Package ‘dgo’

July 17, 2018

Title Dynamic Estimation of Group-Level Opinion

Version 0.2.15

Date 2018-07-16

Description Fit dynamic group-level item response theory (IRT) and multilevel regression and poststratification (MRP) models from item response data. dgo models latent traits at the level of demographic and geographic groups, rather than individuals, in a Bayesian group-level IRT approach developed by Caughey and Warshaw (2015) <doi:10.1093/pan/mpu021>. The package also estimates subpopulations' average responses to single survey items with a dynamic MRP model proposed by Park, Gelman, and Bafumi (2004) <doi:10.11126/stanford/9780804753005.003.0011>.

Maintainer James Dunham <james@jdunham.io>

License GPL-3

URL https://jdunham.io/dgo/

BugReports https://github.com/jamesdunham/dgo/issues

Depends dgodata, R (>= 3.2.2), rstan (>= 2.15.1)

LazyData true

Imports assertthat, data.table, ggplot2, lubridate, methods, R6, survey

Suggests knitr, reshape2, rmarkdown, testthat

Collate 'aggregate_item_responses.r' 'assertions.r' 'class-control.r'
 'class-dgo_fit.r' 'class-dgirt_fit.r' 'constants.r'
 'class-dgirtin.r' 'class-dgmrp_fit.r' 'dgirt.r'
 'dichotomize_item_responses.r' 'methods-control.r'
 'methods-dgirtfit-plot.r' 'methods-dgirtfit-poststratify.r'
 'methods-dgirtfit.r' 'methods-dgirtin.r' 'name_helpers.r'
 'package.R' 'rake_partial.r' 'restrict_input_data.r'
 'reweight_item_responses.r' 'shape.r' 'shape_hierarchical.r'
 'toy_dgirt_in.r' 'toy_dgirtfit.r' 'validate_dgirtIn.r'
 'validate_input_data.r'

RoxygenNote 6.0.1
dgirt

Fit a dynamic group IRT or single-issue MRP model

Description

dgirt and dgmrp make calls to stan with the Stan code and data for their respective models.

Usage

dgirt(shaped_data, ..., separate_t = FALSE, delta_tbar_prior_mean = 0.65,
 delta_tbar_prior_sd = 0.25, innov_sd_delta_scale = 2.5,
 innov_sd_theta_scale = 2.5, version = "2017.01.04",
 hierarchical_model = TRUE, model = NULL)

dgmrp(shaped_data, ..., separate_t = FALSE, delta_tbar_prior_mean = 0.65,
 delta_tbar_prior_sd = 0.25, innov_sd_delta_scale = 2.5,
 innov_sd_theta_scale = 2.5, version = "2017.01.04_singleissue",
 model = NULL)
Arguments

shaped_data Output from shape.

... Further arguments, passed to stan.

separate_t Whether smoothing of estimates over time should be disabled. Default FALSE.

delta_tbar_prior_mean Prior mean for delta_tbar, the normal weight on theta_bar in the previous period. Default 0.65.

delta_tbar_prior_sd Prior standard deviation for delta_bar. Default 0.25.

innov_sd_delta_scale Prior scale for sd_innov_delta, the Cauchy innovation standard deviation of nu_geo and delta_gamma. Default 2.5.

innov_sd_theta_scale Prior scale for sd_innov_theta, the Cauchy innovation standard deviation of gamma, xi, and if constant_item is FALSE the item difficulty diff. Default 2.5.

version The name of the dgo model to estimate, or the path to a .stan file. Valid names for dgo models are "2017_01_04", "2017_01_04_singleissue". Ignored if argument model is used.

hierarchical_model Whether a hierarchical model should be used to smooth the group IRT estimates. If set to FALSE, the model will return raw group-IRT model estimates for each group. Default TRUE.

model A Stan model object of class stanmodel to be used in estimation. Specifying this argument avoids repeated model compilation. Note that the Stan model object for a model fitted with dgirt() or dgmrp() can be found in the the stanmodel slot of the resulting dgirt_fit or dgmrp_fit object.

