Package ‘dbnR’

September 29, 2021

Type Package

Title Dynamic Bayesian Network Learning and Inference

Version 0.7.1

Description Learning and inference over dynamic Bayesian networks of arbitrary Markovian order. Extends some of the functionality offered by the 'bnlearn' package to learn the networks from data and perform exact inference. It offers three structure learning algorithms for dynamic Bayesian networks and the possibility to perform forecasts of arbitrary length. A tool for visualizing the structure of the net is also provided via the 'visNetwork' package.

Depends R (>= 3.5.0)

Imports bnlearn (>= 4.5), data.table (>= 1.12.4), Rcpp (>= 1.0.2), magrittr (>= 1.5), R6 (>= 2.4.1), methods (>= 3.6.0)

Suggests visNetwork (>= 2.0.8), grDevices (>= 3.6.0), utils (>= 3.6.0), graphics (>= 3.6.0), stats (>= 3.6.0), testthat (>= 2.1.0)

LinkingTo Rcpp

URL https://github.com/dkesada/dbnR

License GPL-3

Encoding UTF-8

LazyData true

RoxygenNote 7.1.2

NeedsCompilation yes

Author David Quesada [aut, cre],
 Gabriel Valverde [ctb]

Maintainer David Quesada <dkesada@gmail.com>

Repository CRAN

Date/Publication 2021-09-29 11:00:02 UTC
R topics documented:

- acc_successions ... 3
- add_attr_to_fit ... 4
- approximate_inference 4
- approx_prediction_step 5
- bn_translate_exp .. 5
- calc_mu .. 6
- calc_mu_cpp .. 6
- calc_sigma ... 7
- calc_sigma_cpp .. 7
- Causlist ... 8
- check_time0_formatted 9
- cl_to_arc_matrix_cpp 9
- create_blacklist ... 10
- create_causlist_cpp 10
- create_natauslist_cpp 11
- crop_names_cpp .. 11
- cte_times_vel_cpp .. 12
- dmmhc .. 12
- dynamic_ordering ... 13
- exact_inference .. 13
- exact_inference_backwards 14
- exact_prediction_step 14
- expand_time_nodes ... 15
- filtered_fold_dt .. 16
- filter_same_cycle ... 16
- fit_dbn_params .. 17
- fold_dt ... 17
- fold_dt_rec .. 18
- forecast_ts .. 19
- generate_random_network_exp 20
- initialize_cl_cpp .. 21
- init_cl_cpp .. 21
- init_list_cpp .. 22
- learn_dbn_struc .. 22
- merge_nets ... 23
- motor ... 23
- mvn_inference .. 24
- natCauslist ... 25
- natcl_to_arc_matrix_cpp 26
- natParticle ... 26
- natPosition ... 27
- natPsoCtrl ... 29
- natPsoho .. 30
- natVelocity ... 31
- nat_cte_times_vel_cpp 32
- nat_pos_minus_pos_cpp 33
acc_successions

Returns a vector with the number of consecutive nodes in each level

Description

This method processes the vector of node levels to get the position of each node inside the level. E.g. c(1,1,2,2,3,4,4,5,5) turns into c(1,2,3,1,2,1,2,1,2)

Usage

acc_successions(nodes, res = NULL, prev = 0, acc = 0)

Arguments

- nodes: a vector with the level of each node
- res: the accumulative results of the sub successions
- prev: the level of the previous node processed
- acc: the accumulator of the index in the current sub successions
Value

the vector of sub successions in each level

add_attr_to_fit

Adds the mu vector and sigma matrix as attributes to the bn.fit or dbn.fit object

Description

Adds the mu vector and sigma matrix as attributes to the bn.fit or dbn.fit object to allow performing exact MVN inference on both cases.

Usage

```r
add_attr_to_fit(fit)
```

Arguments

- **fit**: a fitted bn or dbn

Value

the fitted net with attributes

approximate_inference

Performs approximate inference forecasting with the GDBN over a data set

Description

Given a bn.fit object, the size of the net and a data.set, performs approximate forecasting with bnlearn's cpdist function over the initial evidence taken from the data set.

Usage

```r
approximate_inference(dt, fit, size, obj_vars, ini, rep, len, num_p)
```

Arguments

- **dt**: data.table object with the TS data
- **fit**: bn.fit object
- **size**: number of time slices of the net
- **obj_vars**: variables to be predicted
- **ini**: starting point in the data set to forecast.
- **rep**: number of repetitions to be performed of the approximate inference
- **len**: length of the forecast
- **num_p**: number of particles to be used by bnlearn
approx_prediction_step

Value

the results of the forecast

approx_prediction_step

Performs approximate inference in a time slice of the dbn

Description

Given a bn.fit object and some variables, performs particle inference over such variables in the net for a given time slice.

Usage

```r
approx_prediction_step(fit, variables, particles, n = 50)
```

Arguments

- **fit**: bn.fit object
- **variables**: variables to be predicted
- **particles**: a list with the provided evidence
- **n**: the number of particles to be used by bnlearn

Value

the inferred particles

bn_translate_exp

Experimental function that translates a natPosition vector into a DBN network.

Description

Experimental function that translates a natPosition vector into a DBN network.

Usage

```r
bn_translate_exp(ps, ordering_raw, n_arcs, nodes)
```

Arguments

- **ps**: a position vector of natural numbers
- **ordering_raw**: the ordering of the variables
- **n_arcs**: the total number of arcs
- **nodes**: the name of all the nodes in the network
calc_mu

Calculate the mu vector of means of a Gaussian linear network. Front end of a C++ function.

Description

Calculate the mu vector of means of a Gaussian linear network. Front end of a C++ function.

Usage

calc_mu(fit)

Arguments

fit a bn.fit or dbn.fit object

Value

a named numeric vector of the means of each variable

Examples

dt_train <- dbnR::motor[200:2500]
net <- bnlearn::mmhc(dt_train)
fit <- bnlearn::bn.fit(net, dt_train, method = "mle")
mu <- calc_mu(fit)

calc_mu_cpp

Calculate the mu vector of means of a Gaussian linear network. This is the C++ backend of the function.

Description

Calculate the mu vector of means of a Gaussian linear network. This is the C++ backend of the function.

Usage

calc_mu_cpp(fit, order)

Arguments

fit a bn.fit object as a Rcpp::List
order a topological ordering of the nodes as a vector of strings
Value

the map with the nodes and their mu. Returns as a named numeric vector

Description

Calculate the sigma covariance matrix of a Gaussian linear network. Front end of a C++ function.

Usage

```r
calc_sigma(fit)
```

Arguments

- **fit**: a bn.fit or dbn.fit object

Value

a numeric covariance matrix of the nodes

Examples

```r
dt_train <- dbnR::motor[200:2500]
net <- bnlearn::mmhc(dt_train)
fit <- bnlearn::bn.fit(net, dt_train, method = "mle")
sigma <- calc_sigma(fit)
```

Description

Calculate the sigma covariance matrix of a Gaussian linear network. This is the C++ backend of the function.

