Package ‘dominanceanalysis’

December 12, 2020

Title Dominance Analysis
Date 2020-12-11

Version 2.0.0
Depends R (>= 3.6.0)
License GPL-2
LazyData true
Imports methods, stats
Suggests lme4, boot, testthat, car, covr, knitr, rmarkdown, pscl, dynlm, ggplot2, reshape2, betareg, performance
RoxygenNote 7.1.1
VignetteBuilder knitr
NeedsCompilation no
Author Claudio Bustos Navarrete [aut, cre] (<https://orcid.org/0000-0003-3478-9858>), Filipa Coutinho Soares [aut] (<https://orcid.org/0000-0002-7579-2538>)
Maintainer Claudio Bustos Navarrete <clbustos@gmail.com>
Repository CRAN
Date/Publication 2020-12-12 15:20:02 UTC
R topics documented:

dominanceanalysis-package ... 2
averageContribution .. 4
bootAverageDominanceAnalysis 5
bootDominanceAnalysis .. 6
contributionByLevel .. 7
da.betareg.fit .. 8
da.dynlm.fit .. 9
da.glm.fit .. 9
da.lm.fit ... 10
da.lmerMod.fit ... 11
da.lmWithCov.fit ... 12
da.mlmWithCov.fit ... 13
dominanceAnalysis ... 14
dominanceBriefing .. 16
dominanceMatrix ... 17
getFits ... 19
lmmR2 ... 19
lmWithCov ... 20
mlmWithCov ... 21
plot.dominanceAnalysis ... 22
replaceTermsInString .. 23
tropicbird .. 23
using-fit-indices ... 24

Index 25

dominanceanalysis-package

Dominance analysis for general, generalized and mixed linear models

Description

The dominanceanalysis package allows to perform the dominance analysis for multiple regression models, such as OLS (univariate and multivariate), GLM and HLM. The dominance analysis on this package is performed by `dominanceAnalysis` function. To perform bootstrap procedures you should use `bootDominanceAnalysis` function. For both, standard print and summary functions are provided.

Main Features

- Provides complete, conditional and general dominance analysis for `lm` (univariate and multivariate), `lmer` and `glm` (family=binomial) models.
- Covariance / correlation matrixes could be used as input for OLS dominance analysis, using `lmWithCov` and `mlmWithCov` methods, respectively.
- Multiple criteria can be used as fit indices, which is useful especially for HLM.
About Dominance Analysis

Dominance analysis is a method developed to evaluate the importance of each predictor in the selected regression model: "one predictor is 'more important than another' if it contributes more to the prediction of the criterion than does its competitor at a given level of analysis." (Azen & Budescu, 2003, p.133).

The original method was developed for OLS regression (Budescu, 1993). Later, several definitions of dominance and bootstrap procedures were provided by Azen & Budescu (2003), as well as adaptations to Generalized Linear Models (Azen & Traxel, 2009) and Hierarchical Linear Models (Luo & Azen, 2013).

Author(s)

Claudio Bustos <clbustos_at_gmail_com>, Filipa Coutinho Soares (documentation)

References

See Also

dominanceAnalysis, bootDominanceAnalysis

Examples

Basic dominance analysis

data(longley)
lm.1<-lm(Employed~.,longley)
da<-dominanceAnalysis(lm.1)
print(da)
summary(da)
plot(da,which.graph='complete')
plot(da,which.graph='conditional')
plot(da,which.graph='general')
Dominance analysis for HLM

library(lme4)
x1<-rnorm(1000)
x2<-rnorm(1000)
g<-gl(10,100)
g.x<-rnorm(10)[g]
y<-2*x1+x2+g.x+rnorm(1000,sd=0.5)
lmm1<-lmer(y~x1+x2+(1|g))
lmm0<-lmer(y~(1|g))
da.lmm<-dominanceAnalysis(lmm1, null.model=lmm0)
print(da.lmm)
summary(da.lmm)

GLM analysis

x1<-rnorm(1000)
x2<-rnorm(1000)
x3<-rnorm(1000)
y<-runif(1000)<(1/(1+exp(-(-2*x1+x2+1.5*x3))))
glm.1<-glm(y~x1+x2+x3, family="binomial")
da.glm<-dominanceAnalysis(glm.1)
print(da.glm)
summary(da.glm)

Bootstrap procedure

da.boot<-bootDominanceAnalysis(lm.1,R=1000)
summary(da.boot)
da.glm.boot<-bootDominanceAnalysis(glm.1,R=200)
summary(da.glm.boot)

averageContribution Retrieve average contribution of each predictor in a dominance analysis.

