Package ‘dcurves’

July 20, 2021

Title Decision Curve Analysis for Model Evaluation

Version 0.2.0

Description Diagnostic and prognostic models are typically evaluated with measures of accuracy that do not address clinical consequences. Decision-analytic techniques allow assessment of clinical outcomes, but often require collection of additional information may be cumbersome to apply to models that yield a continuous result. Decision curve analysis is a method for evaluating and comparing prediction models that incorporates clinical consequences, requires only the data set on which the models are tested, and can be applied to models that have either continuous or dichotomous results. See the following references for details on the methods: Vickers (2006) <doi:10.1177/0272989X06295361>, Vickers (2008) <doi:10.1186/1472-6947-8-53>, and Pfeiffer (2020) <doi:10.1002/bimj.201800240>.

License MIT + file LICENSE

BugReports https://github.com/ddsjoberg/dcurves/issues

Depends R (>= 3.5)

Imports broom (>= 0.7.6), dplyr (>= 1.0.5), ggplot2 (>= 3.3.3), glue (>= 1.4.2), purrr (>= 0.3.4), rlang (>= 0.4.10), scales (>= 1.1.1), survival, tibble (>= 3.1.0)

Suggests covr (>= 3.5.1), gtsummary (>= 1.4.0), knitr (>= 1.32), rmarkdown (>= 2.7), spelling (>= 2.2), testthat (>= 3.0.2), tidyr (>= 1.1.3)

VignetteBuilder knitr

ByteCompile true

Config/testthat/edition 3

Config/testthat/parallel true

Encoding UTF-8

Language en-US
as_tibble.dca

Convert DCA Object to tibble

Description

Convert DCA Object to tibble

Usage

```r
## S3 method for class 'dca'
as_tibble(x, ...)
```

Arguments

- `x` dca object created with `dca`
- `...` not used

Value

a tibble

Author(s)

Daniel D Sjoberg
See Also

dca(), net_intervention_avoided(), standardized_net_benefit(), plot.dca()

Examples

dca(cancer ~ cancerpredmarker, data = df_binary) %>%
 as_tibble()

Perform Decision Curve Analysis

Description

Diagnostic and prognostic models are typically evaluated with measures of accuracy that do not
address clinical consequences. Decision-analytic techniques allow assessment of clinical outcomes
but often require collection of additional information may be cumbersome to apply to models that
yield a continuous result. Decision curve analysis is a method for evaluating and comparing predic-
tion models that incorporates clinical consequences, requires only the data set on which the models
are tested, and can be applied to models that have either continuous or dichotomous results. The
dca function performs decision curve analysis for binary outcomes. Review the DCA Vignette for
a detailed walk-through of various applications. Also, see www.decisioncurveanalysis.org for more
information.

Usage

dca(
 formula, data, thresholds = seq(0, 0.99, by = 0.01),
 label = NULL, harm = NULL,
 as_probability = character(),
 time = NULL, prevalence = NULL
)

Arguments

formula a formula with the outcome on the LHS and a sum of markers/covariates to test
on the RHS

data a data frame containing the variables in formula=

thresholds vector of threshold probabilities between 0 and 1. Default is seq(0, 0.99, by =
0.01). Thresholds at zero are replaced with 10e-10.

label named list of variable labels, e.g. list(age = "Age, years)

harm named list of harms associated with a test. Default is NULL
as_probability character vector including names of variables that will be converted to a probability. Details below.

time if outcome is survival, time= specifies the time the assessment is made

prevalence When NULL, the prevalence is estimated from data=. If the data passed is a case-control set, the population prevalence may be set with this argument.

Value
List including net benefit of each variable

as_probability argument

While the as_probability= argument can be used to convert a marker to the probability scale, use the argument only when the consequences are fully understood. For example, when the outcome is binary, logistic regression is used to convert the marker to a probability. The logistic regression model assumes linearity on the log-odds scale and can induce miscalibration when this assumption is not true. Miscalibration in a model will adversely affect performance on decision curve analysis. Similarly, when the outcome is time-to-event, Cox Proportional Hazards regression is used to convert the marker to a probability. The Cox model also has a linearity assumption and additionally assumes proportional hazards over the follow-up period. When these assumptions are violated, important miscalibration may occur.

Instead of using the as_probability= argument, it is suggested to perform the regression modeling outside of the dca() function utilizing methods, such as non-linear modeling, as appropriate.

Author(s)
Daniel D Sjoberg

See Also
net_intervention_avoided(), standardized_net_benefit(), plot.dca(), as_tibble.dca()

Examples

calculate DCA with binary endpoint
dca(cancer ~ cancerpredmarker + marker,
 data = df_binary,
 as_probability = "marker",
 label = list(cancerpredmarker = "Prediction Model", marker = "Biomarker")) %>%
plot DCA curves with ggplot
plot(smooth = TRUE) +
add ggplot formatting
ggplot2::labs(x = "Treatment Threshold Probability")

calculate DCA with time to event endpoint
dca(Surv(ttcancer, cancer) ~ cancerpredmarker, data = df_surv, time = 1)
df_binary

Simulated data with a binary outcome

Description

Simulated data with a binary outcome

Usage

`df_binary`

Format

A data frame with 750 rows:

- **patientid** Identification Number
- **cancer** Cancer Diagnosis: 0=No, 1=Yes
- **dead** Dead (1=yes; 0=no)
- **risk_group** Patient Risk Group (Low, Intermediate, High)
- **age** Patient Age, years
- **famhistory** Family History of Cancer: 0=No, 1=Yes
- **marker** Marker
- **cancerpredmarker** Prob. of Cancer based on Age, Family History, and Marker

df_case_control

Simulated data with a case-control outcome

Description

Simulated data with a case-control outcome

Usage

`df_case_control`

Format

A data frame with 750 rows:

- **patientid** Identification Number
- **casecontrol** Case-control Status: 1=Case, 0=Control
- **risk_group** Patient Risk Group (Low, Intermediate, High)
- **age** Patient Age, years
- **famhistory** Family History of Cancer: 0=No, 1=Yes
- **marker** Marker
- **cancerpredmarker** Prob. of Cancer based on Age, Family History, and Marker
df_surv

Simulated data with a survival outcome

Description

Simulated data with a survival outcome

Usage

df_surv

Format

A data frame with 750 rows:

- **patientid**: Identification Number
- **cancer**: Cancer Diagnosis: 0=No, 1=Yes
- **cancer_cr**: Cancer Diagnosis, competing event: "censor", "dead other causes", "diagnosed with cancer"
- **ttcancer**: Years to Cancer Dx/Censor
- **risk_group**: Patient Risk Group (Low, Intermediate, High)
- **age**: Patient Age, years
- **famhistory**: Family History of Cancer: 0=No, 1=Yes
- **marker**: Marker
- **cancerpredmarker**: Prob. of Cancer based on Age, Family History, and Marker

net_intervention_avoided

Add Net Interventions Avoided

Description

Add the number of net interventions avoided to dca() object.

Usage

net_intervention_avoided(x, nper = 100)

Arguments

- **x**: object of class 'dca' calculated with dca()
- **nper**: Number to report net interventions per. Default is 100.
plot.dca

Value
'dca' object

Author(s)
Daniel D Sjoberg

See Also
dca(), standardized_net_benefit(), plot.dca(), as_tibble.dca()

Examples
dca(cancer ~ cancerpredmarker, data = df_binary) %>%
 net_intervention_avoided()
dca(Surv(ttcancer, cancer) ~ cancerpredmarker, data = df_surv, time = 1) %>%
 net_intervention_avoided()

plot.dca Plot DCA Object with ggplot

Description
Plot DCA Object with ggplot

Usage
S3 method for class 'dca'
plot(
 x,
 type = NULL,
 smooth = FALSE,
 span = 0.2,
 style = c("color", "bw"),
 show_ggplot_code = FALSE,
 ...
)

Arguments

x dca object created with dca()

type indicates type of plot to produce. Must be one of c("net_benefit", "net_intervention_avoided", "standardized_net_benefit"). The default is "net_benefit", unless the net intervention has been calculated when "net_intervention_avoided" is used, or if "standardized_net_benefit" has been calculated.
smooth Logical indicator whether plot will be smooth with `ggplot2::stat_smooth()`. Default is FALSE.

span when `smooth = TRUE`, Controls the amount of smoothing for loess smoother. Smaller numbers produce wigglier lines, larger numbers produce smoother lines. Default is 0.2.

style Must be one of c("color", "bw"). Default is "color", and "bw" will print a black and white figure

show_ggplot_code Logical indicating whether to print `ggplot2` code used to create figure. Default is FALSE. Set to TRUE to perform advanced figure customization

Value

a `ggplot2` object

Author(s)

Daniel D Sjoberg

See Also

dca(), net_intervention_avoided(), standardized_net_benefit(), as_tibble.dca()

Examples

dca(cancer ~ cancerpredmarker, data = df_binary) %>%
 plot(smooth = TRUE, show_ggplot_code = TRUE)

print.dca

Description

Print `dca()` object

Usage

```r
## S3 method for class 'dca'
print(x, ...)
```

Arguments

x dca object

... not used
Value

a ggplot

Examples

dca(cancer ~ cancerpredmarker, data = df_binary) %>%
 print()

standardized_net_benefit

Add Standardized Net Benefit

Description

Add the standardized net benefit to dca() object.

Usage

standardized_net_benefit(x)

Arguments

x object of class 'dca' calculated with dca()

Value

'dca' object

Author(s)

Daniel D Sjoberg

See Also

dca(), net_intervention_avoided(), plot.dca(), as_tibble.dca()

Examples

dca(Surv(ttcancer, cancer) ~ cancerpredmarker, data = df_surv, time = 1) %>%
 standardized_net_benefit()
Index

* datasets
 df_binary, 5
df_case_control, 5
df_surv, 6

as_tibble.dca, 2
as_tibble.dca(), 4, 7–9

dca, 3
dca(), 3, 7–9
df_binary, 5
df_case_control, 5
df_surv, 6

net_intervention_avoided, 6
net_intervention_avoided(), 3, 4, 8, 9

plot.dca, 7
plot.dca(), 3, 4, 7, 9
print.dca, 8

standardized_net_benefit, 9
standardized_net_benefit(), 3, 4, 7, 8