Package ‘dann’
February 20, 2021

Type Package
Title Discriminant Adaptive Nearest Neighbor Classification
Version 0.2.2
Author Greg McMahan
Maintainer Greg McMahan <gmcmacran@gmail.com>
Description Discriminant Adaptive Nearest Neighbor Classification is a variation of k nearest neighbors where the shape of the neighborhood is data driven. This package implements dann and sub_dann from Hastie (1995) <https://web.stanford.edu/~hastie/Papers/dann_IEEE.pdf>.
License MIT + file LICENSE
Encoding UTF-8
LazyData true
Imports MASS (>= 7.3), stats (>= 3.5.3), tibble (>= 2.1.1), ggplot2 (>= 3.1.1), stringr (>= 1.4.0), purrr (>= 0.3.2), rlang (>= 0.3.4), fpc (>= 2.1-11.1), Rcpp (>= 1.0.1)
RoxygenNote 7.1.1
Suggests testthat (>= 2.0.1), knitr (>= 1.22), rmarkdown (>= 1.18), covr (>= 3.2.1), mlbench (>= 2.1-1), dplyr (>= 0.8.0.1), magrittr (>= 1.5),
VignetteBuilder knitr
LinkingTo Rcpp, RcppArmadillo
NeedsCompilation yes
Repository CRAN
Date/Publication 2021-02-20 18:50:02 UTC

R topics documented:

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>dann</td>
<td>2</td>
</tr>
<tr>
<td>graph_eigenvalues</td>
<td>4</td>
</tr>
<tr>
<td>sub_dann</td>
<td>5</td>
</tr>
</tbody>
</table>

Index 9
dann

Discriminant Adaptive Nearest Neighbor Classification

Description

Discriminant Adaptive Nearest Neighbor Classification

Usage

\[
dann(xTrain, yTrain, xTest, k = 5, neighborhood_size = \text{max}(\text{floor}(nrow(xTrain)/5), 50), epsilon = 1, probability = \text{FALSE})
\]

Arguments

- **xTrain**: Train features. Something easily converted to a numeric matrix. Generally columns should have mean zero and standard deviation one beforehand.
- **yTrain**: Train classes. Something easily converted to a numeric vector.
- **xTest**: Test features. Something easily converted to a numeric matrix. Generally columns should be centered and scaled according to xTrain beforehand.
- **k**: The number of data points used for final classification.
- **neighborhood_size**: The number of data points used to calculate between and within class covariance.
- **epsilon**: Diagonal elements of a diagonal matrix. 1 is the identity matrix.
- **probability**: Should probabilities instead of classes be returned?

Details

This is an implementation of Hastie and Tibshirani’s Discriminant Adaptive Nearest Neighbor Classification publication. The code is a port of Christopher Jenness’s python implementation.

Value

A numeric vector containing predicted class or a numeric matrix containing class probabilities.
Examples

```r
library(dann)
library(mlbench)
library(magrittr)
library(dplyr)
library(ggplot2)

#################################################
# Circle Data
#################################################
set.seed(1)
train <- mlbench.circle(300, 2) %>%
  tibble::as_tibble()
colnames(train) <- c("X1", "X2", "Y")

ggplot(train, aes(x = X1, y = X2, colour = Y)) +
  geom_point() +
  labs(title = "Train Data")

xTrain <- train %>%
  select(X1, X2) %>%
  as.matrix()
yTrain <- train %>%
  pull(Y) %>%
  as.numeric() %>%
  as.vector()

test <- mlbench.circle(100, 2) %>%
  tibble::as_tibble()
colnames(test) <- c("X1", "X2", "Y")

ggplot(test, aes(x = X1, y = X2, colour = Y)) +
  geom_point() +
  labs(title = "Test Data")

xTest <- test %>%
  select(X1, X2) %>%
  as.matrix()
yTest <- test %>%
  pull(Y) %>%
  as.numeric() %>%
  as.vector()

dannPreds <- dann(
  xTrain = xTrain, yTrain = yTrain, xTest = xTest,
  k = 3, neighborhood_size = 50, epsilon = 1,
  probability = FALSE
)
mean(dannPreds == yTest) # An accurate model.
```
graph_eigenvalues

A helper for sub_dann

Description

A helper for sub_dann

Usage

graph_eigenvalues(
 xTrain,
 yTrain,
 neighborhood_size = max(floor(nrow(xTrain)/5), 50),
 weighted = FALSE,
 sphere = "mcd"
)

Arguments

xTrain Train features. Something easily converted to a numeric matrix.
yTrain Train classes. Something easily converted to a numeric vector.
neighborhood_size
 The number of data points used to calculate between and within class covariance.
weighted weighted argument to ncoord. See ncoord for details.
sphere sphere argument to ncoord. See ncoord for details.

Details

This function plots the eigenvalues found by ncoord. The user should make a judgement call on how many eigenvalues are large and set sub_dann’s numDim to that number.