Usage

```r
calc_sigma_cpp(fit, order)
```

Arguments

- **fit**: a bn.fit object as a Rcpp::List
- **order**: a topological ordering of the nodes as a vector of strings
Causlist

This file contains all the classes needed for the PSOHO structure learning algorithm. It was implemented as an independent package in https://github.com/dkesada/PSOHO and then merged into dbnR. All the original source files are merged into one to avoid bloating the R/ folder of the package.

Description

Constructor of the 'Causlist' class

Arguments

- ordering: a vector with the names of the nodes in t_0
- size: number of timeslices of the DBN

Details

The classes are now not exported because the whole algorithm is encapsulated inside the package and only the resulting dbn structure is wanted. As a result, many security checks have been omitted. R6 class that defines causal lists in the PSO

The causal lists will be the base of the positions and the velocities in the pso part of the algorithm.

Value

A new 'causlist' object

Fields

- cl: List of causal units
- size: Size of the DBN
- ordering: String vector defining the order of the nodes in a timeslice
check_time0_formatted Checks if the vector of names are time formatted to t0

Description

This will check if the names are properly time formatted in t_0 to be folded into more time slices. A vector is well formatted in t_0 when all of its column names end in 't_0'.

Usage

check_time0_formatted(obj)

Arguments

obj the vector of names

Value

TRUE if it is well formatted. FALSE in other case.

cl_to_arc_matrix_cpp Create a matrix with the arcs defined in a causlist object

Description

Create a matrix with the arcs defined in a causlist object

Usage

cl_to_arc_matrix_cpp(cl, ordering, rows)

Arguments

cl a causal list
ordering a list with the order of the variables in t_0
rows number of arcs in the network

Value

a list with a CharacterVector and a NumericVector
create_blacklist

Creates the blacklist of arcs from a folded data.table

Description
This will create the blacklist of arcs that are not to be learned in the second phase of the dmmhc. This includes arcs backwards in time or inside time-slices.

Usage
create_blacklist(name, size, acc = NULL, slice = 1)

Arguments
- name: the names of the first time slice, ended in _t_0
- size: the number of time slices of the net. Markovian 1 would be size 2
- acc: accumulator of the results in the recursion
- slice: current time slice that is being processed

Value
the two column matrix with the blacklisted arcs

create_causlist_cpp

Create a causal list from a DBN. This is the C++ backend of the function.

Description
Create a causal list from a DBN. This is the C++ backend of the function.

Usage
create_causlist_cpp(cl, net, size, ordering)

Arguments
- cl: an initialized causality list
- net: a dbn object treated as a list of lists
- size: the size of the DBN
- ordering: a list with the order of the variables in t_0

Value
a list with a CharacterVector and a NumericVector
create_natcauslist_cpp

Create a natural causal list from a DBN. This is the C++ backend of the function.

Description

Create a natural causal list from a DBN. This is the C++ backend of the function.

Usage

create_natcauslist_cpp(cl, net, ordering)

Arguments

cl an initialized causality list
net a dbn object treated as a list of lists
ordering a vector with the names of the variables in order

Value

the natCauslist equivalent to the DBN

crop_names_cpp If the names of the nodes have "_t_0" appended at the end, remove it

Description

If the names of the nodes have "_t_0" appended at the end, remove it

Usage

crop_names_cpp(names)

Arguments

names a vector with the names of the nodes in t_0

Value

the vector with the names cropped
cte_times_vel_cpp
Multiply a Velocity by a constant real number

Description

Multiply a Velocity by a constant real number

Usage

cte_times_vel_cpp(k, vl, abs_op, max_op)

Arguments

- **k**: the constant real number
- **vl**: the Velocity’s causal list
- **abs_op**: the final number of 1,-1 operations
- **max_op**: the maximum number of directions in the causal list

Value

a list with the Velocity’s new causal list and number of operations

dmmhc
Learns the structure of a markovian n DBN model from data

Description

Learns a gaussian dynamic Bayesian network from a dataset. It allows the creation of markovian n nets rather than only markov 1.

Usage

dmmhc(dt, size = 2, f_dt = NULL, blacklist = NULL, intra = TRUE, ...)

Arguments

- **dt**: the data.frame or data.table to be used
- **size**: number of time slices of the net. Markovian 1 would be size 2
- **f_dt**: previously folded dataset, in case some specific rows have to be removed after the folding
- **blacklist**: an optional matrix indicating forbidden arcs between nodes
- **intra**: if TRUE, the intra-slice arcs of the network will be learnt. If FALSE, they will be ignored
- **...**: additional parameters for rsmax2 function
dynamic_ordering

Value
the structure of the net

dynamic_ordering throws the ordering of a single time slice in a DBN

Description
This method gets the structure of a DBN, isolates the nodes of a single time slice and then gives a topological ordering of them.

Usage
dynamic_ordering(structure)

Arguments
structure the structure of the network.

Value
the ordered nodes of t_0

exact_inference

Performs exact inference forecasting with the GDBN over a data set

Description
Given a bn.fit object, the size of the net and a data.set, performs exact forecasting over the initial evidence taken from the data set.

Usage
exact_inference(dt, fit, size, obj_vars, ini, len, prov_ev)

Arguments
dt data.table object with the TS data
fit bn.fit object
size number of time slices of the net
obj_vars variables to be predicted
ini starting point in the data set to forecast.
len length of the forecast
prov_ev variables to be provided as evidence in each forecasting step
exact_inference_backwards

Performs exact inference smoothing with the GDBN over a data set

Description

Given a bn.fit object, the size of the net and a data.set, performs exact smoothing over the initial evidence taken from the data set. Take notice that the smoothing is done backwards in time, as opposed to forecasting.

Usage

exact_inference_backwards(dt, fit, size, obj_vars, ini, len, prov_ev)

Arguments

dt data.table object with the TS data
fit bn.fit object
size number of time slices of the net
obj_vars variables to be predicted. Should be in the oldest time step
ini starting point in the data set to smooth
len length of the smoothing
prov_ev variables to be provided as evidence in each forecasting step. Should be in the oldest time step

Value

the results of the smoothing

exact_prediction_step

Performs exact inference in a time slice of the dbn

Description

Given a bn.fit object and some variables, performs exact MVN inference over such variables in the net for a given time slice.

Usage

exact_prediction_step(fit, variables, evidence)
expand_time_nodes

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>fit</td>
<td>list with the mu and sigma of the MVN model</td>
</tr>
<tr>
<td>variables</td>
<td>variables to be predicted</td>
</tr>
<tr>
<td>evidence</td>
<td>a list with the provided evidence</td>
</tr>
</tbody>
</table>

Value

the inferred particles

Description

This method extends the names of the nodes to the given maximum and maintains the order of the nodes in each slice, so as to plotting the nodes in all slices relative to their homonyms in the first slice.