Description

Retrieve the average contribution for each predictor. Is calculated averaging all contribution by level. The average contribution defines general dominance.

Usage

averageContribution(da.object, fit.functions = NULL)
Arguments

da.object dominanceAnalysis object
fit.functions name of the fit indices to retrieve. If NULL, all fit indices will be retrieved

Value

a list. Key corresponds to fit-index and the value is vector, with average contribution for each variable

See Also

Other retrieval methods: `contributionByLevel()`, `dominanceBriefing()`, `dominanceMatrix()`, `getFits()`

Examples

data(longley)
da.longley<-dominanceAnalysis(lm(Employed~.,longley))
averageContribution(da.longley)

bootAverageDominanceAnalysis

Bootstrap average values for Dominance Analysis

Description

Bootstrap average values and correspond standard errors for each predictor in the dominance analysis. Those values are used for general dominance.

Usage

```r
bootAverageDominanceAnalysis(
  x, 
  R, 
  constants = c(), 
  terms = NULL, 
  fit.functions = "default", 
  null.model = NULL, 
  ...
)
```

Arguments

x Im, glm or lmer model
R number on bootstrap resamples
constants vector of predictors to remain unchanged between models. i.e. vector of variables not subjected to bootstrap analysis.
bootDominanceAnalysis

Description

Bootstrap procedure as presented on Azen and Budescu (2003). Provides the expected level of dominance of predictor X_i over X_j, as the degree to which the pattern found on sample is reproduced on the bootstrap samples. Use summary() to get a nice formatted data.frame.

Usage

```r
bootDominanceAnalysis(
  x,
  R,
  constants = c(),
  terms = NULL,
  fit.functions = "default",
  null.model = NULL,
  ...
)
```

Arguments

- **x**: lm, glm or lmer model
- **R**: number on bootstrap resamples
- **constants**: vector of predictors to remain unchanged between models. i.e. vector of variables not subjected to bootstrap analysis.
contributionByLevel

Retrieve average contribution by level for each predictor

Description

Retrieve the average contribution by level for each predictor in a dominance analysis. The average contribution defines conditional dominance.

Usage

contributionByLevel(da.object, fit.functions = NULL)

Arguments

da.object dominanceAnalysis object

fit.functions name of the fit indices to retrieve. If NULL, all fit indices will be retrieved

Value

a list. Key corresponds to fit-index and the value is a matrix, with contribution of each variable by level

See Also

Other retrieval methods: averageContribution(), dominanceBriefing(), dominanceMatrix(), getFits()

Examples

data(longley)
da.longley<-dominanceAnalysis(lm(Employed~,longley))
contributionByLevel(da.longley)
Provides fit indices for betareg models.

Description
Nagelkerke and Estrella are not provided because are designed for discrete dependent variables. Cox and Snell is preferred and pseudo-R^2 should be preferred, because McFadden’s index could be negative.

Usage
da.betareg.fit(original.model, newdata = NULL, ...)

Arguments
original.model Original fitted model
newdata Data used in update statement
... ignored

Value
A function described by using-fit-indices. You could retrieve following indices:

- r^2 pseudo Provided by betareg by default
- r^2 m McFadden(1974)
- r^2 cs Cox and Snell(1989).

References

See Also
Other fit indices: da.dynlm.fit(), da.glm.fit(), da.lm.fit(), da.lmWithCov.fit(), da.lmerMod.fit(), da.mlmWithCov.fit()
da.dynlm.fit

Provides coefficient of determination for dynlm models.