Value

A ggplot graph.
Examples

```r
library(dann)
library(mlbench)
library(magrittr)
library(dplyr)

########################################################################
# Circle data with 2 related variables and 5 unrelated variables
########################################################################
set.seed(1)
train <- mlbench.circle(300, 2) %>%
  tibble::as_tibble()
colnames(train)[1:3] <- c("X1", "X2", "Y")

# Add 5 unrelated variables
train <- train %>%
  mutate(
    U1 = runif(300, -1, 1),
    U2 = runif(300, -1, 1),
    U3 = runif(300, -1, 1),
    U4 = runif(300, -1, 1),
    U5 = runif(300, -1, 1)
  )

xTrain <- train %>%
  select(X1, X2, U1, U2, U3, U4, U5) %>%
  as.matrix()
yTrain <- train %>%
  pull(Y) %>%
  as.numeric() %>%
  as.vector()

# Data suggests a subspace with 2 dimensions. The correct answer.
graph_eigenvalues(
  xTrain = xTrain, yTrain = yTrain,
  neighborhood_size = 50, weighted = FALSE, sphere = "mcd"
)

rm(train)
rm(xTrain, yTrain)
```

sub_dann

Discriminant Adaptive Nearest Neighbor With Subspace Reduction

Description

Discriminant Adaptive Nearest Neighbor With Subspace Reduction
Usage

```r
sub_dann(
  xTrain, yTrain, xTest, k = 5,
  neighborhood_size = max(floor(nrow(xTrain)/5), 50),
  epsilon = 1,
  probability = FALSE,
  weighted = FALSE,
  sphere = "mcd",
  numDim = ncol(xTrain)/2
)
```

Arguments

- **xTrain**: Train features. Something easily converted to a numeric matrix. Generally columns should have mean zero and standard deviation one beforehand.
- **yTrain**: Train classes. Something easily converted to a numeric vector.
- **xTest**: Test features. Something easily converted to a numeric matrix. Generally columns should be centered and scaled according to xTrain beforehand.
- **k**: The number of data points used for final classification.
- **neighborhood_size**: The number of data points used to calculate between and within class covariance.
- **epsilon**: Diagonal elements of a diagonal matrix. 1 is the identity matrix.
- **probability**: Should probabilities instead of classes be returned?
- **weighted**: weighted argument to ncoord. See ncoord for details.
- **sphere**: sphere argument to ncoord. See ncoord for details.
- **numDim**: Dimension of subspace used by dann. See ncoord for details.

Details

This is an implementation of Hastie and Tibshirani’s sub-dann in section 4.1 of Discriminant Adaptive Nearest Neighbor Classification publication.. It uses package fpc’s ncoord to find the subspace. Then calls dann.

dann’s performance suffers when noise variables are included in the model. Simulations show sub_dann will generally be more performant in this scenario. However there is no replacement for good feature selection.

Value

A numeric vector containing predicted class or a numeric matrix containing class probabilities.
Examples

```r
library(dann)
library(mlbench)
library(magrittr)
library(dplyr)
library(ggplot2)

# Circle data with unrelated variables
set.seed(1)
train <- mlbench.circle(300, 2) %>%
  tibble::as_tibble()
colnames(train)[1:3] <- c("X1", "X2", "Y")

# Add 5 unrelated variables
train <- train %>%
  mutate(
    U1 = runif(300, -1, 1),
    U2 = runif(300, -1, 1),
    U3 = runif(300, -1, 1),
    U4 = runif(300, -1, 1),
    U5 = runif(300, -1, 1)
  )

xTrain <- train %>%
  select(X1, X2, U1, U2, U3, U4, U5) %>%
  as.matrix()
yTrain <- train %>%
  pull(Y) %>%
  as.numeric() %>%
  as.vector()

test <- mlbench.circle(100, 2) %>%
  tibble::as_tibble()
colnames(test)[1:3] <- c("X1", "X2", "Y")

# Add 5 unrelated variables
test <- test %>%
  mutate(
    U1 = runif(100, -1, 1),
    U2 = runif(100, -1, 1),
    U3 = runif(100, -1, 1),
    U4 = runif(100, -1, 1),
    U5 = runif(100, -1, 1)
  )

xTest <- test %>%
  select(X1, X2, U1, U2, U3, U4, U5) %>%
  as.matrix()
```
```r
yTest <- test %>%
  pull(Y) %>%
  as.numeric() %>%
  as.vector()

dannPreds <- dann(
  xTrain = xTrain, yTrain = yTrain, xTest = xTest,
  k = 3, neighborhood_size = 50, epsilon = 1,
  probability = FALSE
)
mean(dannPreds == yTest) # Not a good model

# Data suggests a subspace with 2 dimensions. The correct answer.
graph_eigenvalues(
  xTrain = xTrain, yTrain = yTrain, neighborhood_size = 50,
  weighted = FALSE, sphere = "mcd"
)

subDannPreds <- sub_dann(
  xTrain = xTrain, yTrain = yTrain, xTest = xTest,
  k = 3, neighborhood_size = 50, epsilon = 1,
  probability = FALSE,
  weighted = FALSE, sphere = "classical", numDim = 2
)
# sub_dan does much better when unrelated variables are present.
mean(subDannPreds == yTest)

rm(train, test)
rm(xTrain, yTrain)
rm(xTest, yTest)
rm(dannPreds, subDannPreds)
```
Index

dann, 2

graph_eigenvalues, 4

ncoord, 4, 6

sub_dann, 5