Package ‘discAUC’

June 2, 2021

Type Package

Title Linear and Non-Linear AUC for Discounting Data

Description Area under the curve (AUC; Myerson et al., 2001) [doi:10.1901/jeab.2001.76-235] is a popular measure used in discounting research. Although the calculation of AUC is standardized, there are differences in AUC based on some assumptions. For example, Myerson et al. (2001) [doi:10.1901/jeab.2001.76-235] assumed that (with delay discounting data) a researcher would impute an indifference point at zero delay equal to the value of the larger, later outcome. However, this practice is not clearly followed. This imputed zero-delay indifference point plays an important role in log and ordinal versions of AUC. Ordinal and log versions of AUC are described by Borges et al. (2016)[doi:10.1002/jeab.219].

The package can calculate all three versions of AUC [and includes a new version: IHS(AUC)], impute indifference points when x = 0, calculate ordinal AUC in the case of Halton sampling of x-values, and account for probability discounting AUC.

Version 0.4.0

License GPL-3

Encoding UTF-8

LazyData true

RoxygenNote 7.1.1

Suggests knitr, rmarkdown, testthat

Imports dplyr, tibble, rlang, glue

Depends R (>= 2.10)

VignetteBuilder knitr

NeedsCompilation no

Author Jonathan E. Friedel [aut, cre]
(https://orcid.org/0000-0002-1516-330X)

Maintainer Jonathan E. Friedel <jfrield@georgiasouthern.edu>

Repository CRAN

Date/Publication 2021-06-02 07:40:05 UTC
R topics documented:

- AUC ... 2
- AUC_zeros ... 3
- examp_DD ... 4
- examp_PD ... 5
- prep_AUC ... 6
- prep_log_AUC ... 7
- prep_odds_against .. 8
- prep_ordinal ... 9
- prep_ordinal_all .. 10

Description

Area Under the Curve for Discounting Data

Usage

```r
AUC(
  dat,
  indiff,
  x_axis,
  prob_disc = FALSE,
  max_x_axis = NULL,
  amount,
  groupings = NULL,
  imp_zero = TRUE,
  type = "linear",
  log_base = 2
)
```

Arguments

- **dat** Discounting data tibble
- **indiff** Indifference points Variable in dat
- **x_axis** Delays/probabilities/social distance variable in dat
- **prob_disc** Boolean for whether data are probability discounting
- **max_x_axis** Numeric; Maximum possible value in x_axis
- **amount** Numeric; Maximum amount of indifference points. (A in discounting models.)
- **groupings** Variables for grouping (e.g., subject, experimental group) as a character or vector of characters
imp_zero Boolean for whether indifference points at x_axis = 0 (e.g., delay = 0, odds against = 0, etc.) should be added to the data.

type String for the type of AUC that should be calculated. Acceptable values are one of c("linear","log","ordinal")

log_base If using logarithmic, what is the base of the log

Value
Tibble with AUC by all grouping factors. If no grouping factor specified then a tibble with one AUC will be returned.

Examples
AUC(examp_DD,
 indiff = "prop_indiff",
 x_axis = "delay_months",
 amount = 1,
 type = "linear",
 prob_disc = FALSE,
 groupings = c("subject", "outcome")
)

AUC_zeros Impute zero delay/100% likely indifference points

Description
As defined by Myerson et al. (2001) the indifference point at 0 delay (100% likelihood) is set to 0. This function will add that indifference point, wherever it is missing. If the 0 delay (100% likelihood) is included in the data then it will not be overwritten.

Usage
AUC_zeros(dat, indiff, x_axis, amount, groupings = NULL, prob_disc = FALSE)

Arguments

dat Discounting data tibble
indiff Indifference points Variable
x_axis Delays/probabilities/social distance variable
amount Amount of the larger delayed/probabilistic/etc. outcome (A in discounting formulas)
groupings Variables for grouping (e.g., subject, experimental group) as a character or vector of characters
prob_disc Boolean for probability discounting, if set to true function will calculate and report odds against x_axis
Value

Tibble that is grouped by groupings but in the same order as supplied to the function. If `prob_disc == FALSE`, then the function will add indifference points of amount at `x_axis = 0`. If `prob_disc == TRUE`, then the function will add indifference points of amount at `x_axis = 1`. Additionally, a `orig` column will be added to indicate whether the indifference point was included in the data or was imputed.

Examples

```r
AUC_zeros(
  examp_DD,
  indiff = "prop_indiff",
  x_axis = "delay_months",
  amount = 1,
  groupings = c("subject", "outcome")
)

AUC_zeros(
  examp_PD,
  indiff = "prop_indiff",
  x_axis = "prob",
  amount = 1,
  groupings = c("subject", "outcome"),
  prob_disc = TRUE
)
```

Description

Delay discounting data with repeated measures for subjects across delayed outcomes. Data were obtained from a subset of data from DeHart et al. (2020).