Description

Uses R^2 (coefficient of determination) as fit index

Usage

da.dynlm.fit(original.model, newdata = NULL, ...)

Arguments

original.model Original fitted model
newdata Data used in update statement
... ignored

Value

A function described by using-fit-indices description for interface

See Also

Other fit indices: da.betareg.fit(), da.glm.fit(), da.lm.fit(), da.lmWithCov.fit(), da.lmerMod.fit(), da.mlmWithCov.fit()

da.glm.fit Provides fit indices for GLM models.

Description

Functions only available for logistic regression, based on Azen and Traxel(2009).

Usage

da.glm.fit(original.model, newdata = NULL, ...)

Arguments

original.model Original fitted model
newdata Data used in update statement
... ignored

Details

Check daRawResults.
Value

A function described by using-fit-indices. You could retrieve following indices

- \(r^2.m \) McFadden(1974)
- \(r^2.cs \) Cox and Snell(1989). Use with caution, because don’t have 1 as upper bound
- \(r^2.n \) Nagelkerke(1991), that corrects the upper bound of Cox and Snell(1989) index
- \(r^2.e \) Estrella(1998)

References

See Also

Other fit indices: da.betareg.fit(), da.dynlm.fit(), da.lm.fit(), da.lmWithCov.fit(), da.lmerMod.fit(), da.mlmWithCov.fit()

Examples

```r
x1<-rnorm(1000)
x2<-rnorm(1000)
x3<-rnorm(1000)
y<-factor(runif(1000) > exp(x1+x2+x3)/(1+exp(x1+x2+x3)))
df.1=data.frame(x1,x2,x3,y)
glm.1<-glm(y~x1+x2+x3,data=df.1,family=binomial)
da.glm.fit(original.model=glm.1)("names")
da.glm.fit(original.model=glm.1)(y~x1)
```

da.lm.fit

Provides coefficient of determination for lm models.

Description

Uses \(R^2 \) (coefficient of determination) as fit index
Usage

\[
da\text{.lm.fit}(\text{original.model, newdata = NULL, ...})
\]

Arguments

- `original.model`: Original fitted model
- `newdata`: Data used in update statement
- `...`: ignored

Value

A function described by *using-fit-indices* description for interface

See Also

Other fit indices: `da\text{.betareg.fit()}`, `da\text{.dynlm.fit()}`, `da\text{.glm.fit()}`, `da\text{.lmWithCov.fit()}`, `da\text{.lmerMod.fit()}`, `da\text{.mlmWithCov.fit()}`

Examples

```r
x1<-rnorm(1000)
x2<-rnorm(1000)
y<-x1+x2+rnorm(1000)
df.1=data.frame(y=y,x1=x1,x2=x2)
lm.1<-lm(y~x1+x2)
da.lm.fit(lm.1)("names")
da.lm.fit(lm.1)(y~x1)
```

da\text{.lmerMod.fit}

Provides fit indices for hierarchical linear models, based on Nakagawa(2013) and Luo and Azen (2013).

Description

Provides fit indices for hierarchical linear models, based on Nakagawa(2013) and Luo and Azen (2013).

Usage

\[
da\text{.lmerMod.fit}(\text{original.model, null.model, newdata = NULL, ...})
\]

Arguments

- `original.model`: Original fitted model
- `null.model`: needed for HLM models
- `newdata`: Data used in update statement
- `...`: ignored
References

See Also

Other fit indices: da.betareg.fit(), da.dynlm.fit(), da.glm.fit(), da.lm.fit(), da.lmWithCov.fit(), da.mlmWithCov.fit()

da.lmWithCov.fit Provides coefficient of determination for linear models, using covariance/correlation matrix.

Description

Uses R^2 (coefficient of determination) See lmWithCov

Usage

da.lmWithCov.fit(base.cov, ...)

Arguments

 base.cov variance/covariance matrix

 ... ignored

See Also

Other fit indices: da.betareg.fit(), da.dynlm.fit(), da.glm.fit(), da.lm.fit(), da.lmerMod.fit(), da.mlmWithCov.fit()
da.mlmWithCov.fit

Provides coefficient of determination for multivariate models.