Usage

`expand_time_nodes(name, acc, max, i)`

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>name</td>
<td>the names of the nodes in the t_0 slice</td>
</tr>
<tr>
<td>acc</td>
<td>accumulator of the resulting names in the recursion</td>
</tr>
<tr>
<td>max</td>
<td>number of time slices in the net</td>
</tr>
<tr>
<td>i</td>
<td>current slice being processed</td>
</tr>
</tbody>
</table>

Value

the extended names
filter_same_cycle
Filter the instances in a data.table that have values of different ids in each row

Description

Given an id variable that labels the different instances of a time series inside a dataset, discard the rows that have values from more than 1 id.

Usage

```r
filter_same_cycle(f_dt, size, id_var)
```

Arguments

- `f_dt` : folded data.table
- `size` : the size of the data.table
- `id_var` : the variable that labels each individual instance of the time series
fit_dbn_params

Fits a markovian n DBN model

Description

Fits the parameters of the DBN via MLE or BGE. The "mu" vector of means and the "sigma" covariance matrix are set as attributes of the dbn.fit object for future exact inference.

Usage

```r
fit_dbn_params(net, f_dt, ...)
```

Arguments

- `net` : the structure of the DBN
- `f_dt` : a folded data.table
- `...` : additional parameters for the `bn.fit` function

Value

the fitted net

Examples

```r
size = 3
dt_train <- dbnR::motor[200:2500]
net <- learn_dbn_struc(dt_train, size)
f_dt_train <- fold_dt(dt_train, size)
fit <- fit_dbn_params(net, f_dt_train, method = "mle")
```

fold_dt

Widens the dataset to take into account the t previous time slices

Description

This will widen the dataset to put the t previous time slices in each row, so that it can be used to learn temporal arcs in the second phase of the dmmhc.

Usage

```r
fold_dt(dt, size)
```
Arguments

- **dt**: the data.table to be treated
- **size**: number of time slices to unroll. Markovian 1 would be size 2

Value

the extended data.table

Examples

```r
data(motor)
size <- 3
dt <- fold_dt(motor, size)
```

fold_dt_rec

Widens the dataset to take into account the t previous time slices

Description

This will widen the dataset to put the t previous time slices in each row, so that it can be used to learn temporal arcs in the second phase of the dmmhc. Recursive version not exported, the user calls from the handler 'fold_dt'

Usage

```r
fold_dt_rec(dt, n_prev, size, slice = 1)
```

Arguments

- **dt**: the data.table to be treated
- **n_prev**: names of the previous time slice
- **size**: number of time slices to unroll. Markovian 1 would be size 2
- **slice**: the current time slice being treated. Should not be modified when first calling.

Value

the extended data.table
forecast_ts

Performs forecasting with the GDBN over a data set

Description

Given a `dbn.fit` object, the size of the net and a folded data set, performs a forecast over the initial evidence taken from the data set.

Usage

```r
forecast_ts(
  dt,             # data.table object with the TS data
  fit,            # dbn.fit object
  size,           # number of time slices of the net
  obj_vars,       # variables to be predicted
  ini = 1,        # starting point in the data set to forecast.
  len = dim(dt)[1] - ini, # length of the forecast
  rep = 1,        # number of times to repeat the approximate forecasting
  num_p = 50,     # number of particles in the approximate forecasting
  print_res = TRUE, # if TRUE prints the mae and sd metrics of the forecast
  plot_res = TRUE, # if TRUE plots the results of the forecast
  mode = "exact", # "exact" for exact inference, "approx" for approximate
  prov_ev = NULL  # variables to be provided as evidence in each forecasting step
)
```

Arguments

- `dt`: data.table object with the TS data
- `fit`: `dbn.fit` object
- `size`: number of time slices of the net
- `obj_vars`: variables to be predicted
- `ini`: starting point in the data set to forecast.
- `len`: length of the forecast
- `rep`: number of times to repeat the approximate forecasting
- `num_p`: number of particles in the approximate forecasting
- `print_res`: if TRUE prints the mae and sd metrics of the forecast
- `plot_res`: if TRUE plots the results of the forecast
- `mode`: "exact" for exact inference, "approx" for approximate
- `prov_ev`: variables to be provided as evidence in each forecasting step

Value

The results of the forecast
generate_random_network_exp

Experimental function that generates a random DBN and samples a dataset that defines it

Description

This function generates both a random DBN and a dataset that can be used to learn its structure from data. It's intended for experimental use.

Usage

```r
generate_random_network_exp(
  n_vars,  # number of desired variables per time-slice
  size,  # desired size of the networks
  min_mu,  # minimum mean allowed for the variables
  max_mu,  # maximum mean allowed for the variables
  min_sd,  # minimum standard deviation allowed for the variables
  max_sd,  # maximum standard deviation allowed for the variables
  min_coef,  # minimum coefficient allowed for the parent nodes
  max_coef,  # maximum coefficient allowed for the parent nodes
  seed = NULL
)
```

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>n_vars</td>
<td>number of desired variables per time-slice</td>
</tr>
<tr>
<td>size</td>
<td>desired size of the networks</td>
</tr>
<tr>
<td>min_mu</td>
<td>minimum mean allowed for the variables</td>
</tr>
<tr>
<td>max_mu</td>
<td>maximum mean allowed for the variables</td>
</tr>
<tr>
<td>min_sd</td>
<td>minimum standard deviation allowed for the variables</td>
</tr>
<tr>
<td>max_sd</td>
<td>maximum standard deviation allowed for the variables</td>
</tr>
<tr>
<td>min_coef</td>
<td>minimum coefficient allowed for the parent nodes</td>
</tr>
<tr>
<td>max_coef</td>
<td>maximum coefficient allowed for the parent nodes</td>
</tr>
<tr>
<td>seed</td>
<td>seed for the random number generator</td>
</tr>
</tbody>
</table>

Examples

```r
size = 3
data(motor)
dt_train <- motor[200:2500]
dt_val <- motor[2501:3000]
obj <- c("pm_t_0")
net <- learn_dbn_struc(dt_train, size)
f_dt_train <- fold_dt(dt_train, size)
f_dt_val <- fold_dt(dt_val, size)
fit <- fit_dbn_params(net, f_dt_train, method = "mle")
res <- suppressWarnings(forecast_ts(f_dt_val, fit, size,
  obj_vars = obj, print_res = FALSE, plot_res = FALSE))
```
initialize_cl_cpp

- **max_coef**: maximum coefficient allowed for the parent nodes
- **seed**: the seed of the experiment

Value

a dictionary with the original network structure and the sampled dataset

initialize_cl_cpp
Create a causality list and initialize it

Description

Create a causality list and initialize it

Usage

`initialize_cl_cpp(ordering, size)`

Arguments

- **ordering**: a list with the order of the variables in t_0
- **size**: the size of the DBN

Value

a causality list

init_cl_cpp
Initialize the nodes vector

Description

Initialize the vector in C++

Usage

`init_cl_cpp(n_nodes)`

Arguments

- **n_nodes**: number of receiving nodes

Value

a list with the randomly initialized particles
init_list_cpp Initialize the particles

Description
Initialize the particles

Usage
init_list_cpp(nodes, size, n_inds)

Arguments
nodes the names of the nodes
size the size of the DBN
n_inds the number of particles

Value
a list with the randomly initialized particles

learn_dbn_struc Learns the structure of a markovian n DBN model from data

Description
Learns a gaussian dynamic Bayesian network from a dataset. It allows the creation of markovian n nets rather than only markov 1.