Usage

`examp_DD`

Format

A data frame with 360 rows and 4 variables:

- `subject` Subject ID. Positive values are experimentally obtained. -987.987 are median indifference points. -1 and -2 values have indifference points of all 0 and all 1, respectively. These extra data were added for testing and debugging to ensure that AUC calculations will result in 0 when all indifference points are zero and 1 when all indifference points are 1.
- `delay_months` Delay to receiving the outcome, in months
- `outcome` Delayed outcome type (all were scaled to $100)
- `prop_indiff` Indifference point scaled to the maximum amount of each outcome. The maximum amount was the number of servings of each outcome worth $100.
Details

Note: The DD data shares the same indifference points used in the PD data. The PD data were created by using the DD data and using probabilities instead of delays. The PD was created to demonstrate features of the discAUC package and does not represent real data.

Source

doi: 10.1002/jeab.623

examp_PD

Probability discounting data

Description

Probability discounting data with repeated measures for subjects across unlikely outcomes.

Usage

examp_PD

Format

A data frame with 360 rows and 4 variables:

- **subject** Subject ID. Positive values are experimentally obtained. -987.987 are median indifference points. -1 and -2 values have indifference points of all 0 and all 1, respectively. These extra data were added for testing and debugging to ensure that AUC calculations will result in 0 when all indifference points are zero and 1 when all indifference points are 1.
- **prob** Probability of receiving the outcome
- **outcome** Delayed outcome type (all were scaled to $100)
- **prop_indiff** Indifference point scaled to the maximum amount of each outcome. The maximum amount was the number of servings of each outcome worth $100.

Details

Note: The PD data shares the same indifference points used in the DD data. The PD data were created by using the DD data and using probabilities instead of delays. The PD was created to demonstrate features of the discAUC package and does not represent real data.

Source

doi: 10.1002/jeab.623
Description

Helper function to take AUC tibble and preprocess for other AUC calculations

Usage

```r
prep_AUC(dat, indiff = NULL, x_axis, groupings = NULL, prob_disc = FALSE)
```

Arguments

- `dat`: Discounting data tibble
- `indiff`: Indifference points Variable
- `x_axis`: Delays/probabilities/social distance variable
- `groupings`: Variables for grouping (e.g., subject, experimental group) as a character or vector of characters
- `prob_disc`: Boolean for probability discounting (MAYBE NOT NECESSARY PULLED OUT ODDS AGAINST TO DIFFERENT FUNCTION)

Value

Tibble that is grouped and arranged by `groupings` and `x_axis` (or `x_axis_against`, if probability discounting)

Examples

```r
library(dplyr)

# Prep single set of data
DD <- tibble(
  delay = c(1 / 7, 1, 2, 4, 26, 52),
  indiff = c(95, 75, 50, 20, 5, 1)
) %>%
  arrange(delay)

prep_AUC(dat = DD, indiff = "indiff", x_axis = "delay")

# Prep multiple subject data

# Create DD data disorganize by delay
DD <- tibble(
  delay = rep(c(1 / 7, 1, 2, 4, 26, 52), 2),
  indiff = c(c(95, 75, 50, 20, 5, 1), c(95, 75, 50, 20, 5, 1) + .25),
  sub = c(rep(1, 6), rep(2, 6))
) %>%
  arrange(delay)
```
prep_AUC

Group by subject and organize by subject and delay

```r
prep_AUC(dat = DD, indiff = "indiff", x_axis = "delay", groupings = "sub")
```

Probability discounting with subjects and different outcomes

Create PD data and disorganize by probability

```r
PD <- tibble(
  prob = rep(c(.1, 1/100, 1/300, 1/750, 1/1000, 1/3000), 4),
  value = rep(c(c(95, 75, 50, 20, 5, 1), c(95, 75, 50, 20, 5, 1) + .25), 2),
  sub = rep(c(rep(1, 6), rep(2, 6)), 2),
  outcome = c(rep("money", 12), rep("cigarettes", 12))
) %>%
  arrange(prob)
```

Calculate odds against, organize by subject, outcome, odds against

```r
prep_AUC(PD,
  indiff = "value",
  x_axis = "prob",
  groupings = c("sub", "outcome"),
  prob_disc = TRUE
)
```

prep_log_AUC

Calculate log x_axis values for AUClog

Description

Calculate log x_axis values for AUClog

Usage

```r
prep_log_AUC(
  dat,
  x_axis,
  log_base = 2,
  type = "adjust",
  correction = 1,
  dec_offset = TRUE
)
```

Arguments

- `dat` Discounting data tibble. AUC_zeroes should be run first if zero values on the `x_axis` will need to be included.
- `x_axis` Delays/probabilities/social distance variable
- `log_base` Base of the logarithm
Type of correction to handle 0 values on x_axis. Acceptable values are "corr", "adjust", and "IHS". "Corr" adds a set value to each x_axis value and then takes the log of those values. "Adjust" implements increasing the x_axis values by the average difference between the log values on the x_axis. "IHS" calculates the inverse hyperbolic sine, which is different than the logarithm but is highly correlated with log transformed values. The IHS transformation does not require corrections.

