load_cls

Load phenotype file

Description

Load phenotype file from .cls file

Usage

load_cls(file)
load_gct

Description

Load gene expression data from .gct file

Usage

```r
load_gct(file)
```

Arguments

- `file` Name of .gct file which contains gene expression data. Should be a tab-separated text file. The first row is version and the second is the dimension of expression matrix. There is an expression matrix from the third row to the end. The third row is column name of expression matrix. The first column is gene symbol and the second is the description of gene. For the remaining rows and columns, each row is a gene and each column is a sample.

Value

A matrix with row names and column names.
load_gmt

Load gene set file

Description
Load gene set from .gmt file

Usage
load_gmt(file)

Arguments
file Name of .gmt file which contains gene sets. Should be a tab-separated text file. Each row is a gene set. The first column is gene set name and the second is its description. Remaining columns are gene symbols of genes in this set.

Value
A list with components:
set_name Vector of gene set names.
set_description Vector of gene set descriptions.
gene_symbol List of gene symbols in each gene set.

Examples
Gene set files are available after registration at Broad institute GSEA website
http://www.broadinstitute.org/gsea

Not run:
filename <- "P53.gct"
expdata <- load_gct(filename)

End(Not run)

filename <- "C2.gmt"
geneset <- load_gmt(filename)

End(Not run)
rank_by_s2n

Ranking genes by signal to noise ratio

Description

Ranking genes by signal to noise ratio according to their expression data.

Usage

```r
rank_by_s2n(expmat, label)
```

Arguments

- `expmat` A matrix of gene expression data. Each row is a gene and each column is a sample.
- `label` An integer vector of encoded phenotypes. Its value is 0 and 1. Its length should match the column number of expression matrix.

Value

A vector of rank of each gene according to signal to noise ratio.

Examples

```r
exdat <- matrix(rnorm(500), nrow = 25, ncol = 20)
label <- rep(c(0, 1), 10)
ranklist <- rank_by_s2n(exdat, label)
```

relabel

Reassigning values of categorical variable

Description

Reassigning values of categorical variable. It is used for generating legal value of categorical variable before applying dynamic slicing.

Usage

```r
relabel(x)
```

Arguments

- `x` A vector of data values.

Value

An integer vector with values range from 0 to k (k > 0).
See Also
d_test.

Examples

n <- 10
x <- c(rep("G1", n), rep("G2", n))
x <- relabel(x)

x <- c(rep(4, n), rep(5, n), rep(NA, n))
x <- relabel(x)

slice_show Show the slicing result

Description

Showing slicing result and plotting counts of observations in each slice.

Usage
	slice_show(slices_obj, main="Counts in each slice", xlab="Slices", ylab="Percentage")

Arguments

slices_obj A matrix stores slicing strategy. It is a component of object returned by function
ds_slice_k or dslice_eqp_k.
main An overall title for the plot
xlab A title for the x axis
ylab A title for the y axis

Value

A “ggplot” object which illustrates details of slicing.

See Also
d_k, ds_eqp_k.

Examples

n <- 100
mu <- 0.5
y <- c(rnorm(n, -mu, 1), rnorm(n, mu, 1))
x <- c(rep(0, n), rep(1, n))
x <- x[order(y)]
xdim <- max(x) + 1
lambda <- 1.0
\begin{verbatim}
dsres <- ds_k(x, xdim, lambda, slice = TRUE)

ds_show <- slice_show(dsres$slices)
\end{verbatim}
Index

*Topic datasets
 gsa_exp, 16

bfslice_c, 2, 3, 4, 7
bfslice_eqp_c, 3, 3, 5
bfslice_eqp_u, 4, 5, 5, 7
bfslice_u, 3, 5, 6

ds_1, 7, 8
ds_eqp_1, 7, 8
ds_eqp_k, 9, 9, 13, 22
ds_gsa, 10
ds_k, 9, 10, 12, 12, 22
ds_test, 13, 22

export_res, 15

gsa_exp, 16
gsa_label, 17
gsa_set, 18

load_cls, 18
load_gct, 19
load_gmt, 20

rank_by_s2n, 21
relabel, 21

slice_show, 22