Description

Provides coefficient of determination for multivariate models.

Usage

da.mlmWithCov.fit(base.cov, ...)

Arguments

base.cov
 variance/covariance matrix

... ignored

Value

A list with several fit indices

r.squared.xy \(R^2_{XY} \)
p.squared.yx \(P^2_{YX} \)

See mlmWithCov

References

See Also

Other fit indices: da.betareg.fit(), da.dynlm.fit(), da.glm.fit(), da.lm.fit(), da.lmWithCov.fit(), da.lmerMod.fit()
dominanceAnalysis

Dominance analysis for OLS (univariate and multivariate), GLM and LMM models

Description

Dominance analysis for OLS (univariate and multivariate), GLM and LMM models

Usage

dominanceAnalysis(
 x,
 constants = c(),
 terms = NULL,
 fit.functions = "default",
 newdata = NULL,
 null.model = NULL,
 ...
)

Arguments

x fitted model (lm, glm, betareg), lmWithCov or mlmWithCov object
constants vector of predictors to remain unchanged between models
terms vector of terms to be analyzed. By default, obtained from the model
fit.functions Name of the method used to provide fit indices
newdata optional data.frame, that update data used on original model
null.model for mixed models, null model against to test the submodels
... Other arguments provided to lm or lmer (not implemented yet)

Value

predictors Vector of predictors.
constants Vector of constant variables.
terms Vector of terms to be analyzed.
fit.functions Vector of fit indices names.
fits List with raw fits indices. See daRawResults.
contribution.by.level List of mean contribution of each predictor by level for each fit index. Each element is a data.frame, with levels as rows and predictors as columns, for each fit index.
contribution.average List with mean contribution of each predictor for all levels. These values are obtained for every fit index considered in the analysis. Each element is a vector of mean contributions for a given fit index.
dominanceAnalysis

complete Matrix for complete dominance.
conditional Matrix for conditional dominance.
general Matrix for general dominance.

Definition of Dominance Analysis

Budescu (1993) developed a clear and intuitive definition of importance in regression models, that states that a predictor’s importance reflects its contribution in the prediction of the criterion and that one predictor is ‘more important than another’ if it contributes more to the prediction of the criterion than does its competitor at a given level of analysis.

Types of dominance

The original paper (Bodescu, 1993) defines that variable X_1 dominates X_2 when X_1 is chosen over X_2 in all possible subset of models where only one of these two predictors is to be entered. Later, Azen & Bodescu (2003), name the previously definition as 'complete dominance' and two other types of dominance: conditional and general dominance. Conditional dominance is calculated as the average of the additional contributions to all subset of models of a given model size. General dominance is calculated as the mean of average contribution on each level.

Fit indices availables

To obtain the fit-indices for each model, a function called da.<model>.fit is executed. For example, for a lm model, function da.lm.fit provides R^2 values. Currently, seven models are implemented:

- **lm** Provides R^2 or coefficient of determination. See da.lm.fit
- **lmerMod** Provides four fit indices recommended by Lou & Azen (2012). See da.lmerMod.fit
- **lmWithCov** Provides R^2 for a correlation/covariance matrix. See lmWithCov to create the model and da.lmWithCov.fit for the fit index function.
- **mlmWithCov** Provides both R^2_{XY} and P^2_{XY} for multivariate regression models using a correlation/covariance matrix. See mlmWithCov to create the model and da.mlmWithCov.fit for the fit index function.
- **dynlm** Provides R^2 for dynamic linear models. There is no literature reference about using dominance analysis on dynamic linear models, so you’re warned!. See da.dynlm.fit.
- **betareg** Provides pseudo-R^2, Cox and Snell(1989), McFadden (1974), and Estrella (1998). You could set the link function using link.betareg if automatic detection of link function doesn’t work. See da.betareg.fit