If type == "corr" this value is what is added to the x_axis prior to taking the log values.

type
correction

corr
adjust
IHS

If TRUE, offsets the log x_axis values if the lowest non-zero x_axis value is a decimal. This calculation is preferred because if x_axis values are negative then the log values will be negative. The negative log values can cause inconsistencies in how AUC is calculated.

dec_offset

Correction types for handling zero x-axis values

"Corr" adds a set correction value to each x_axis value and then takes the log of those values. "Adjust" implements increasing the x_axis values by the average difference between the log values on the x_axis. "IHS" calculates the inverse hyperbolic sine for the x_axis, which is different than the logarithm but is highly correlated with log transformed values. The IHS transformation does not require adjustments because IHS(0) == 0.

Examples

```r
prep_log_AUC(
  dat = examp_DD,
  x_axis = "delay_months",
  log_base = 10,
  dec_offset = TRUE,
  type = "adjust",
  correction = 1
)
```

Image of one page of a document, as well as some raw textual content that was previously extracted for it. Just return the plain text representation of this document as if you were reading it naturally.
Arguments

- **dat**: Discounting data tibble. `AUC_zeroes` should be run first if zero values on the `x_axis` will need to be included.
- **x_axis**: Probabilities distance variable
- **groupings**: Variables for grouping (e.g., subject, experimental group) as a character or vector of characters

Value

Original data frame (a tibble) that includes an appended column odds against

Examples

```r
prep_odds_against(examp_PD, 
  "prob", 
  groupings = c("subject", "outcome")
)
```

Description

Helper function to create ordinal values for `x_axis` variable. This helper function is designed to be used if the `x_axis` values are identical across every set of indifference points or if you desire ordinal `x_axis` values by subject. For the second case, if one subject was exposed to delays of 1 day and 1 month and a second subject was exposed to delays of 1 week and 1 month. In such a case, `prep_ordinal()` would return ordinal delays of (1, 2) for subject 1 and ordinal delays of (1, 2) for subject 2. If zeroes exist, will code as ordinal 0.

Usage

```r
prep_ordinal(dat, x_axis, groupings = NULL, prob_disc = FALSE)
```

Arguments

- **dat**: Discounting data tibble
- **x_axis**: Delays/probabilities/social distance variable
- **groupings**: Variables for grouping (e.g., subject, experimental group)
- **prob_disc**: Boolean for probability discounting, if set to true function will calculate ordinals based on descending `x_axis` values which would be in line with increasing odds against.

Value

Tibble that has ordinal values for each `x_axis` value based on all possible `x_axis` values. Output tibble is arranged in the same order as original tibble.
Examples

```r
library(dplyr)
PD <- tibble(
  prob = c(
    c(.05, 1 / 100, 1 / 300, 1 / 750, 1 / 1000, 1 / 3000),
    c(.1, 1 / 100, 1 / 300, 1 / 750, 1 / 1000, 1 / 4000)
  ),
  indiff = c(c(95, 75, 50, 20, 5, 1), c(95, 75, 50, 20, 5, 1) + .25),
  sub = c(rep(1, 6), rep(2, 6))
)

# Scramble data to demonstrate preserved original order
PD <- PD %>%
  mutate(scramble = rnorm(NROW(PD), 0, 1)) %>%
  arrange(scramble)
PD

prep_ordinal(PD, "prob", prob_disc = TRUE, "sub")
```

prep_ordinal_all

Shared ordinal x-axis

Description

Helper function to create ordinal values for x-axis variable. This helper function is designed to be used if the x-axis values are not identical across every set of indifference points. For example, if one subject was exposed to delays of 1 day and 1 month and a second subject was exposed to delays of 1 week and 1 month. In such a case, `prep_ordinal_all()` would return ordinal delays of (1, 3) for subject 1 and ordinal delays of (2, 3) for subject 2. If 0 exists, will be coded as 0.

Usage

`prep_ordinal_all(dat, x_axis, prob_disc = FALSE)`

Arguments

- **dat**
 - Discounting data tibble
- **x_axis**
 - Delays/probabilities/social distance variable
- **prob_disc**
 - Boolean for probability discounting, if set to true function will calculate odrinals based on descending x_axis values which would be in line with increasing odds against.

Value

Tibble that has ordinal values for each x_axis value based on all possible x_axis values.
Examples

library(dplyr)

PD <- tibble(
 prob = c(
 c(.05, 1 / 100, 1 / 300, 1 / 750, 1 / 1000, 1 / 3000),
 c(.1, 1 / 100, 1 / 300, 1 / 750, 1 / 1000, 1 / 4000)
),
 indiff = c(c(95, 75, 50, 20, 5, 1), c(95, 75, 50, 20, 5, 1) + .25),
 sub = c(rep(1, 6), rep(2, 6))
)

prep_ordinal_all(PD, "prob", prob_disc = TRUE)
Index

* datasets
 examp_DD, 4
 examp_PD, 5

AUC, 2
AUC_zeros, 3

examp_DD, 4
examp_PD, 5

prep_AUC, 6
prep_log_AUC, 7
prep_odds_against, 8
prep_ordinal, 9
prep_ordinal_all, 10