Package ‘describedata’

August 2, 2019

Title Miscellaneous Descriptive Functions
Version 0.1.0
Description Helper functions for descriptive tasks such as making print-friendly bivariate tables, sample size flow counts, and visualizing sample distributions. Also contains 'R' approximations of some common 'SAS' and 'Stata' functions such as 'PROC MEANS' from 'SAS' and 'ladder', 'gladder', and 'pwcorr' from 'Stata'.

Imports dplyr (>= 0.7), forcats, tibble, tidyr, purrr, broom, stringr, haven, ggplot2, lmtest, rlang
License GPL-3
Encoding UTF-8
LazyData true
RoxygenNote 6.1.1
Suggests testthat
NeedsCompilation no
Author Craig McGowan [aut, cre]
Maintainer Craig McGowan <mcgowan.cj@gmail.com>
Repository CRAN
Date/Publication 2019-08-02 11:50:02 UTC

R topics documented:

bivariate_compare ... 2
cor.prob ... 3
describedata ... 4
gladder .. 5
ladder .. 5
nagelkerke ... 6
norm_dist_plot ... 6
proc_means ... 7
pwcorr ... 8
sample_flow ... 9
stata_tidy ... 9
univar_freq ... 10
bivariate_compare

Create publication-style table across one categorical variable

Description

Descriptive statistics for categorical variables as well as normally and non-normally distributed continuous variables, split across levels of a categorical variable. Depending on the variable type, an appropriate statistical test is used to assess differences across levels of the comparison variable.

Usage

bivariate_compare(df, compare, normal_vars = NULL, non_normal_vars = NULL, cat_vars = NULL, display_round = 2, p = TRUE, p_round = 4, include_na = FALSE, col_n = TRUE, cont_n = FALSE, all_cont_mean = FALSE, all_cont_median = FALSE, iqr = TRUE, fisher = FALSE, workspace = NULL, var_order = NULL, var_label_df = NULL)

Arguments

df A data.frame or tibble.
compare Discrete variable. Separate statistics will be produced for each level, with statistical tests across levels. Must be quoted.
normal_vars Character vector of normally distributed continuous variables that will be included in the descriptive table.
non_normal_vars Character vector of non-normally distributed continuous variables that will be included in the descriptive table.
cat_vars Character vector of categorical variables that will be included in the descriptive table.
display_round Number of decimal places displayed values should be rounded to
p Logical. Should p-values be calculated and displayed? Default TRUE.
p_round Number of decimal places p-values should be rounded to.
include_na Logical. Should NA values be included in the table and accompanying statistical tests? Default FALSE.
col_n Logical. Should the total number of observations be displayed for each column? Default TRUE.
cont_n Logical. Display sample n for continuous variables in the table. Default FALSE.
all_cont_mean Logical. Display mean (sd) for all continuous variables. Default FALSE results in mean (sd) for normally distributed variables and median (IQR) for non-normally distributed variables. Must be FALSE if all_cont_median == TRUE.
all_cont_median

Logical. Display median (sd) for all continuous variables. Default FALSE results in mean (sd) for normally distributed variables and median (IQR) for non-normally distributed variables. Must be FALSE if all_cont_mean == TRUE.

iqr

Logical. If the median is displayed for a continuous variable, should interquartile range be displayed as well (TRUE), or should the values for the 25th and 75th percentiles be displayed (FALSE)? Default TRUE

fisher

Logical. Should Fisher's exact test be used for categorical variables? Default FALSE. Ignored if p == FALSE.

workspace

Numeric variable indicating the workspace to be used for Fisher's exact test. If NULL, the default, the default value of 2e5 is used. Ignored if fisher == FALSE.

var_order

Character vector listing the variable names in the order results should be displayed. If NULL, the default, continuous variables are displayed first, followed by categorical variables.

var_label_df

A data.frame or tibble with columns "variable" and "label" that contains display labels for each variable specified in normal_vars, non_normal_vars, and cat_vars.

Details

Statistical differences between normally distributed continuous variables are assessed using aov(), differences in non-normally distributed variables are assessed using kruskal.test(), and differences in categorical variables are assessed using chisq.test() by default, with a user option for fisher.test() instead.