Usage
learn_dbn_struc(dt, size = 2, method = "dmmhc", f_dt = NULL, ...)

Arguments
dt the data.frame or data.table to be used
size number of time slices of the net. Markovian 1 would be size 2
method the structure learning method of choice to use
f_dt previously folded dataset, in case some specific rows have to be removed after the folding
... additional parameters for rsmax2 function

Value
the structure of the net
merge_nets

Examples

 data("motor")
 net <- learn_dbn_struc(motor, size = 3)

merge_nets

Merge and replicates the arcs in the static BN into all the time-slices in the DBN

Description

This will join the static net and the state transition net by replicating the arcs in the static net in all the time slices.

Usage

 merge_nets(net0, netCP1, size, acc = NULL, slice = 1)

Arguments

 net0 the structure of the static net
 netCP1 the state transition net
 size the number of time slices of the net. Markovian 1 would be size 2
 acc accumulator of the results in the recursion
 slice current time slice that is being processed

Value

 the merged nets

motor

Multivariate time series dataset on the temperature of an electric motor

Description

Data from several sensors on an electric motor that records different benchmark sessions of measurements at 2 Hz. The dataset is reduced to 3000 instances from the 60th session in order to include it in the package for testing purposes. For the complete dataset, refer to the source.

Usage

 data(motor)
Format

An object of class data.table (inherits from data.frame) with 3000 rows and 11 columns.

Source

mvn_inference

Performs inference over a multivariate normal distribution

Description

Performs inference over a multivariate normal distribution given some evidence. After converting a Gaussian linear network to its MVN form, this kind of inference can be performed. It's recommended to use the predict_bn or predict_dt functions instead unless you need the posterior mean vector and covariance matrix.

Usage

```r
mvn_inference(mu, sigma, evidence)
```

Arguments

- `mu`: the mean vector
- `sigma`: the covariance matrix
- `evidence`: a named vector with the values and names of the variables given as evidence

Value

the posterior mean and covariance matrix

Examples

```r
as_named_vector <- function(dt){
  res <- as.numeric(dt)
  names(res) <- names(dt)
  return(res)
}
size = 3
data(motor)
dt_train <- motor[200:2500]
dt_val <- motor[2501:3000]
obj <- c("pm_t_0")

net <- learn_dbn_struc(dt_train, size)
f_dt_train <- fold_dt(dt_train, size)
f_dt_val <- fold_dt(dt_val, size)
```
ev <- f_dt_val[, .SD, .SDcols = obj]
fit <- fit_dbn_params(net, f_dt_train, method = "mle")

pred <- mvn_inference(calc_mu(fit), calc_sigma(fit), as_named_vector(ev))

This file contains all the classes needed for the natPSOHO structure learning algorithm. It was implemented as an independent package in https://github.com/dkesada/natPSOHO and then merged into dbnR. All the original source files are merged into one to avoid bloating the R/ folder of the package.

Description

Constructor of the 'natCauslist' class

Arguments

ordering a vector with the names of the nodes in t_0
ordering_raw a vector with the names of the nodes without the appended "_t_0"

Details

The classes are now not exported because the whole algorithm is encapsulated inside the package and only the resulting dbn structure is wanted. As a result, many security checks have been omitted.

R6 class that defines causal lists in the PSO

The causal lists will be the base of the positions and the velocities in the pso part of the algorithm. They will not have the same structure as their binary counterparts, but their class skeleton will serve as a base.

Value

A new 'natCauslist' object

Fields

c1 List of causal units
ordering String vector defining the order of the nodes in t_0
ordering String vector defining the order of the nodes without the appended "_t_0"
natcl_to_arc_matrix_cpp

Create a matrix with the arcs defined in a causlist object

Description

Create a matrix with the arcs defined in a causlist object

Usage

`natcl_to_arc_matrix_cpp(cl, ordering, rows)`

Arguments

- `cl` : a causal list
- `ordering` : a list with the order of the variables in t_0
- `rows` : number of arcs in the network

Value

a StringMatrix with the parent nodes and the children nodes

natParticle

R6 class that defines a Particle in the PSO algorithm

Description

Constructor of the `natParticle` class

Evaluate the score of the particle’s position

Evaluate the score of the particle’s position. Updates the local best if the new one is better.

Update the position of the particle with the velocity

Update the position of the particle given the constants after calculating the new velocity

Arguments

- `nodes` : a vector with the names of the nodes
- `ordering` : a vector with the names of the nodes in t_0
- `ordering_raw` : a vector with the names of the nodes without the appended "_t_0"
- `max_size` : maximum number of timeslices of the DBN
- `v_probs` : vector of probabilities for the velocity sampling
- `p` : parameter of the truncated geometric distribution
- `score` : bnlearn score function used
dataset to evaluate the fitness of the particle
parameter that varies the effect of the inertia
parameter that varies the effect of the global best
position of the global best
parameter that varies the effect of the local best
vector that defines the range of random variation of gb_cte and lb_cte

Details
A particle has a Position, a Velocity and a local best

Value
A new 'natParticle' object
The score of the current position

Fields
position of the particle
velocity of the particle
velocity that takes the particle to the global best
velocity that takes the particle to the local best
local best score obtained
local best position found
bnlearn score function used

Description
Constructor of the 'natPosition' class
Translate the vector into a DBN network
Uses this object private cl and transforms it into a DBN.
Add a velocity to the position
Given a natVelocity object, add it to the current position.
Return the static node ordering
This function takes as input a dbn and return the node ordering of the variables inside a timeslice.
This ordering is needed to understand a position vector.
Translate a DBN into a position vector
This function takes as input a network from a DBN and transforms the structure into a vector of natural numbers if it is a valid DBN. Valid DBNs have only inter-timeslice edges and only allow variables in t_0 to have parents.

Generates a random position

This function takes as input the number of variables, the maximum size and the parameter p and returns a random position with arcs sampled either from the uniform distribution or from a truncated geometric distribution. Much faster than the binary implementation with lists of lists and random bn generation into translation.