References

Examples

data(longley)
lm.1<-lm(Employed~.,longley)
da<-dominanceAnalysis(lm.1)
print(da)
summary(da)
plot(da,which.graph='complete')
plot(da,which.graph='conditional')
plot(da,which.graph='general')

Maintaining year as a constant on all submodels
da.no.year<-dominanceAnalysis(lm.1,constants='Year')
print(da.no.year)
summary(da.no.year)
plot(da.no.year,which.graph='complete')

Parameter terms could be used to group variables
da.terms=c(GNP.rel='GNP.deflator+GNP',
 pop.rel='Unemployed+Armed.Forces+Population+Unemployed',
 year='Year')
da.grouped<-dominanceAnalysis(lm.1,terms=da.terms)
print(da.grouped)
summary(da.grouped)
plot(da.grouped, which.graph='complete')

dominanceBriefing Retrieve a briefing for complete, conditional and general dominance

Description

Retrieve a briefing for complete, conditional and general dominance

Usage

dominanceBriefing(da.object, fit.functions = NULL, abbrev = FALSE)
Arguments

da.object a dominanceAnalysis object
fit.functions name of the fit indices to retrieve. If NULL, all fit indices will be retrieved
abbrev if TRUE

Value

a list. Each element is a data.frame, that comprises the dominance analysis for a specific fit index. Each data.frame have the predictors as row and each column reports the predictors that are dominated for each predictor

See Also

Other retrieval methods: `averageContribution()`, `contributionByLevel()`, `dominanceMatrix()`, `getFits()`

Examples

For matrix or data.frame
data(longley)
da.longley<-dominanceAnalysis(lm(Employed~.,longley))
dominanceBriefing(da.longley, abbrev=FALSE)
dominanceBriefing(da.longley, abbrev=TRUE)

dominanceMatrix Retrieve or calculates a dominance matrix for a given object

Description

This methods calculates or retrieve dominance matrix

This methods allows a common interface to retrieve all dominance matrices from dominanceAnalysis objects

Usage

dominanceMatrix(x, ...)

S3 method for class 'data.frame'
dominanceMatrix(x, undefined.value = 0.5, ordered = FALSE, ...)

S3 method for class 'matrix'
dominanceMatrix(x, undefined.value = 0.5, ordered = FALSE, ...)

S3 method for class 'dominanceAnalysis'
dominanceMatrix(
 x,
dominanceMatrix

```
type,
fit.functions = NULL,
drop = TRUE,
ordered = FALSE,
...
```

Arguments

- `x`: matrix (calculate) or dominanceAnalysis (retrieve)
- `...`: extra arguments. Not used
- `undefined.value`: value when no dominance can be established
- `ordered`: Logical. If TRUE, sort the output according to dominance.
- `type`: type of dominance matrix to retrieve. Could be complete, conditional or general
- `fit.functions`: name of the fit indices to retrieve. If NULL, all fit indices will be retrieved
- `drop`: if TRUE and just one fit index is available, returns a matrix. Else, returns a list

Details

To calculate a dominance matrix from a matrix or dataframe, use
```
dominanceMatrix(x,undefined.value).
```
To retrieve the dominance matrices from a dominanceAnalysis object, use
```
dominanceMatrix(x,type,fit.function,drop)
```

Value

for matrix and data-frame, returns a matrix representing dominance. 1 represents domination of the row variable over the column variable, 0 dominance of the column over the row variable. Undefined dominance is represented by `undefined.value` parameter. For dominanceAnalysis object, returns a matrix, if `drop` parameter if TRUE and just one index is available. Else, a list is returned, with keys as name of fit-indices and values as matrices, as described previously.

See Also

Other retrieval methods: `averageContribution()`, `contributionByLevel()`, `dominanceBriefing()`, `getFits()`

Examples

```
# For matrix or data.frame
mm<-data.frame(a=c(5,3,2),b=c(4,2,1),c=c(5,4,3))
dominanceMatrix(mm)
# For dominanceAnalysis
data(longley)
da.longley<-dominanceAnalysis(lm(Employed~.,longley))
dominanceMatrix(da.longley,type="complete")
```
getFits

Retrieves fit matrix or matrices for a given dominanceAnalysis object.