Details

The user will typically pass further arguments to stan via the ... argument, at a minimum iter and cores.

By default dgirt and dgmrp override the stan default for its pars argument to specify typical parameters of interest. They also set iter_r to 1L.

Important: the dgirt model assumes consistent coding of the polarity of item responses for identification.

Value

A dgo_fit-class object that extends stanfit-class.
dgirtfit-class

A class for fitted dynamic group IRT models

Description

dgirt 0.2.8 deprecated the dgirtfit class and replaced it with the dgirt_fit class.

dgirtin-class

A class for data ready to model

Description

shape() generates objects of class dgirtIn for modeling with dgirt() and dgmrp().

Usage

summary(object, ...)

S4 method for signature 'dgirtIn'
summary(object, ...)

print(x, ...)

S4 method for signature 'dgirtIn'
print(x, ...)

get_item_names(x)

S4 method for signature 'dgirtIn'
get_item_names(x)

get_n(x, by = NULL, aggregate_name = NULL)

S4 method for signature 'dgirtIn'
get_n(x, by = NULL, aggregate_name = NULL)

get_item_n(x, by = NULL, aggregate_data = FALSE)

S4 method for signature 'dgirtIn'
get_item_n(x, by = NULL, aggregate_data = FALSE)

S4 method for signature 'dgirtIn'
show(object)
Arguments

- **object**: An object of class `dgirtIn` as returned by `shape`.
- **x**: An object of class `dgirtIn` as returned by `shape`.
- **by**: The name of a grouping variable.
- **aggregate_name**: If specified `get_n` will operate on the table passed to `shape` as `aggregate_data` instead of on the individual data and count nonmissingness in the given variable.
- **aggregate_data**: If specified `get_item_n` will operate on the table passed to `shape` as `aggregate_data` instead of on the individual data.

Value

A list of item names.

Examples

```r
data(toy_dgirt_in)
get_item_names(toy_dgirt_in)
get_n(toy_dgirt_in)
get_n(toy_dgirt_in, by = "year")
get_n(toy_dgirt_in, by = "source")
get_item_n(toy_dgirt_in)
get_item_n(toy_dgirt_in, by = "year")

data(toy_dgirt_in)
get_item_names(toy_dgirt_in)
# respondent count
data(toy_dgirt_in)
get_n(toy_dgirt_in)

# respondent count by year
get_n(toy_dgirt_in, by = "year")

# respondent count by year and survey identifier
get_n(toy_dgirt_in, by = c("year", "source"))

data(toy_dgirt_in)
get_item_n(toy_dgirt_in)
get_item_n(toy_dgirt_in, by = "year")
```

Description

dgirt returns a fitted model object of class `dgirt_fit`, which inherits from `dgo_fit`.
Details

dgo 0.2.8 deprecated the dgirtfit class and replaced it with the dgirt_fit class.

Slots

dgirt_in dgirtin-class data used to fit the model.

See Also

dgmrp_fit dgo_fit

Examples

data(toy_dgirtfit)
 # summarize the fitted results
 summary(toy_dgirtfit, pars = 'xi')

 # get posterior means with a convenience function
 get_posterior_mean(toy_dgirtfit, pars = 'theta_bar')

 # generally apply functions to posterior samples after warmup; n.b.
 # `as.array` is iterations x chains x parameters so `MARGIN = 3` applies
 # `FUN` over iterations and chains
 apply(as.array(toy_dgirtfit, pars = 'xi'), 3, mean)

 # access the posterior samples
 head(as.data.frame(toy_dgirtfit, pars = 'theta_bar'))

dgirt_plot
Plot estimates and diagnostic statistics

Description

dgirt_plot plots estimates from a dgo model. plot_rhats plots split R-hats.

Usage

dgirt_plot(x, ...)