Recount the number of arcs in the cl

Arguments

- `nodes` a vector with the names of the nodes
- `ordering` a vector with the names of the nodes in t_0
- `ordering_raw` a vector with the names of the nodes without the appended "_t_0"
- `max_size` Maximum number of timeslices of the DBN
- `vl` a natVelocity object
- `net` a dbn object
- `n_vars` the number of variables in t_0
- `p` the parameter of the truncated geometric sampler. If lesser or equal to 0, a uniform distribution will be used instead.

Details

A natPosition represents a single HO-DBN structure with a vector. Its function is to encode the solutions in the PSO framework. Each particle will have a position.

Value

A new `natPosition` object

- a dbn object
- the ordering of the nodes in t_0
- a random position
- the number of arcs

Fields

- `n_arcs` Number of arcs in the network
- `max_size` Maximum number of timeslices of the DBN
- `p` Parameter of the sampling truncated geometric distribution
- `nodes` Names of the nodes in the network
natPsoCtrl

R6 class that defines the PSO controller

Description

Constructor of the 'natPsoCtrl' class

If the names of the nodes have "_t_0" appended at the end, remove it

Initialize the particles for the algorithm to random positions and velocities.

Arguments

- n_it: maximum number of iterations of the pso algorithm
- in_cte: parameter that varies the effect of the inertia
- gb_cte: parameter that varies the effect of the global best
- lb_cte: parameter that varies the effect of the local best
- r_probs: vector that defines the range of random variation of gb_cte and lb_cte
- cte: boolean that defines whether the parameters remain constant or vary as the execution progresses
- nodes: a vector with the names of the nodes
- ordering: a vector with the names of the nodes in t_0
- max_size: maximum number of timeslices of the DBN
- n_inds: number of particles that the algorithm will simultaneously process
- v_probs: vector that defines the random velocity initialization probabilities
- p: parameter of the truncated geometric distribution for sampling edges
- score: bnlearn score function used

Details

The controller will encapsulate the particles and run the algorithm. This time, it extends the class "PsoCtrl" in the "structure_learning_psoho.R" file, because both controllers are practically the same. The particles, positions and velocities are too different to extend one another though.

Value

A new 'natPsoCtrl' object

the ordering with the names cropped
Learn a DBN structure with a PSO approach

Description

Given a dataset and the desired Markovian order, this function returns a DBN structure ready to be fitted. Original algorithm at https://link.springer.com/chapter/10.1007/978-3-030-86271-8_14

Usage

```r
natPsoho(
  dt,
  size,
  f_dt = NULL,
  n_inds = 50,
  n_it = 50,
  in_cte = 1,
  gb_cte = 0.5,
  lb_cte = 0.5,
  v_probs = c(10, 65, 25),
  r_probs = c(-0.5, 1.5),
  score = "bge",
  p = 0.06,
  cte = TRUE
)
```

Arguments

- `dt`: a data.table with the data of the network to be trained
- `size`: Maximum number of timeslices of the DBN allowed. Markovian order 1 equals size 2, and so on
- `f_dt`: previously folded dataset, in case some specific rows have to be removed after the folding
- `n_inds`: Number of particles used in the algorithm
- `n_it`: Maximum number of iterations that the algorithm can perform
- `in_cte`: parameter that varies the effect of the inertia
- `gb_cte`: parameter that varies the effect of the global best
- `lb_cte`: parameter that varies the effect of the local best
- `v_probs`: vector that defines the random velocity initialization probabilities
- `r_probs`: vector that defines the range of random variation of gb_cte and lb_cte
- `score`: bnlearn score function used
- `p`: parameter of the truncated geometric distribution for sampling edges
- `cte`: a boolean that determines whether the inertia, global best and local best parameters remain constant or vary as the algorithm progresses. Inertia and local best values decrease as the global best increases, to favor exploration at first and exploitation at the end
natVelocity

Value

A `dbn` object with the structure of the best network found

Description

Constructor of the `natVelocity` class. Only difference with the `natCauslist` one is that it has a negative cl attribute.

Getter of the abs_op attribute.

Return the number of operations that the velocity performs

Setter of the abs_op attribute. Intended for inside use only. This should be a 'protected' function in Java-like OOP, but there’s no such thing in R6. This function should not be used from outside the package.

Randomizes the Velocity’s directions.

Given two positions, returns the velocity that gets the first position to the other one.

Add both velocities directions

Multiply the Velocity by a constant real number

This function multiplies the Velocity by a constant real number. It is non deterministic by definition. When calculating $k \times |V|$, the result will be floored and bounded to the set $[-\text{max}_\text{op}, \text{max}_\text{op}]$, where max_op is the maximum number of arcs that can be present in the network.

Arguments

- ordering: a vector with the names of the nodes in t_0
- ordering_raw: a vector with the names of the nodes without the appended "t_0"
- max_size: maximum number of timeslices of the DBN
- n: the new number of operations that the velocity performs
- probs: the weight of each value -1,0,1. They define the probability that each of them will be picked
- p: the parameter of the geometric distribution
- ps1: the origin natPosition object
- ps2: the objective natPosition object
- vl: a Velocity object
- k: a real number

Details

The velocities will be defined as two natural vectors where each element in them represents the arcs from a temporal family of nodes to a receiving node. 1-bits in the binary representation of this number represent arc additions/deletions
Value

A new ‘natVelocity’ object
the natVelocity that gets the ps1 to ps2

Fields

abs_op Total number of operations 1 or -1 in the velocity
max_size Maximum number of timeslices of the DBN
cl_neg Negative part of the velocity

nat_cste_times_vel_cpp Multiply a Velocity by a constant real number

Description

Multiply a Velocity by a constant real number

Usage

nat_cste_times_vel_cpp(k, vl, vl_neg, abs_op, max_size)

Arguments

k the constant real number
vl the Velocity’s positive causal list
vl_neg the Velocity’s negative causal list
abs_op the final number of 1,-1 operations
max_size the maximum size of the network

Value

the new total number of operations
nat_pos_minus_pos_cpp

Subtracts two natPositions to obtain the natVelocity that transforms ps1 into ps2

Description
Subtracts two natPositions to obtain the natVelocity that transforms ps1 into ps2

Usage
nat_pos_minus_pos_cpp(ps1, ps2, vl, vl_neg)

Arguments
- ps1: the first position’s causal list
- ps2: the second position’s causal list
- vl: the natVelocity’s positive causal list
- vl_neg: the natVelocity’s negative causal list

Value
the velocity’s causal lists by reference and the number of operations by return

nat_pos_plus_vel_cpp
Add a velocity to a position

Description
Add a velocity to a position

Usage
nat_pos_plus_vel_cpp(cl, vl, vl_neg, n_arcs)

Arguments
- cl: the position’s causal list
- vl: the velocity’s positive causal list
- vl_neg: velocity’s negative causal list
- n_arcs: number of arcs present in the position. Remainder: can’t return integers by reference, they get casted to 1 sized vectors

Value
the new position by reference and the new number of arcs by return
Description

Adds two natVelocities represented as two numeric vectors: one with the positive part and one with the negative part. Adding them is a process that does a bitwise 'or' with both the positive and negative parts of the two velocities, adjusts the new abs_op, removes duplicated arcs in the final velocity by using a bitwise 'xor' with both parts and adjusts the final abs_op. The results are returned via modifying the original vl1 and vl1_neg by reference and returning the final abs_op normally. I can’t have an integer edited by reference because it automatically gets casted and cannot be used to return values.