Usage

getFits(da.object, fit.functions = NULL)

Arguments

da.object: dominanceAnalysis object
fit.functions: name of the fit indices to retrieve. If NULL, all fit indices will be retrieved.

Value

A list. Key corresponds to fit-index and the value is a matrix, with fits values.

See Also

Other retrieval methods: averageContribution(), contributionByLevel(), dominanceBriefing(), dominanceMatrix()

Examples

data(longley)
da.longley <- dominanceAnalysis(lm(Employed~., longley))
getFits(da.longley)

lmmR2

Calculates several measures of fit for Linear Mixed Models based on Lou and Azen (2013) text. Models could be lmer or lme models.

Usage

lmmR2(m.null, m.full)
Arguments

- **m.null** Null model (only with random intercept effects)
- **m.full** Full model

Value

LmR2 class

Description

Calculate regression coefficients and R^2 for an OLS regression. Could be used with `dominanceAnalysis` to perform a dominance analysis without the original data.

Usage

`lmWithCov(f, x)`

Arguments

- **f** formula for lm model
- **x** correlation/covariance matrix

Value

- **coef** regression coefficients
- **r.squared** R^2 or coefficient of determination
- **formula** formula provided as parameter
- **cov** covariance/correlation matrix provided as parameter

Examples

```r
cov.m<-matrix(c(1,0.2,0.3, 0.2,1,0.5,0.3,0.5,1),3,3,
dimnames=list(c("x1","x2","y"),c("x1","x2","y")))
lm.cov<-lmWithCov(y~x1+x2,cov.m)
da<-dominanceAnalysis(lm.cov)
```
mlmWithCov

Uses covariance/correlation matrix to calculate multivariate index of fit

Description

Calculate R_{XY}^2 and P_{YX}^2 for multivariate regression. Could be used with dominanceAnalysis to perform a multivariate dominance analysis without original data.

Usage

mlmWithCov(f, x)

Arguments

- **f**: formula. Should use `cbind(y1, y2, ..., yk) ~ x1 + x2 + ... + xp`
- **x**: correlation/covariance matrix

Value

- **r.squared.xy**: R_{XY}^2 of the regression
- **p.squared.yx**: P_{YX}^2 of the regression
- **formula**: formula provided as parameter
- **cov**: covariance/correlation matrix provided as parameter

Examples

```r
library(car)
cor.mcor <- matrix(c(
  1.0000000, 0.7951377, 0.2617168, 0.6720053, 0.3390278,  
  0.7951377, 1.0000000, 0.3341037, 0.5876337, 0.3484206,  
  0.2617168, 0.3341037, 1.0000000, 0.3703162, 0.2114153,  
  0.6720053, 0.5876337, 0.3703162, 1.0000000, 0.3548077,  
  0.3390278, 0.3484206, 0.2114153, 0.3548077, 1.0000000), 
  5, 5, 
  byrow = TRUE, 
  dimnames = list(c("na", "ss", "SAT", "PPVT", "Raven"), 
  c("na", "ss", "SAT", "PPVT", "Raven")))
lwith <- mlmWithCov(cbind(na, ss) ~ SAT + PPVT + Raven, cor.mcor) 
da <- dominanceAnalysis(lwith) 
print(da) 
summary(da)
```
plot.dominanceAnalysis

Description

Plot for a dominanceAnalysis object

Usage

S3 method for class 'dominanceAnalysis'
plot(
 x,
 which.graph = c("general", "complete", "complete_no_facet", "conditional"),
 fit.function = NULL,
 complete_flipped_axis = TRUE,
 ...
)

Arguments

 x a dominanceAnalysis object
 which.graph which graph to plot
 fit.function name of the fit indices to retrieve. If NULL, first index will be used
 complete_flipped_axis For complete and complete_no_facet plot, set the R2 on X axis to allow easier visualization
 ...
 ... unused

Value

 a ggplot object

Examples

data(longley)
lm.1<-lm(Employed~.,longley)
da<-dominanceAnalysis(lm.1)
By default, plot() shows the general dominance plot
plot(da)
Parameter which.graph defines which type of dominance to plot
plot(da,which.graph='conditional')
plot(da,which.graph='complete')
Parameter complete_flipped_axis allows to flip axis on complete plot, to better visualization
plot(da,which.graph='complete', complete_flipped_axis=TRUE)
plot(da,which.graph='complete', complete_flipped_axis=FALSE)
tropicbird

Distribution of a tropical native bird species inhabiting a small oceanic island.