 ## S4 method for signature 'dgo_fit'
 dgirt_plot(x, y_fun = "median", y_min = "q_025",
 y_max = "q_975", pars = "theta_bar")

 ## S4 method for signature 'data.frame'
 dgirt_plot(x, group_name, time_name, geo_name,
 y_fun = "median", y_min = "q_025", y_max = "q_975")

 ## S4 method for signature 'dgo_fit,missing'
plot(x, y, ...)

plot_rhats(x, ...)

S4 method for signature 'dgo_fit'
plot_rhats(x, pars = "theta_bar", facet_vars = NULL,
shape_var = NULL, color_var = NULL, x_var = NULL)

Arguments

x A dgo_fit-class object.

... Further arguments to dgirt_plot.

y_fun Summary function to be plotted as y.

y_min Summary function giving the ymin argument for a geom_pointrange object.

y_max Summary function giving the ymax argument for a geom_pointrange object.

pars Selected parameter.

group_name A discrete grouping variable that will be passed to the color argument of aes.

time_name A time variable with numeric values that will be plotted on the x axis.

geo_name A variable representing local areas that will be used in faceting.

y Ignored.

facet_vars Optionally, one or more variables passed to facet_wrap

shape_var, color_var, x_var

Optionally, a variable passed to the shape, color, or x arguments of aes_string, respectively.

Examples

Not run:
data(toy_dgirtfit)
dgirt_plot(toy_dgirtfit)
dgirt_plot(toy_dgirtfit, y_min = NULL, y_max = NULL)
p <- dgirt_plot(toy_dgirtfit)
p $ ylab("posterior median")

End(Not run)

Not run:
data(toy_dgirtfit)
ps <- poststratify(toy_dgirtfit, annual_state_race_targets, strata_names =
c("state", "year"), aggregated_names = "race3")
dgirt_plot(ps, group_name = NULL, time_name = "year", geo_name = "state")

End(Not run)

Not run:
data(toy_dgirtfit)
plot(toy_dgirtfit)

End(Not run)
not run:
data(toy_dgirtfit)
plot_rhats(toy_dgirtfit)
plot_rhats(toy_dgirtfit, facet_vars = "race3") +
 scale_x_continuous(breaks = seq.int(2006, 2008))

End(not run)

dgmrp_fit-class
A class for fitted dynamic group MRP models

Description

dgmrp returns a fitted model object of class dgmrp_fit, which inherits from dgo_fit.

Slots

dgirt_in dgirt-class data used to fit the model.

See Also

dgirt_fit dgo_fit

dgo_fit-class
A class for fitted models

Description

dgo_fit is a superclass for dgirt_fit and dgmrp_fit that inherits from the stanfit-class in the rstan package.

Slots

dgirt_in dgirt-class data used to fit the model.
call The function call that returned the dgo_fit object.

See Also

dgmrp_fit dgo_fit

dgo: Dynamic Estimation of Group-level Opinion

Description

Fit dynamic group-level IRT and MRP models from individual or aggregated item response data. This package handles common preprocessing tasks and extends functions for inspecting results, poststratification, and quick iteration over alternative models.
poststratify

Reweight and aggregate estimates

Description

This function reweights and aggregates estimates from dgirt for strata defined by modeled variables. The names of each of the model’s time, geographic, and demographic grouping variables can be given in either the strata_names or aggregated_names argument. The result has estimates for the strata indicated by the strata_names argument, aggregated over the variables specified in aggregated_names. poststratify requires a table given as target_data with population proportions for the interaction of the variables given in strata_names and aggregated_names.

Usage

poststratify(x, target_data, strata_names, aggregated_names,
 proportion_name = "proportion", ...)