Usage

nat_vel_plus_vel_cpp(vl1, vl1_neg, vl2, vl2_neg, abs_op1, abs_op2)

Arguments

vl1 the first Velocity's positive part
vl1_neg the first Velocity's negative part
vl2 the second Velocity's positive part
vl2_neg the second Velocity's negative part
abs_op1 the number of 1,-1 operations in the first velocity
abs_op2 the number of 1,-1 operations in the second velocity

Value

the total number of resulting operations

Description

Given the names of the desired variables, this function generates the names of the variables in a DBN without needing a previous dataset. It’s just a wrapper around the ‘fold_dt’ function.

Usage

nodes_gen_exp(ordering, size)
Arguments

ordering the names of the variables
size the desired size of the dbn

Value

a dictionary with the variable names in t_0 and in all other time slices

node_levels

Defines a level for every node in the net

Description

Calculates the levels in which the nodes will be distributed when plotting the structure. This level is defined by their parent nodes: a node with no parents will always be in the level 0. Subsequently, the level of a node will be one more of the maximum level of his parents.

Usage

node_levels(net, order, lvl = 1, acc = NULL)

Arguments

net the structure of the network.
order a topological order of the nodes, with the orphan nodes in the first place. See node.ordering
lvl current level being processed
acc accumulator of the nodes already processed

Value

a matrix with the names of the nodes in the first row and their level on the second
Description
Given a natural number, return the natural number equivalent to its one-hot encoding. Examples: 3 -> 100 -> 4, 5 -> 10000 -> 16

Usage
\[
\text{one_hot(nat)}
\]

Arguments
- `nat` the natural number to convert

Value
the converted number

Description
Given a natural number, return the natural number equivalent to its one-hot encoding. Instead of `pow`, the `'«'` operator will be used. Examples: 3 -> 100 -> 4, 5 -> 10000 -> 16

Usage
\[
\text{one_hot_cpp(nat)}
\]

Arguments
- `nat` the natural number to convert

Value
the converted number
ordering_gen_exp

Generates the names of n variables.

Description

Given the total number of variables, this function generates a character vector with variables named "Xi", where i is a number in the interval [0,n-1].

Usage

ordering_gen_exp(n)

Arguments

- **n**: the total number of variables desired

Value

- a character vector with the variable names

Particle

R6 class that defines a Particle in the PSO algorithm

Description

Constructor of the 'Particle' class

Evaluate the score of the particle's position

Evaluate the score of the particle's position. Updates the local best if the new one is better.

Update the position of the particle with the velocity

Update the position of the particle given the constants after calculating the new velocity

Arguments

- **ordering**: a vector with the names of the nodes in t_0
- **size**: number of timeslices of the DBN
- **v_probs**: vector that defines the random velocity initialization probabilities
- **score**: bnlearn score function used
- **dt**: dataset to evaluate the fitness of the particle
- **in_cte**: parameter that varies the effect of the inertia
- **gb_c te**: parameter that varies the effect of the global best
- **gb_ps**: position of the global best
- **lb_c te**: parameter that varies the effect of the local best
- **r_probs**: vector that defines the range of random variation of gb_c te and lb_c te
Details

A particle has a Position, a Velocity and a local best value.

Value

A new 'Particle' object

The score of the current position

Fields

- ps: position of the particle
- cl: velocity of the particle
- lb: local best score obtained
- lb_ps: local best position found
- score: bnlearn score function used

plot_dynamic_network
Plots a dynamic Bayesian network in a hierarchical way

Description

To plot the DBN, this method first computes a hierarchical structure for a time slice and replicates it for each slice. Then, it calculates the relative position of each node with respect to his equivalent in the first slice. The result is a net where each time slice is ordered and separated from one another, where the leftmost slice is the oldest and the rightmost represents the present time.

Usage

```
plot_dynamic_network(structure, offset = 200)
```

Arguments

- `structure`: the structure or fit of the network.
- `offset`: the blank space between time slices

Value

the visualization of the DBN

Examples

```r
size = 3
dt_train <- dbnR::motor[200:2500]
net <- learn_dbn_struc(dt_train, size)
plot_dynamic_network(net)
```
plot_network
Plots a Bayesian networks in a hierarchical way

Description
Calculates the levels of each node and then plots them in a hierarchical layout in visNetwork.

Usage
`plot_network(structure)`

Arguments
- `structure`: the structure or fit of the network.

Examples
```r
dt_train <- dbnR::motor[200:2500]
net <- bnlearn::mmhc(dt_train)
plot_network(net)
fit <- bnlearn::bn.fit(net, dt_train, method = "mle")
plot_network(fit)  # Works for both the structure and the fitted net
```

Position
R6 class that defines DBNs as causality lists

Description
Constructor of the 'causlist' class
Translate the causality list into a DBN network
Uses this object private causality list and transforms it into a DBN.
Add a velocity to the position
Given a Velocity object, add it to the current position.
Given another position, returns the velocity that gets this position to the other.
Return the static node ordering
This function takes as input a dbn and return the node ordering of the variables inside a timeslice. This ordering is needed to understand a causal list.
Translate a DBN into a causality list
This function takes as input a network from a DBN and transforms the structure into a causality list if it is a valid DBN. Valid DBNs have only inter-timeslice edges and only allow variables in t_0 to have parents.
Generates a random DBN valid for causality list translation

This function takes as input a list with the names of the nodes and the desired size of the network and returns a random DBN structure.

Fixes a DBN structure to make it suitable for causality list translation

This function takes as input a DBN structure and removes the intra-timeslice arcs and the arcs that end in a node not in t_0.

Arguments

- vl: a Velocity object
- ps: a Position object
- nodes: a character vector with the names of the nodes in the net
- size: the desired size of the DBN
- net: the DBN structure
- nodes_t_0: a vector with the names of the nodes in t_0

Details

A causality list has a list with causal units, a size representing the Markovian order of the network and a specific node ordering.