Description

The dataset contains information about points distributed across a small oceanic island (Soares, 2017). In each of these points, a 10-minute count was carried out to record the species presence (assuming 1 if the species was present, or 0 if it was absent). The species’ presence/absence is the binary response variable (i.e., dependent variable). Additionally, all sampled points were characterized by multiple environmental variables.

Usage

tropicbird

Format

A data frame with 2398 rows and 8 variables:

ID Point identification

rem remoteness is an index that represents the difficulty of movement through the landscape, with the highest values corresponding to the most remote areas

land land use is an index that represents the land-use intensification, with the highest values corresponding to the more humanized areas (e.g., cities, agricultural areas, horticultures, oil-palm monocultures)

alt altitude is a continuous variable, with the highest values corresponding to the higher altitude areas

slo slope is a continuous variable, with the highest values corresponding to the steepest areas
rainfall is a continuous variable, with the highest values corresponding to the rainy wet areas
distance to the coast is the minimum linear distance between each point and the coast line,
with the highest values corresponding to the points further away from the coastline
Species presence

Source

using-fit-indices Provides fit indices for different regression models.

Description
dominanceAnalysis tries to infer, based on the class of the model provided, the appropriate fit indices, using the scheme da.CLASS.fit for name. This method has two interfaces, one for retrieving the names of the fit indices, and another to retrieve the indices based on the data.

Arguments
original.model Original fitted model
newdata Data used in update statement
null.model Null model, only needed for HLM models.
base.cov Required if only a covariance/correlation matrix is provided.

Details
Interfaces are:
- da.CLASS.fit("names") returns a vector with names for fit indices
- da.CLASS.fit(original.model, data, null.model, base.cov=NULL) returns a function with one parameter, the formula to calculate the submodel.
Index

* datasets
 tropicbird, 23

* fit indices
 da.betareg.fit, 8
 da.dynlm.fit, 9
 da.glm.fit, 9
 da.lm.fit, 10
 da.lmerMod.fit, 11
 da.lmWithCov.fit, 12
 da.mlmWithCov.fit, 13

* retrieval methods
 averageContribution, 4
 contributionByLevel, 7
 dominanceBriefing, 16
 dominanceMatrix, 17
 getFits, 19

 averageContribution, 4, 7, 17–19
 bootAverageDominanceAnalysis, 5
 bootDominanceAnalysis, 2, 3, 6
 contributionByLevel, 5, 7, 17–19
 da.betareg.fit, 8, 9–13, 15
 da.dynlm.fit, 8, 9, 10–13, 15
 da.glm.fit, 8, 9, 11–13, 15
 da.lm.fit, 8–10, 10, 12, 13, 15
 da.lmerMod.fit, 8–11, 11, 12, 13, 15
 da.lmWithCov.fit, 8–12, 12, 13, 15
 da.mlmWithCov.fit, 8–12, 13, 15
 daRawResults, 9, 14
 dominanceAnalysis, 2, 3, 6, 7, 14, 20–22, 24
 dominanceAnalysis (dominanceAnalysis-package), 2
 dominanceAnalysis-package, 2
 dominanceBriefing, 5, 7, 16, 18, 19
 dominanceMatrix, 5, 7, 16, 18, 19
 getFits, 5, 7, 17, 18, 19

lmmR2, 19
lmWithCov, 2, 12, 15, 20
mlmWithCov, 2, 13, 15, 21
plot.dominanceAnalysis, 22
replaceTermsInString, 23
tropicbird, 23
using-fit-indices, 8–11, 24