Value

A data.frame with columns label, overall, a column for each level of compare, and p.value. For normal_vars, mean (SD) is displayed, for non_normal_vars median (IQR) is displayed, and for cat_vars n (percent) is displayed. For p values on continuous variables, a superscript 'a' denotes the Kruskal-Wallis test was used.

Examples

bivariate_compare(iris, compare = "Species", normal_vars = c("Sepal.Length", "Sepal.Width"))

bivariate_compare(mtcars, compare = "cyl", non_normal_vars = "mpg")

cor.prob

Calculate pairwise correlations

Description

Internal function to calculate pairwise correlations and return p values
Usage

cor.prob(df)

Arguments

df A data frame or tibble.

Value

A data.frame with columns h_var, v_var, and p.value

describedata

describedata: Miscellaneous descriptive and SAS/Stata duplicate functions

Description

The helpR package contains descriptive functions for tasks such as making print-friendly bivariate tables, sample size flow counts, and more. It also contains R approximations of some common, useful SAS/Stata functions.

Frequency functions

The helper functions bivariate_compare and univar_freq create frequency tables. univar_freq produces simple n and percent for categories of a single variable, while bivariate_compare compares continuous or categorical variables across categories of a comparison variable. This is particularly useful for generating a Table 1 or 2 for a publication manuscript.

Sample size functions

sample_flow produces tables illustrating how final sample size is determined and the number of participants excluded by each exclusion criteria.

Other helper functions

nagelkerke calculates the Nagelkerke pseudo r-squared for a logistic regression model.

Stata replica functions

ladder, gladder, and pwcorr are approximate replicas of the respective Stata functions. Not all functionality is currently incorporated. stata_tidy reformats R model output to a format similar to Stata.

SAS replica functions

proc_means is an approximate replica of the respective SAS function. Not all functionality is currently incorporated.
gladder
Replica of Stata’s gladder function

Description

Creates ladder-of-powers histograms to visualize nine common transformations and compare each to a normal distribution. The following transformations are included: identity, cubic, square, square root, natural logarithm, inverse square root, inverse, inverse square, and inverse cubic.

Usage

```
gladder(x)
```

Arguments

- `x`
 A continuous numeric vector.

Value

A ggplot object with plots of each transformation

Examples

```
gladder(iris$Sepal.Length)
gladder(mtcars$disp)
```

ladder
Replica of Stata’s ladder function

Description

Searches the ladder of powers histograms to find a transformation to make `x` normally distributed. The Shapiro-Wilkes test is used to assess for normality. The following transformations are included: identity, cubic, square, square root, natural logarithm, inverse square root, inverse, inverse square, and inverse cubic.

Usage

```
ladder(x)
```

Arguments

- `x`
 A continuous numeric vector.
Value
A data.frame

Examples
ladder(iris$Sepal.Length)
ladder(mtcars$disp)

nagelkerke Calculate Nagelkerke pseudo r-squared

Description
Calculate Nagelkerke pseudo r-squared from a fitted model object.

Usage
nagelkerke(mod)

Arguments
mod A glm model object, usually from logistic regression. The model must have been fit using the data option, in order to extract the data from the model object.

Value
Numeric value of Nagelkerke r-squared for the model

norm_dist_plot Create density histogram with normal distribution overlaid

Description
Plots a simple density histogram for a continuous variable with a normal distribution overlaid. The overlaid normal distribution has the same mean and standard deviation as the provided variable, and the plot provides a visual means to assess the normality of the variable’s distribution.

Usage
norm_dist_plot(df, vars)

Arguments
df A data.frame or tibble.
vars A character vector of continuous variable names.
Proc Means

Value

A ggplot object.

Examples

```r
norm_dist_plot(df = iris, vars = "Sepal.Width")
norm_dist_plot(df = iris,
               vars = c("Sepal.Width", "Sepal.Length"))
```

Description

Descriptive statistics for continuous variables, with the option of stratifying by a categorical variable.