S4 method for signature 'dgo_fit'
poststratify(x, target_data, strata_names, aggregated_names,
 proportion_name = "proportion", pars = "theta_bar")

S4 method for signature 'data.frame'
poststratify(x, target_data, strata_names,
 aggregated_names, proportion_name = "proportion")

Arguments

- **x**
 A data.frame or dgo_fit object.
- **target_data**
 A table giving the proportions contributed to strata by the interaction of strata_names and aggregated_names.
- **strata_names**
 Names of variables whose interaction defines population strata.
- **aggregated_names**
 Names of variables to be aggregated over in poststratification.
- **proportion_name**
 Name of the column in target_data that gives strata proportions.
- **...**
 Additional arguments to methods.
- **pars**
 Selected parameter names.

Value

A table of poststratified estimates.
Examples

```r
## Not run:
data(toy_dgirtfit)
# the stratifying variables should uniquely identify proportions in the
target data; to achieve this, sum over the other variables
targets <- aggregate(proportion ~ state + year + race3, targets, sum)

# the dgirtfit method of poststratify takes a dgirtfit object, the target
data, the names of variables that define population strata, and the names
# of variables to be aggregated over
post <- poststratify(toy_dgirtfit, targets, c("state", "year"), "race3")

## End(Not run)
```

shape

Prepare data for modeling

Description

This function shapes data for use in a dgirt or dgmrp model. Most arguments give the name or names of key variables in the data. These arguments end in `_name` or `_names` and should be character vectors.

Usage

```r
shape(item_data = NULL, item_names = NULL, time_name, geo_name,
group_names = NULL, id_vars = NULL, time_filter = NULL,
geo_filter = NULL, min_t_filter = 1L, min_survey_filter = 1L,
survey_name = NULL, modifier_data = NULL, modifier_names = NULL,
tl_modifier_names = NULL, standardize = TRUE, target_data = NULL,
raking = NULL, max_raked_weight = NULL, weight_name = NULL,
proportion_name = "proportion", aggregate_data = NULL,
aggregate_item_names = NULL, constant_item = TRUE, ...)
```

Arguments

- **item_data**: A table in which items appear in columns and each row represents an individual’s responses in some time period and local geographic area.
- **item_names**: Item response variables.
- **time_name**: A time variable with numeric values.
- **geo_name**: A geographic variable representing local areas.
- **group_names**: Discrete grouping variables, usually demographic. Using numeric variables is allowed but not recommended.
- **id_vars**: Additional variables that should be included in the result, other than those specified elsewhere.
time_filter A numeric vector giving possible values of the time variable. Observed and unobserved time periods can be given. Defaults to observed values.

geo_filter A character vector giving values of the geographic variable. Defaults to observed values.

min_t_filter An integer minimum of time period appearances for included items.

min_survey_filter An integer minimum of survey appearances for included items.

survey_name A survey identifier.

modifier_data Table giving characteristics of local geographic areas in time periods. See details below.

modifier_names Variables giving modifiers of geographic hierarchical parameters in modifier_data.

t1_modifier_names Variables to be used instead of those in modifier_names, only in the first period.

standardize Whether to standardize the variables given by modifier_names and t1_modifier_names to be zero-mean and unit-variance for performance gains. (For discussion see the Stan Language Reference section "Standardizing Predictors and Outputs."

target_data A table giving population proportions for groups by local geographic area and time period. See details below.

raking A formula or list of formulas specifying the variables on which to rake survey weights.

max_raked_weight A maximum over which raked weights will be trimmed. Only applied after raking. To trim unraked weights, manipulate the input data directly.

weight_name A variable giving survey weights.

proportion_name The variable giving population proportions for strata in target_data.

aggregate_data A table of trial and success counts by group and item. See details below.

aggregate_item_names A subset of values of the item variable in aggregate_data, for restricting the aggregate data.

constant_item Whether item difficulty parameters should be constant over time.

... Further arguments.

Value

An object of class dgirtIn expected by dgirt and dgmrp.