Value

- A new ‘causlist’ object
- a dbn object
- the ordering of the nodes in t_0
- a causlist object
- a random dbn structure
- the fixed network

Fields

- n_arcs: Number of arcs in the network
- nodes: Names of the nodes in the network
pos_minus_pos_cpp

Subtracts two Positions to obtain the Velocity that transforms one into the other

Description
Subtracts two Positions to obtain the Velocity that transforms one into the other

Usage
pos_minus_pos_cpp(cl, ps, vl)

Arguments
- cl: the first position’s causal list
- ps: the second position’s causal list
- vl: the Velocity’s causal list

Value
a list with the Velocity’s causal list and the number of operations

pos_plus_vel_cpp

Add a velocity to a position

Description
Add a velocity to a position

Usage
pos_plus_vel_cpp(cl, vl, n_arcs)

Arguments
- cl: the position’s causal list
- vl: the velocity’s causal list
- n_arcs: number of arcs present in the position

Value
a list with the modified position and the new number of arcs
predict_bn

Performs inference over a fitted GBN

Description

Performs inference over a Gaussian BN. It’s thought to be used in a map for a data.table, to use as evidence each separate row. If not specifically needed, it’s recommended to use the function `predict_dt` instead.

Usage

`predict_bn(fit, evidence)`

Arguments

- **fit** — the fitted bn
- **evidence** — values of the variables used as evidence for the net

Value

the mean of the particles for each row

Examples

```r
size = 3
data(motor)
dt_train <- motor[200:2500]
dt_val <- motor[2501:3000]
net <- learn_dbn_struc(dt_train, size)
f_dt_train <- fold_dt(dt_train, size)
f_dt_val <- fold_dt(dt_val, size)
fit <- fit_dbn_params(net, f_dt_train, method = "mle")
res <- f_dt_val[, predict_bn(fit, .SD), by = 1:nrow(f_dt_val)]
```

predict_dt

Performs inference over a test data set with a GBN

Description

Performs inference over a test data set, plots the results and gives metrics of the accuracy of the results.

Usage

`predict_dt(fit, dt, obj_nodes, verbose = T)`
PsoCtrl

Arguments

fit the fitted bn
dt the test data set
obj_nodes the nodes that are going to be predicted. They are all predicted at the same time
verbose if TRUE, displays the metrics and plots the real values against the predictions

Value

the prediction results

Examples

size = 3
data(motor)
dt_train <- motor[200:2500]
dt_val <- motor[2501:3000]

With a DBN
obj <- c("pm_t_0")
net <- learn_dbn_struc(dt_train, size)
f_dt_train <- fold_dt(dt_train, size)
f_dt_val <- fold_dt(dt_val, size)
fit <- fit_dbn_params(net, f_dt_train, method = "mle")
res <- suppressWarnings(predict_dt(fit, f_dt_val, obj_nodes = obj, verbose = FALSE))

With a Gaussian BN directly from bnlearn
obj <- c("pm")
net <- bnlearn::mmhc(dt_train)
fit <- bnlearn::bn.fit(net, dt_train, method = "mle")
res <- suppressWarnings(predict_dt(fit, dt_val, obj_nodes = obj, verbose = FALSE))

PsoCtrl

R6 class that defines the PSO controller

Description

Constructor of the ‘PsoCtrl’ class
Getter of the cluster attribute
Transforms the best position found into a bn structure and returns it
Main function of the pso algorithm.
Initialize the particles for the algorithm to random positions and velocities.
Evaluate the particles and update the global best
Modify the PSO parameters after each iteration
Arguments

- **n_it** maximum number of iterations of the pso algorithm
- **in_cte** parameter that varies the effect of the inertia
- **gb_cte** parameter that varies the effect of the global best
- **lb_cte** parameter that varies the effect of the local best
- **r_probs** vector that defines the range of random variation of gb_cte and lb_cte
- **cte** a boolean that determines whether the parameters remain constant or vary as the algorithm progresses. The increases and decreases are calculated as a function of the total number of iterations, decreasing until close to 0 and increasing until close to 1.
- **ordering** a vector with the names of the nodes in t_0
- **size** number of timeslices of the DBN
- **n_inds** number of particles that the algorithm will simultaneously process
- **v_probs** vector that defines the random velocity initialization probabilities
- **score** bnlearn score function used
- **dt** the dataset used to evaluate the position

Details

The controller will encapsulate the particles and run the algorithm.

Value

A new `PsoCtrl` object

- the cluster attribute
- the size attribute

Fields

- **parts** list with all the particles in the algorithm
- **cl** cluster for the parallel computations
- **n_it** maximum number of iterations of the pso algorithm
- **in_cte** parameter that varies the effect of the inertia
- **gb_cte** parameter that varies the effect of the global best
- **lb_cte** parameter that varies the effect of the local best
- **b_ps** global best position found
- **b_scr** global best score obtained
- **r_probs** vector that defines the range of random variation of gb_cte and lb_cte
- **cte** boolean that defines whether the parameters remain constant or vary as the execution progresses
- **in_var** decrement of the inertia each iteration
- **gb_var** increment of the global best parameter each iteration
- **lb_var** increment of the local best parameter each iteration
Description

Given a dataset and the desired Markovian order, this function returns a DBN structure ready to be fitted. It requires a folded dataset. Original algorithm at https://doi.org/10.1109/BRC.2014.6880957

Usage

```r
psoho(
  dt,
  size,
  f_dt = NULL,
  n_inds = 50,
  n_it = 50,
  in_cte = 1,
  gb_cte = 0.5,
  lb_cte = 0.5,
  v_probs = c(10, 65, 25),
  r_probs = c(-0.5, 1.5),
  score = "bge",
  cte = TRUE
)
```

Arguments

- `dt` a data.table with the data of the network to be trained
- `size` Number of timeslices of the DBN. Markovian order 1 equals size 2, and so on.
- `f_dt` previously folded dataset, in case some specific rows have to be removed after the folding
- `n_inds` Number of particles used in the algorithm.
- `n_it` Maximum number of iterations that the algorithm can perform.
- `in_cte` parameter that varies the effect of the inertia
- `gb_cte` parameter that varies the effect of the global best
- `lb_cte` parameter that varies the effect of the local best
- `v_probs` vector that defines the random velocity initialization probabilities
- `r_probs` vector that defines the range of random variation of gb_cte and lb_cte
- `score` bnlearn score function used
- `cte` a boolean that determines whether the inertia, global best and local best parameters remain constant or vary as the algorithm progresses. Inertia and local best values decrease as the global best increases, to favor exploration at first and exploitation at the end.
Value

A `dbn` object with the structure of the best network found

randomize_vl_cpp

Randomize a velocity with the given probabilities

Description

Randomize a velocity with the given probabilities

Usage

randomize_vl_cpp(vl, probs)

Arguments

vl
a velocity list
probs
the probabilities of each value in the set -1,0,1

Value

a velocity list with randomized values

recount_arcs_exp

Experimental function that recounts the number of arcs in the position

Description

Experimental function that recounts the number of arcs in the position

Usage

recount_arcs_exp(ps)

Arguments

ps
a position vector of natural numbers

Value

the number of arcs
reduce_freq

Reduce the frequency of the time series data in a data.table

Description

In a time series dataset, there is a time difference between one row and the next one. This function reduces the number of rows from its current frequency to the desired one. Instead of the frequency in Hz, the number of seconds between rows is asked (Hz = 1/s).