Usage

```r
proc_means(df, vars = NULL, var_order = NULL, by = NULL, n = T,
            mean = TRUE, sd = TRUE, min = TRUE, max = TRUE, median = FALSE,
            q1 = FALSE, q3 = FALSE, iqr = FALSE, nmiss = FALSE,
            nobs = FALSE, p = FALSE, p_round = 4, display_round = 3)
```

Arguments

df

A data frame or tibble.

vars

Character vector of numeric variables to generate descriptive statistics for. If the default (NULL), all variables are included, except for any specified in by.

var_order

Character vector listing the variable names in the order results should be displayed. If the default (NULL), variables are displayed in the order specified in vars.

by

Discrete variable. Separate statistics will be produced for each level. Default NULL provides statistics for all observations.

n

logical. Display number of rows with values. Default TRUE.

mean

logical. Display mean value. Default TRUE.

sd

logical. Display standard deviation. Default TRUE.

min

logical. Display minimum value. Default TRUE.

max

logical. Display maximum value. Default TRUE.

median

logical. Display median value. Default FALSE.

q1

logical. Display first quartile value. Default FALSE.

q3

logical. Display third quartile value. Default FALSE.
pwcorr

- **iqr** (logical): Display interquartile range. Default FALSE.
- **nmiss** (logical): Display number of missing values. Default FALSE.
- **nobs** (logical): Display total number of rows. Default FALSE.
- **p** (logical): Calculate p-value across by groups using aov. Ignored if no by variable specified. Default FALSE.
- **p_round**: Number of decimal places p-values should be rounded to.
- **display_round**: Number of decimal places displayed values should be rounded to

Value

A data.frame with columns variable, by variable, and a column for each summary statistic.

Examples

```
proc_means(iris, vars = c("Sepal.Length", "Sepal.Width"))
proc_means(iris, by = "Species")
```

pwcorr
Replica of Stata’s pwcorr function

Description

Calculate and return a matrix of pairwise correlation coefficients. Returns significance levels if `method == "pearson"`

Usage

```
pwcorr(df, vars = NULL, method = "pearson", var_label_df = NULL)
```

Arguments

- **df**: A data.frame or tibble.
- **vars**: A character vector of numeric variables to generate pairwise correlations for. If the default (NULL), all variables are included.
- **method**: One of "pearson", "kendall", or "spearman" passed on to "cor".
- **var_label_df**: A data.frame or tibble with columns "variable" and "label" that contains display labels for each variable specified in `vars`.

Value

A data.frame displaying the pairwise correlation coefficients between all variables in `vars`.
sample_flow

Create table illustrating sample exclusions

Description

Generate a table illustrating sequential exclusion from an analytical sample due to user specified exclusions.

Usage

```r
sample_flow(df, exclusions = c())
```

Arguments

- **df** A data.frame or tibble.
- **exclusions** Character vector of logical conditions indicating which rows should be excluded from the final sample. Exclusions occur in the order specified.

Value

A data.frame with columns Exclusion, 'Sequential Excluded', and 'Total Excluded' for display.

stata_tidy

Tidy model output into similar format from Stata

Description

Create a display data frame similar to Stata model output for a fitted R model.

Usage

```r
stata_tidy(mod, var_label_df = NULL)
```

Arguments

- **mod** A fitted model object
- **var_label_df** A data.frame or tibble with columns "variable" and "label" that contains display labels for each variable in `mod`.

Value

A data.frame with columns term and display
Univariate statistics for a discrete variable

Description
Descriptive statistics (N,

Usage
univar_freq(df, var, na.rm = FALSE)

Arguments
- df: A data frame or tibble.
- var: A discrete, numeric variable.
- na.rm: logical. Should missing values (including NaN) be removed?

Value
A data.frame with columns var, NObs, and Percent

Examples
univar_freq(iris, var = "Species")
univar_freq(mtcars, var = "cyl")
Index

bivariate_compare, 2, 4

cor.prob, 3

describedata, 4
describedata-package (describedata), 4

gladder, 4, 5

ladder, 4, 5

nagelkerke, 4, 6

norm_dist_plot, 6

proc_means, 4, 7

pwcorr, 4, 8

sample_flow, 4, 9

stata_tidy, 4, 9

univar_freq, 4, 10