Item Response Data

Individual-level data giving item responses is expected as argument item_data. Required arguments time_name and geo_name give the names of variables in item_data that indicate time period and local geographic area. Optional argument group_names gives other respondent characteristics to be modeled. item_data is optional if argument aggregate_data is used. Note that the dgirt() model assumes consistent coding of the polarity of item responses for identification.
Modifier Data

Data for modeling geographic hierarchical parameters can be given with argument `modifier_data`, in which case argument `modifier_names` is required and arguments `tl_modifier_names` and `standardize` are optional.

Aggregate Item Response Data

`shape()` aggregates the individual-level item response data given as `item_data` for modeling. Data already aggregated to the group level can be provided with argument `aggregate_data`.

The data given by `aggregate_data` must be in a long table of trial and success counts indexed by item, group, and time period. The variable names given by arguments `group_names`, `geo_name`, and `time_name` should exist in `aggregate_data`. Three fixed variable names must also appear in `aggregate_data`: `item` giving item identifiers, `n_grp` giving counts of item-response trials, and `s_grp` giving counts of item-response successes. These counts should be adjusted consistently with the transformations applied during the aggregation by `shape()` of the individual `item_data`.

Reweighting

Use argument `target_data` to adjust the weighting of groups toward population targets via raking, using an adaptation of `rake`. To adjust existing survey weights in `item_data`, provide argument `weight_name`. Otherwise, observations in `item_data` will be assigned equal starting weights. Argument `raking` defines strata. If you pass it a list of formulas like `list(~ x, ~ y)`, raking is first over `x`, then over `y`. Given an additive formula like `~ x + y`, raking is over the combinations of `x` and `y`. So, `list(~ x, ~ y + z)` is first over `x`, then over `y-z` pairs. Argument `proportion_name` is optional.

Restrictions

For convenience, data in `item_data`, `modifier_data`, `aggregate_data`, and `target_data` can be restricted (subbed) row-wise to the time periods given by argument `time_filter` and the local geographic areas given by argument `geo_filter`.

Data can also be filtered column-wise to retain item variables that appear in a minimum of time periods, using argument `min_t_filter`, or a minimum of surveys, with argument `min_survey_filter`. Argument `survey_name` is required when filtering by survey.

If both row-wise and column-wise restrictions are specified, `shape` iterates over them until they leave the data unchanged.

Examples

```r
# model individual item responses
shaped_responses <- shape(opinion, item_names = "abortion", time_name = "year", geo_name = "state", group_names = "race3")

# summarize result
summary(shaped_responses)

# check sparseness of data to be modeled
get_item_n(shaped_responses, by = "year")
```
show.dgo_fit-method

print method for dgo_fit-class objects

description

print method for dgo_fit-class objects
get_elapsed_time: extract chain run times from dgo_fit-class objects
summary method for dgo_fit-class objects
summarize method for dgo_fit-class objects
as.data.frame method for dgo_fit-class objects
rhats: extract split R-hats from dgo_fit-class objects

usage

S4 method for signature 'dgo_fit'
show(object)

S4 method for signature 'dgo_fit'
print(x, ...)

print.dgo_fit(x, ...)

S4 method for signature 'dgo_fit'
get_elapsed_time(object, ...)

S4 method for signature 'dgo_fit'
summary(object, ..., verbose = FALSE)

S4 method for signature 'dgo_fit'
get_posterior_mean(object, pars = "theta_bar", ...)

summarize(x, ...)

S4 method for signature 'dgo_fit'
summarize(x, pars = "theta_bar", funs = c("mean", "sd", "median", "q_025", "q_975"))

S3 method for class 'dgo_fit'
as.data.frame(x, ..., pars = "theta_bar", keep.rownames = FALSE)

rhats(x, ...)

S4 method for signature 'dgo_fit'
rhats(x, pars = "theta_bar")
Arguments

- object: A dgo_fit-class object
- x: A dgo_fit-class object
- ...: Further arguments to stanfit-class methods.
- verbose: Whether to show the full output from the rstan method.
- pars: Parameter name(s)
- funs: Quoted names of summary functions. ‘q_025’ is accepted as shorthand for ‘function(x) quantile(x, .025)’, and similarly ‘q_975’.
- keep.rownames: Whether to retain original parameter names with numeric indexes, as output from RStan.