Usage

reduce_freq(dt, obj_freq, curr_freq, id_var = NULL)

Arguments

dt the original data.table
obj_freq the desired number of seconds between rows
curr_freq the number of seconds between rows in the original dataset
id_var optional variable that labels different time series in a dataset, to avoid averaging values from different processes

Value

the data.table with the desired frequency

rename_nodes_cpp

Return a list of nodes with the time slice appended up to the desired size of the network

Description

Return a list of nodes with the time slice appended up to the desired size of the network

Usage

rename_nodes_cpp(nodes, size)

Arguments

nodes a list with the names of the nodes in the network
size the size of the DBN

Value

a list with the renamed nodes in each timeslice
smooth_ts

Performs smoothing with the GDBN over a data set

Description

Given a dbn.fit object, the size of the net and a folded data set, performs a smoothing of a trajectory. Smoothing is the opposite of forecasting: given a starting point, predict backwards in time to obtain the time series that generated that point.

Usage

smooth_ts(
 dt,
 fit,
 size,
 obj_vars,
 ini = dim(dt)[1],
 len = ini - 1,
 print_res = TRUE,
 plot_res = TRUE,
 prov_ev = NULL
)

Arguments

dt data.table object with the TS data
fit dbn.fit object
size number of time slices of the net
obj_vars variables to be predicted. Should be in the oldest time step
ini starting point in the data set to smooth
len length of the smoothing
print_res if TRUE prints the mae and sd metrics of the smoothing
plot_res if TRUE plots the results of the smoothing
prov_ev variables to be provided as evidence in each smoothing step. Should be in the oldest time step

Value

the results of the smoothing
time_rename

Description

Renames the columns in a data.table so that they end in ‘_t_0’, which will be needed when folding the data.table. If any of the columns already ends in ‘_t_0’, a warning will be issued and no further operation will be done.

Usage

```r
time_rename(dt)
```

Arguments

- `dt`: the data.table to be treated

Value

- the renamed data.table

Examples

```r
data("motor")
dt <- time_rename(motor)
```

trunc_geom

Description

Geometric distribution sampler truncated to a maximum

A geometric distribution sampler with probability ‘p’ restricted to values inside [1, max]. Because of this restriction, very low values of ‘p’ coupled with low ‘max’ return increasingly uniform populations in the interval [1, max].

Usage

```r
trunc_geom(p, max)
```

Arguments

- `p`: the parameter of the geometric distribution
- `max`: the maximum value allowed to be sampled

Value

- the sampled value
Velocity

R6 class that defines velocities affecting causality lists in the PSO

Description

Getter of the `abs_op` attribute.

Return the number of operations that the velocity performs

Setter of the `abs_op` attribute. Intended for inside use only. This should be a 'protected' function in Java-like OOP, but there's no such thing in R6. This function should not be used from outside the package.

Randomizes the Velocity’s directions. If the seed provided is NULL, no seed will be used.

Given a position, returns the velocity that gets this position to the other.

Add both velocities directions

Multiply the Velocity by a constant real number

This function multiplies the Velocity by a constant real number. It is non deterministic by definition. When calculating $k \times |V|$, the result will be floored and bounded to the set $[-\max_op, \max_op]$, where `max_op` is the maximum number of arcs that can be present in the network.

Arguments

- **n** the new number of operations that the velocity performs
- **probs** the weight of each value -1,0,1. They define the probability that each of them will be picked
- **seed** the seed provided to the random number generation
- **ps** a Position object return the Velocity that gets this position to the new one
- **vl** a Velocity object
- **k** a real number

Details

The velocities will be defined as a causality list where each element in a causal unit is a pair (v, node) with v being either 0, 1 or -1. 0 means that arc remained the same, 1 means that arc was added and -1 means that arc was deleted.

Fields

- `abs_op` Total number of operations 1 or -1 in the velocity
vel_plus_vel_cpp

Add two Velocities

Usage

vel_plus_vel_cpp(vl1, vl2, abs_op)

Arguments

vl1 the first Velocity’s causal list
vl2 the second Velocity’s causal list
abs_op the final number of 1,-1 operations

Value

a list with the Velocity’s causal list and the number of operations
Index

* datasets
 motor, 23
acc_successions, 3
add_attr_to_fit, 4
approx_prediction_step, 5
approximate_inference, 4

bn.fit, 17
bn_translate_exp, 5
calc_mu, 6
calc_mu_cpp, 6
calc_sigma, 7
calc_sigma_cpp, 7
Causlist, 8
check_time0_formatted, 9
c1_to_arc_matrix_cpp, 9
create_blacklist, 10
create_causlist_cpp, 10
create_natcauslist_cpp, 11
crop_names_cpp, 11
cte_times_vel_cpp, 12
dmmhc, 12
dynamic_ordering, 13
exact_inference, 13
exact_inference_backwards, 14
exact_prediction_step, 14
expand_time_nodes, 15
filter_same_cycle, 16
filtered_fold_dt, 16
fit_dbn_params, 17
fold_dt, 17
fold_dt_rec, 18
forecast_ts, 19
generate_random_network_exp, 20
init_cl_cpp, 21
init_list_cpp, 22
initialize_cl_cpp, 21
learn_dbn_struc, 22
merge_nets, 23
motor, 23
mvn_inference, 24
nat_cte_times_vel_cpp, 32
nat_pos_minus_pos_cpp, 33
nat_pos_plus_vel_cpp, 33
nat_vel_plus_vel_cpp, 34
natCauslist, 25
natcl_to_arc_matrix_cpp, 26
natParticle, 26
natPosition, 27
natPsoCtrl, 29
natPsoso, 30
natVelocity, 31
node.ordering, 35
node_levels, 35
nodes_gen_exp, 34
one_hot, 36
one_hot_cpp, 36
ordering_gen_exp, 37
Particle, 37
plot_dynamic_network, 38
plot_network, 39
pos_minus_pos_cpp, 41
pos_plus_vel_cpp, 41
Position, 39
predict_bn, 24, 42
predict_dt, 24, 42
PsoCtrl, 43
psoho, 45
randomize_vl_cpp, 46
INDEX

recount_arcs_exp, 46
reduce_freq, 47
rename_nodes_cpp, 47
rsmx2, 12, 22
smooth_ts, 48

time_rename, 49
trunc_geom, 49

vel_plus_vel_cpp, 51
Velocity, 50