Value

A table giving split R-hats for model parameters

Examples

```r
data(toy_dgirtfit)
summarize(toy_dgirtfit)
data(toy_dgirtfit)
# access posterior samples
as.data.frame(toy_dgirtfit, pars = 'theta_bar')
data(toy_dgirtfit)
rhats(toy_dgirtfit)
```

toy_dgirtfit
A minimal example of a fitted model

Description

dgirt returns a dgirtfit-class object that extends stanfit-class. toy_dgirtfit is a minimal dgirtfit object for use in examples.

Usage

toy_dgirtfit

Format

A dgirtfit-class object.
toy_dgirt_in

A minimal example of shaped data

Description

shape returns a dgirt-class object used with dgirt for DGIRT modeling. toy_dgirt_in is a minimal dgirt-class object for use in examples.

Usage

toy_dgirt_in

Format

A dgirt-class object.
Index

as.data.frame.dgo_fit
 (show,dgo_fit-method), 13

dgirt, 2, 5, 11, 14, 15
dgirt_fit, 4, 6, 8
dgirt_fit(dgirt_fit-class), 5
dgirt_fit-class, 5
dgirt_plot, 6, 7
dgirt_plot.data.frame-method
 (dgirt_plot), 6
dgirt_plot,dgo_fit-method(dgirt_plot), 6
dgirtfit, 14
dgirtfit(dgirtfit-class), 4
dgirtfit-class, 4
dgirtin-class, 4
dgirtin-class, (dgirtin-class), 4
dgirtIn-method, (dgirtin-class), 4
dgmrp, 8, 11
dgmrp(dgirt), 2
dgmrp_fit(dgmrp_fit-class), 8
dgmrp_fit-class, 8
dgo, 8
dgo-package(dgo), 8
dgo_fit, 5, 6, 8
dgo_fit(dgo_fit-class), 8
dgo_fit-class, 8
get_elapsed_time,dgo_fit-method
 (show,dgo_fit-method), 13
get_item_n(dgirtin-class), 4
get_item_n, (dgirtin-class), 4
get_item_n,dgirtIn-method
 (dgirtin-class), 4
get_item_names(dgirtin-class), 4
get_item_names, (dgirtin-class), 4
get_item_names,dgirtIn-method
 (dgirtin-class), 4
get_n, (dgirtin-class), 4
get_n,dgirtIn-method(dgirtin-class), 4
get_posterior_mean,dgo_fit-method
 (show,dgo_fit-method), 13
plot,dgo_fit,missing-method
 (dgirt_plot), 6
plot_rhats(dgirt_plot), 6
plot_rhats,dgo_fit-method(dgirt_plot), 6
poststratify, 9
poststratify,data.frame-method
 (poststratify), 9
poststratify,dgo_fit-method
 (poststratify), 9
print(dgirtin-class), 4
print,dgirtIn-method(dgirtin-class), 4
print,dgo_fit-method
 (show,dgo_fit-method), 13
print.dgirtIn,(dgirtin-class), 4
print.dgo_fit (show,dgo_fit-method), 13
rake, 12
rhats, (show,dgo_fit-method), 13
rhats,dgo_fit-method
 (show,dgo_fit-method), 13
rstan, 8
shape, 3, 10, 15
show,dgirtIn-method(dgirtin-class), 4
show,dgo_fit-method, 13
stan, 2, 3
summarize, (show,dgo_fit-method), 13
summarize,dgo_fit-method
 (show,dgo_fit-method), 13
summary(dgirtin-class), 4
summary,dgirtIn-method(dgirtin-class), 4
summary,dgo_fit-method
 (show,dgo_fit-method), 13
INDEX

toy_dgirt_in, 15
toy_dgirtfit, 14